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ADVECTION-REACTION EQUATIONS
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Abstract. We consider the original DG method for solving the advection-reaction equa-
tions with arbitrary velocity in d space dimensions. For triangulations satisfying the flow
condition, we first prove that the optimal convergence rate is of order k+1 in the L2-norm
if the method uses polynomials of order k. Then, a very simple derivative recovery formula
is given to produce an approximation to the derivative in the flow direction which super-
converges with order k+1. Further we consider a residual-based a posteriori error estimate
and give the global upper bound and local lower bound on the error in the DG-norm, which
is stronger than the L2-norm. The key elements in our a posteriori analysis are the satura-
tion assumption and an interpolation estimate between the DG spaces. We show that the
a posteriori error bounds are efficient and reliable. Finally, some numerical experiments are
presented to illustrate the theoretical analysis.

Keywords: discontinuous Galerkin method; advection-reaction equation; optimal conver-
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1. Introduction

This paper investigates the optimal convergence and a posteriori error estimates

of the original discontinuous Galerkin (DG) method [17] for the advection-reaction
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China (11371081 and 11171251), and the Major Program of Tianjin University of Finance
and Economics.
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equation governed by

(1.1) β · ∇u+ αu = f, x ∈ Ω,

with the inflow boundary condition given on Γ− = {x ∈ ∂Ω: β · n(x) < 0}, where
Ω ⊂ R

d is a bounded polyhedral domain, n(x) is the outward unit normal at the

point x ∈ ∂Ω.

The first mathematical analysis of this DG method was given by Lesaint and

Raviart [15]. They showed that the DG scheme can be solved in an explicit fashion

and the convergence order is of O(hk) if the method uses polynomials of order k.

Later on, Johnson and Pitkaranta [14] improved this convergence order to O(hk+1/2).

Peterson in [16], for a constant vector β and a particular type of two-dimensional

mesh, further proved that the O(hk+1/2)-order convergence is sharp, namely, the

convergence order of the original DG method is suboptimal in the general case.

Also, see Richter’s recent work [19].

On the other hand, in a diametrically opposed effort, some optimal error estimates

are achieved on special meshes. In 1988, Richter [18] showed that, in the two-

dimensional case, the L2-error estimate

(1.2) ‖u− uh‖ 6 Chk+1‖u‖Hk+2(Ω)

holds for semi-uniform triangle meshes with the curious assumption that all ele-

ment edges are bounded away from the characteristic direction β of the hyperbolic

equation, that is, the triangulation Th satisfies

(1.3) |β · n(x)| > c0 > 0, x ∈ ∂K ∀K ∈ Th,

where n is the outward unit normal on the element boundary ∂K. Obviously, condi-

tion (1.3) is less significant in the practical case, and the regularity required for the

exact solution in (1.2) is not optimal.

The first optimal convergence is obtained by Cockburn et al. in [7] under the

assumptions that β is a constant vector and the triangulation Th satisfies the so-

called flow condition:

(1.4) Each simplex K has a unique outflow face e+K with respect to β

and there are no hanging nodes on each interior outflow face e+K ,

where a face e of simplexK is called the outflow (inflow) with respect to β if β·n|e > 0

(< 0). They showed that

(1.5) ‖u− uh‖ 6 Chk+1|u|Hk+1(Th),
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where |u|2Hk+1(Th)
=

∑
K∈Th

|u|2Hk+1(K). This estimate is optimal in both the conver-

gence order and the regularity requirement. Moreover, Cockburn et al. in [7] also

propose a postprocessing method for the approximation to the directional derivative

∂βu = β · ∇u and have proved the following superconvergence estimate

(1.6) ‖Ph(∂βu)− ∂β,huh‖ 6 Chk+1|u|Hk+1(Th),

where Ph is the L2-projection onto the DG space and ∂β,huh is an approximation to

∂βu obtained by the postprocessing procedure.

The first part of this paper aims to further improve the optimal convergence re-

sults in [7]. Under the same flow condition assumption (1.4), we prove that, for an

arbitrary vector β(x), the optimal convergence result (1.5) still holds, and our argu-

ment is more skillful. Meanwhile, we also present a very simple derivative recovery

formula by using the DG solution uh to recover the derivative ∂βu and prove that

(1.7) ‖∂βu−Rh(∂βu)‖ 6 Chk+1|u|Hk+1(Th),

where Rh(∂βu) is the recovery value of ∂βu. Obviously, estimate (1.7) is a better

result compared with estimate (1.6), noting that using (1.6) to derive a result like

(1.7) requires u ∈ Hk+2(Th).

Now let us turn to a posteriori error estimates of the original DG method for

problem (1.1). An early attempt to derive a posteriori error estimates for advection-

dominated advection-diffusion problems was made by Eriksson and Johnson in [9],

using regularization and duality techniques. Improved energy norm techniques were

then proposed by Verfürth in [20], where semi-robust estimates were obtained. How-

ever, for the pure advection-reaction problems, the estimates based on the ideas in

[9], [20] fail. This is mainly due to the fact that the elliptic problem has smoothing

properties, whereas the advection equation does not. This lack of smoothing and

symmetry of the advection-reaction problem is what makes standard techniques us-

ing coercivity no longer work well. Another possibility is to use the duality technique

to derive a posteriori error estimates. Indeed, Houston and Süli in [12], [13] used this

technique to establish two types of a posteriori error estimates (labelled as Type I

and Type II) by means of some target functionals of the exact solution. The main

idea in [12], [13] is to relate the a posteriori error estimate of the functional to the so-

lution of the dual problem, which is set in terms of this functional. However, in both

Type I and Type II estimates, the error estimators contain the unknown solution of

the dual problem that must be solved analytically or numerically. Such a posteri-

ori error estimates are clearly difficult to use in adaptive computations. Recently,

Burman in [4] also gave some residual-based a posteriori error bounds in the graph
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norm for linear finite element. The key assumption in [4] is the so-called saturation

assumption (see [3]): There exists a constant 0 < δ < 1 such that

(1.8) ‖u− uh∗‖∗ 6 δ‖u− uh‖∗,

where uh and uh∗ are two DG solutions associated with the triangulation Th and the

refined triangulation Th∗ , respectively, and ‖ · ‖∗ is a mesh-dependent norm. The
saturation assumption has been used extensively in a posteriori error analysis. See,

for example, [1], [2], [3], [4], [8]. It is typically needed in situations where the standard

techniques for a posteriori error estimates based on coercivity or smoothing fail.

The second part of this paper aims to propose an efficient and reliable, residual-

based a posteriori error estimate for the original DG method. The key ingredient

of our analysis is to use the saturation assumption and establish an interpolation

estimate between the two DG spaces associated with the triangulations Th and Th/2.

We give the global upper bound and the local lower bound on the error u − uh in

the DG-norm (see (2.9)), which is stronger than the L2-norm.

The paper is organized as follows. In Section 2, we review the original DG method

and some basic results. In Section 3, we derive the optimal convergence in the L2-

norm and establish the superconvergent derivative recovery formula for the approxi-

mation of ∂βu. Section 4 is devoted to the a posteriori error analysis, and in Section 5

some numerical examples are presented to illustrate our theoretical analysis.

Throughout this paper, we use the usual Sobolev space and norm notations, and

use letter C to represent a generic positive constant, which is independent of the

mesh size h.

2. The problem and its DG approximation

Consider the following advection-reaction equation [11]:

Lu ≡ β · ∇u + αu = f in Ω,(2.1)

u = g on Γ−,

where β = (β1, . . . , βd)
T is a vector function, α, f , and g are some known functions.

As usual, we assume that β ∈ [W 1
∞(Ω)]d, α ∈ L∞(Ω), f ∈ L2(Ω), g ∈ L2(Γ−), and

(2.2) α− 1

2
divβ = σ > σ0 > 0, x ∈ Ω.

Let Th =
⋃
{K} be a shape regular triangulation of domain Ω parameterized by

mesh size h = maxhK , where K is the simplex and hK is the diameter of K. We say
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that the triangulation Th is shape-regular, if the elements of Th are affine equivalent

and there exists a positive constant γ independent of K ∈ Th such that

hK/̺K 6 γ ∀K ∈ Th,

where ̺K denotes the diameter of the biggest ball included in K.

With the triangulation Th, we associate the finite-dimensional space

(2.3) Sh = {v ∈ L2(Ω): v|K ∈ Pk(K) ∀K ∈ Th},

where Pk(K) is composed of polynomials of degree at most k on each element K.

Also, we denote the piecewise smooth function space on Th by

Hs(Th) = {v ∈ L2(Ω): v|K ∈ Hs(K) ∀K ∈ Th}, s > 1.

In order to cope with the discontinuity of functions across element interfaces, we

introduce the jump of function ϕ ∈ H1(Th) on ∂K by

[ϕ] = ϕ+ − ϕ− and [ϕ]|∂Ω = ϕ+,

where ϕ+ and ϕ− are the traces of ϕ on ∂K from the interior and the exterior of K,

respectively. We will also use the notations

(u, v)h =
∑

K∈Th

(u, v)K =
∑

K∈Th

∫

K

uv dx, 〈u, v〉S =
∑

K∈Th

∫

S∩∂K

uv ds,

where S is some collection of faces of elements.

In what follows, we denote by L∗ = −β · ∇ + α − divβ the adjoint operator

of L, and by ∂K+ and ∂K− the outflow boundary and the inflow boundary of K,

respectively, where ∂K± = {x ∈ ∂K : ±β · n(x) > 0}, and n represents the outward

unit normal on the boundaries concerned.

Now we define the DG approximation of problem (2.1) by finding uh ∈ Sh such

that

(2.4) ah(uh, vh) = (f, vh)− 〈β · ng, vh〉Γ−
∀ vh ∈ Sh,

where ah(·, ·) is the bilinear form defined by

(2.5) ah(w, v) = (w,L∗v)h +
∑

K∈Th

∫

∂K\Γ−

β · nŵv ds, w, v ∈ H1(Th),
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and ŵ is the numerical trace of w given by the upwind value:

ŵ =

{
w− on ∂K−,

w+ on ∂K+.

Equality (2.4) is the well-known DG scheme introduced originally by Reed and Hill

in [17]. By using integration by parts and the definition of ŵ, an equivalent form of

ah(w, v) can be derived as follows:

(2.6) ah(w, v) = (Lw, v)h −
∑

K∈Th

∫

∂K−

β · n[w]v ds, w, v ∈ H1(Th),

which will be used sometimes for convenience. It is easy to derive the following

identity for w ∈ H1(Th),

(2.7) ah(w,w) = (σw,w) +
1

4

∑

K∈Th

∫

∂K\∂Ω

|β · n|[w]2 ds+ 1

2

∫

∂Ω

|β · n|w2 ds.

In addition, following [5], [10], we may show the following inf-sup condition:

(2.8) |||wh|||h 6 C sup
vh∈Sh

ah(wh, vh)

|||vh|||h
,

where ||| · |||h is the DG-norm:

(2.9) |||v|||2h = σ0‖v‖2h+
∑

K∈Th

hK‖β·∇v‖2L2(K)+
∑

K∈Th

∫

∂K

|β·n|[v]2 ds, v ∈ H1(Th).

Introduce the L2-projection operator Ph : L2(Ω) → Sh (restricted to K ∈ Th,

Phu ∈ Pk(K)) defined by

(2.10) (u− Phu, v)K = 0 ∀ v ∈ Pk(K), K ∈ Th.

The operator Ph can be a continuous linear operator mapping H
k+1(K) into Pk(K)

and Phv = v for all v ∈ Pk(K). Hence, by the interpolation theory of Sobolev space

[6], we have the standard approximation result

(2.11) ‖u−Phu‖L2(K)+h
1/2
K ‖u−Phu‖L2(∂K) 6 Chk+1

K |u|Hk+1(K), k > 0, K ∈ Th.

Denote by wc the piecewise constant approximation of the function w, that is,

(2.12) wc =
1

|K|

∫

K

w dx, |w − wc|∞,K 6 hK |∇w|∞,K , K ∈ Th.

The following finite element inverse inequality will be used throughout this paper:

(2.13) ‖∇vh‖L2(K) + h
−1/2
K ‖vh‖L2(∂K) 6 Ch−1

K ‖vh‖L2(K), vh ∈ Pk(K), K ∈ Th.

We now give the standard error estimate which will be used in Section 4.
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Lemma 2.1. Let Th be a shape-regular triangulation, u and uh the solutions of

problem (2.1) and (2.4), respectively, u ∈ H1(Ω) ∩Hk+1(Th). Then, we have

|||u − uh|||h 6 Chk+1/2|u|Hk+1(Th), k > 0.

P r o o f. Let vh ∈ Sh. Then, from the error equation

(2.14) ah(u − uh, vh) = 0 ∀ vh ∈ Sh

we can derive that

(2.15) ah(uh − Phu, vh) = ah(u− Phu, vh)

= (u− Phu,L∗vh)h +
∑

K∈Th

〈β · n(u− P̂hu), vh〉∂K\Γ−

= E1 + E2.

Since βc∇vh ∈ Sh, we have

E1 = −(u− Phu, (β − βc) · ∇vh)h + ((α− divβ)(u− Phu), vh)h

6 ‖u− Phu‖L2(Th)(|β|1,∞‖hK∇vh‖L2(Th) + |α− divβ|∞‖vh‖L2(Th))

6 C‖u− Phu‖‖vh‖,

where we have used the inverse inequality. Next, note that when x ∈ ∂K−\Γ−, there

must exist an adjacent element K ′ such that x ∈ ∂K− ∩ ∂K ′
+ and β · n|x∈∂K−

=

−β · n′|x∈∂K′

+
. Thus, we have

E2 =
∑

K∈Th

(〈β · n(u − Phu), vh〉∂K+
+ 〈β · n(u− Phu)

−
h , vh〉∂K−\Γ−

)

=
∑

K∈Th

〈β · n(u− Phu), [vh]〉∂K+\Γ+
+ 〈β · n(u− Phu), vh〉Γ+

6
∑

K∈Th

|β|1/2∞ ‖u− Phu‖L2(∂K+)(‖|β · n|1/2[vh]‖L2(∂K+) + ‖|β · n|1/2vh‖L2(∂K∩Γ+))

6 2|β|1/2∞

( ∑

K∈Th

‖u− Phu‖2L2(∂K)

)1/2

|||vh|||h,

where Γ+ = ∂Ω \ Γ−. Therefore, it follows from substituting E1 and E2 into (2.15),

using approximation property (2.11), inf-sup condition (2.8), and the triangle in-

equality that the desired estimate is available. �

7



3. Optimal convergence and derivative recovery technique

3.1. Optimal convergence. We first give a simple and useful lemma.

Lemma 3.1. Let e0K be the collection of faces of K that are neither inflow nor

outflow faces. Then we have

(3.1) |(β · n)(x)| 6 hK |∇β|∞,K ∀x ∈ e, e ∈ e0K .

P r o o f. Let e ∈ e0K be a face. Because e is neither an inflow nor an outflow face,

then there must exist points x1, x2 ∈ e such that (β · n)(x1) > 0 and (β ·n)(x2) 6 0.

Therefore, by the continuity of (β · n)(x) on e, there exists a point x0 = (1− θ)x1 +

θx2 ∈ e with some θ ∈ [0, 1] such that (β · n)(x0) = 0. Thus, we have

|(β · n)(x)| = |β(x) · n(x) − β(x0) · n(x0)| 6 |β(x)− β(x0)| 6 hK |∇β|∞,K , x ∈ e,

noting that the outward unit norm n(x) = n(x0) on face e. �

In order to obtain the optimal convergence, we still need to introduce a special pro-

jection mapping H1(Th) into Sh. Define the projection function Pu ∈ Sh, restricted

to K ∈ Th, Pu ∈ Pk(K) such that

∫

K

(u − Pu)v dx = 0 ∀ v ∈ Pk−1(K),(3.2)

∫

e+
K

(u− Pu)v ds = 0 ∀ v ∈ Pk(e
+
K),(3.3)

where e+K is an outflow face of K and the first condition is vacuous if k = 0. Note

that although K may have several outflow faces for general meshes, we only select

one of them to define the projection in (3.3). This projection has been used in some

articles (see e.g. [7]), but the authors of the present paper did not find a strict proof

of its existence and approximation property in existing literature. We here give the

proof in detail.

Theorem 3.1. The projection function Pu is well posed and satisfies the approx-

imation property

(3.4) ‖u− Pu‖L2(K) + h
1/2
K ‖u− Pu|L2(∂K) 6 Chk+1

K |u|Hk+1(K), k > 0, K ∈ Th,

where C is a constant independent of the element K.
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P r o o f. Let us begin by proving the unique existence of the function Pu ∈ Pk(K)

satisfying (3.2)–(3.3). Since

dim(Pk−1(K)) + dim(Pk(e
+
K)) =

(k − 1 + d

d

)
+
(k + d− 1

d− 1

)

=
(k + d

d

)
= dim(Pk(K)),

we see that the linear system (3.2)–(3.3) is square, so we only need to show that

Pu = 0 if u = 0. Without loss of generality, we assume that the face e+K in (3.3) lies

on the hyperplane x1 = 0 and x1 < 0 when x ∈ K (otherwise we may use the affine

transformation F : K → K̂ such that e+
K̂
lies on x̂1 = 0, and x̂1 < 0 when x̂ ∈ K̂).

Let u = 0. Then we have from (3.3) that Pu|e+
K

= 0 and hence, Pu = x1p for some

polynomial p ∈ Pk−1(K). Taking v = p in (3.2), we get

(x1p, p)K = (x1, p
2)K = 0,

since x1 < 0 on K, we conclude that p = 0. This implies that Pu = 0 on K.

Now we are in the position to prove the approximation property (3.4). Let Ph be

the L2-projection defined by (2.10). From (3.3) we see that

(3.5) ‖Pu− Phu‖L2(e
+

K
) = ‖P(u− Phu)‖L2(e

+

K
) 6 ‖u− Phu‖L2(e

+

K
).

Introduce the polynomial space

P 0
k (K) = {v ∈ Pk(K) : (v, p)K = 0 ∀ p ∈ Pk−1(K)}.

It is easy to see that ‖·‖L2(e
+

K
) defines a norm on the space P

0
k (K) (see the argument

of the unique existence) and this norm is equivalent to the norm ‖·‖L2(K), since

P 0
k (K) is a finite dimensional space. Then, by using the norm equivalence on the

reference element and a simple scaling argument, we have

‖v‖L2(K) 6 Ch
1/2
K ‖v‖L2(e

+

K
) ∀ v ∈ P 0

k (K),

which, together with (3.5) and Pu− Phu ∈ P 0
k (K), implies

‖Pu− Phu‖L2(K) 6 Ch
1/2
K ‖Pu− Phu‖L2(e

+

K
) 6 Ch

1/2
K ‖u− Phu‖L2(e

+

K
).

This completes the proof by using the triangle inequality and the approximation

property (2.11). �

Now we can give the first main result of this paper.
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Theorem 3.2. Assume that Th is a shape-regular triangulation satisfying flow

condition (1.4), and let u and uh be the solutions of problems (2.1) and (2.4), re-

spectively, u ∈ H1(Ω)∩Hk+1(Th). Then we have the following optimal convergence

estimate:

(3.6) ‖u− uh‖ 6 Chk+1|u|Hk+1(Th), k > 0.

P r o o f. First, by a similar derivation to that of (2.15), we obtain for vh ∈ Sh

that

(3.7) ah(uh−Pu, vh) = (u−Pu,L∗vh)h+
∑

K∈Th

〈β ·n(u−P̂u), vh〉∂K\Γ−
= F1+F2,

and (noting that βc · ∇vh ∈ Pk−1(K))

F1 = −(u− Pu, (β − βc) · ∇vh)h + ((α− divβ)(u− Pu), vh)h

6 C‖u− Pu‖ ‖vh‖ 6 Chk+1|u|Hk+1(Th)‖vh‖.

It remains to estimate F2. We begin by writing F2 as

(3.8) F2 =
∑

K∈Th

〈β · n(u− P̂u), vh〉(∂K\e0
K
)\Γ−

+
∑

K∈Th

〈β · n(u− P̂u), vh〉e0
K
\Γ−

= S1 + S2.

Since the numerical trace P̂u is continuous across the interfaces of elements in Th

and an interior face of K is the outflow face if and only if it is an inflow face of some

adjacent element, we obtain

S1 =
∑

K∈Th

〈β · n(u− Pu), [vh]〉e+
K

.

From the flow condition (1.4) we know that βc · n[vh]|e+
K

∈ Pk(e
+
K). Then, we have

from (3.3) that

S1 =
∑

K∈Th

〈(β − βc) · n(u− Pu), [vh]〉e+
K

.

Hence, by using the approximation properties and the inverse inequality, we obtain

S1 6
∑

K∈Th

ChK |∇β|∞,K‖u− Pu‖L2(e
+

K
)‖vh‖L2(e

+

K
) 6 Chk+1|u|Hk+1(Th)‖vh‖.
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Next, from Lemma 3.1 we know that

S2 6
∑

K∈Th

hK |∇β|∞,K‖u− P̂u‖L2(e0K)‖vh‖L2(e0K)

6
∑

K∈Th

hK |∇β|∞,K‖u− Pu‖L2(∂K)‖vh‖L2(∂K) 6 Chk+1|u|Hk+1(Th)‖vh‖.

Now, substituting S1 and S2 into (3.8) to obtain the estimate for F2, and then

substituting F1 and F2 into (3.7), we arrive at

(3.9) ah(uh − Pu, vh) 6 Chk+1|u|Hk+1(Th)‖vh‖ ∀ vh ∈ Sh.

It follows from taking vh = uh − Pu and noting that ah(vh, vh) > σ0‖vh‖2 that the
proof is completed by using the triangle inequality and approximation property (3.4).

�

3.2. The approximation of ∂βu by the derivative recovery technique. In

this subsection, we consider the approximation of the directional derivative ∂βu =

β · ∇u by using the post-processing technique.

Let uh be the DG solution. The error order of ‖∂β(u − uh)‖L2(Th) will be, in

general, one order lower than that of ‖u−uh‖. In order to improve the approximation
accuracy, some post-processing methods have been used, e.g., see [7]. However, these

methods usually cost much additional computation. Here we provide a very simple

derivative recovery formula which gives a superconvergent approximation to ∂βu.

Theorem 3.3. Let Th be an arbitrary shape-regular triangulation, u and uh the

solutions of problem (2.1) and (2.4), respectively. Define the recovery formula of the

derivative ∂βu by

(3.10) Rh(∂βu) = f − αuh in Ω.

Then we have

(3.11) ∂βu−Rh(∂βu) = −α(u − uh).

P r o o f. Equality (3.11) comes from (2.1) and (3.10) directly. �

A direct result of Theorem 3.3 is

(3.12) ‖∂βu−Rh(∂βu)‖ 6 ‖α(u− uh)‖ 6 Chk+s|u|Hk+1(Th),

where s = 1/2 for general meshes, and s = 1 for the meshes satisfying flow condi-

tion (1.4), see Lemma 2.1 and Theorem 3.2.
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R em a r k 3.1. Compared with the post-processing formula in [7], Theorem 2.3,

our formula (3.10) is simpler and dependent only on uh and problem data f and α.

4. A posteriori error analysis

It is very important for the finite element method to have a computable a posteriori

error bound so that we can assess the accuracy of the finite element solution and

enhance the computation efficiency by adaptive algorithms in practical applications.

In this section, we will establish an efficient and reliable a posteriori error estimator

for the DG method (2.4) associated with general meshes and special meshes.

In what follows, we assume that |β(x)| > βmin > 0. Since

βc|K =
1

K

∫

K

(β1, . . . , βd)
T dx = (β1(ξ1), . . . , βd(ξd))

T

= β(ξ1) + (β1(ξ1), . . . , βd(ξd))
T − β(ξ1),

we have when h is small

(4.1) |βc(x)| > |β(ξ1)| −
( d∑

i=1

|βi(ξi)− βi(ξ1)|2
)1/2

> βmin − hK |∇β|∞,K > 0, x ∈ K.

Denote by Th∗ a uniform refinement of Th with mesh size h
∗ = α0h, 0 < α0 < 1,

and a corresponding DG space Sh∗ such that Sh ⊂ Sh∗ . For a K ∈ Th, let us denote

by F̊K = {e ∈ ∂K∗ \ ∂K : K∗ ⊂ K} the set of interior faces of simplices K∗ ⊂ K,

i.e., the subgrid faces that are not included in a face of K. We assume that the

subdivision is such that

(4.2) |βc · ne| > 0 ∀ e ∈ F̊K , K ∈ Th.

It is easy to see that in two-dimensional space there is always at least one subdivision

of eachK such that condition (4.2) holds. For instance, compare the two subdivisions

in Figure 4.1. If |βc ·ne| = 0 for some face in one of the subdivisions, it will be larger

than zero on all faces in the other, since no two interior faces are parallel between

the two types of refinements.

Introduce the auxiliary problem: Find uh∗ ∈ Sh∗ such that

(4.3) ah∗(uh∗ , vh∗) = (f, vh∗)− 〈β · ng, vh∗〉Γ−
∀ vh∗ ∈ Sh∗ .

12



Figure 4.1. Two different types of subgrids such that |βc · n| cannot vanish on the interior
faces in both Type I (left) and Type II (right) simultaneously.

Let uh be the DG solution of problem (2.4), and note that ah(uh, vh) = ah∗(uh, vh)

(see (2.6)). Then, we have the orthogonal equation

(4.4) ah∗(uh∗ − uh, vh) = 0 ∀ vh ∈ Sh ⊂ Sh∗ .

Let v ∈ Sh ⊕H1(Ω). Since

β · ∇v ∈ L2(K), [v]|e = 0, e ∈ F̊K ,
1

2
hK 6 hK∗ < hK , K∗ ⊂ K, ∀K ∈ Th,

we have

(4.5)
1

2
|||v|||2h 6 |||v|||2h∗ 6 |||v|||2h ∀ v ∈ Sh ⊕H1(Ω).

The key of our a posteriori analysis is to introduce the so-called saturation as-

sumption, which has been used widely in existing literature (see [1], [2], [3], [4], [8]):

There exists a constant δ < 1, independent of h, such that

(4.6) |||u− uh∗ |||h∗ 6 δ|||u − uh|||h∗ .

Clearly, by Lemma 2.1, assumption (4.6) is expected to hold for smooth u and h

sufficiently small. Under this assumption, we have

|||u− uh|||h∗ 6 |||u− uh∗ |||h∗ + |||uh∗ − uh|||h∗ 6 δ|||u− uh|||h∗ + |||uh∗ − uh|||h∗ ,

which, together with (4.5), implies

(4.7) |||u− uh|||h 6
√
2(1− δ)−1|||uh∗ − uh|||h∗ .

Thus, the a posteriori error estimate of u − uh is converted to an estimate of the

error uh∗ − uh. The following approximation result is basic in our analysis.
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Lemma 4.1. Let ih : Sh∗ → Sh be an interpolation or projection operator such

that ihv = v for all v ∈ Pk(K). Then we have

∑

K∈Th

h−1
K ‖vh∗ − ihvh∗‖20,K 6 C|||vh∗ |||2h∗ ∀ vh∗ ∈ Sh∗ .

P r o o f. For any simplex K ∈ Th, introduce the piecewise polynomial space

P∗(K) = {(vh∗ − ihvh∗)|K : vh∗ ∈ Sh∗} and the notation

‖vh∗ − ihvh∗‖2∗,K ≡
∑

K∗⊂K

‖βc · ∇vh∗‖20,K∗ +
∑

e∈F̊K

∫

e

|βc · n|[vh∗ ]2 ds.

We first prove that ‖ · ‖∗,K is a norm on P∗(K). Let ‖vh∗ − ihvh∗‖∗,K = 0. Then it

follows from (4.2) that

∂vh∗

∂βc

∣∣∣
K∗

= 0, [vh∗ ]
∣∣
e
= 0 ∀K∗ ⊂ K, e ∈ F̊K ,

which implies that vh∗ = cl on l ∩K, where l is any line that is parallel to βc and

cl is a constant. Since β
c is not parallel to any face e ∈ F̊K (see (4.2)), we see that

the constant cl crosses each face e ∈ F̊K . Then vh∗ ∈ P∗(K) implies that vh∗ is

a polynomial on K such that vh∗ − ihvh∗ = 0, noting that ihv = v if v ∈ Pk(K).

This shows that ‖ · ‖∗,K is a norm on P∗(K). Now, using the norm equivalence on

the reference element and a scaling argument, we obtain

(4.8) h−1
K ‖vh∗−ihvh∗‖20,K 6 C

( ∑

K∗⊂K

hK‖βc ·∇vh∗‖20,K∗+
∑

e∈F̊K

∫

e

|βc ·n|[vh∗ ]2 ds

)
.

Noting that βc = β+O(hK)|β|1,∞,K , it follows from (4.8) and the inverse inequality

that

h−1
K ‖vh∗ − ihvh∗‖20,K

6 C
∑

K∗⊂K

(
‖vh∗‖20,K∗ + hK∗‖β · ∇vh∗‖20,K∗ +

∫

∂K∗

|β · n|[vh∗ ]2 ds

)
,

which implies the conclusion of Lemma 4.1. �

Let π
(k)
K w ∈ Pk(K) be an approximation of the function w on K, for example,

the L2-projection or interpolation approximation. Similarly, π
(k)
e w ∈ Pk(e) is an
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approximation of w on the face e ⊂ ∂K. Introduce several quantities,

η1(uh) =

( ∑

K∈Th

hK‖(f − Luh)− π
(k)
K (f − Luh)‖20,K

)1/2

,

η2(uh) =

( ∑

K∈Th

∫

∂K\∂Ω

|β · n|2|[uh]|2 ds
)1/2

,

η3(uh) =

( ∑

K∈Th

∫

∂K∩Γ−

|β · n|2(g − uh)
2 ds

)1/2

.

Obviously, these quantities are computable in terms of the DG solution uh. Now we

can give the second main result of this paper.

Theorem 4.1. Let u and uh be the solutions of problems (2.1) and (2.4), respec-

tively, u ∈ H1(Ω) and |β| > βmin > 0. Then, we have the following a posteriori error

estimate:

(4.9) |||u− uh|||h 6 C(η1(uh) + η2(uh) + η3(uh)), k > 0.

P r o o f. According to (4.7), we only need to estimate |||uh∗ − uh|||h∗ . Using the

expression (2.6) of ah(u, v), equations (4.3) and (4.4), we gain for vh∗ ∈ Sh∗ that

(4.10) ah∗(uh∗ − uh, vh∗) = ah∗(uh∗ − uh, vh∗ − Phvh∗)

= ah∗(uh∗ , vh∗ − Phvh∗)− ah∗(uh, vh∗ − Phvh∗)

= (f, vh∗ − Phvh∗)−
∫

Γ−

β · ng(vh∗ − Phvh∗) ds− ah(uh, vh∗ − Phvh∗)

= (f − Luh, vh∗ − Phvh∗)h +
∑

K∈Th

∫

∂K−\Γ−

β · n[uh](vh∗ − Phvh∗) ds

−
∫

Γ−

β · n(g − uh)(vh∗ − Phvh∗) ds

= T1 + T2 + T3.

Below we estimate the terms T1, T2, and T3. First, by using Lemma 4.1 (taking

ih = Ph), we have

T1 = (f − Luh − π
(k)
K (f − Luh), vh∗ − Phvh∗)h

6 η1(uh)

( ∑

K∈Th

h−1
K ‖vh∗ − Phvh∗‖20,K

)1/2

6 Cη1(uh)|||vh∗ |||h∗ .
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Next, using the inverse inequality and Lemma 4.1, we obtain

T2 6 η2(uh)

( ∑

K∈Th

‖vh∗ − Phvh∗‖2L2(∂K)

)1/2

6 Cη2(uh)|||vh∗ |||h∗ ,

T3 6 η3(uh)

( ∑

K∈Th

‖vh∗ − Phvh∗‖2L2(∂K∩Γ−)

)1/2

6 Cη3(uh)|||vh∗ |||h∗ .

Substituting the estimates T1, T2, and T3 into (4.10) and using the inf-sup condition

(2.8) on Sh∗ , we arrive at the conclusion of Theorem 4.1. �

Now, we consider the special meshes. We assume that the triangulation Th satisfies

flow condition (1.4) with respect to −β, that is:

(4.11) Each simplex K has a unique inflow face e−K with respect to β

and there are no hanging nodes on each interior inflow face e−K .

Corresponding to flow condition (4.11), we introduce the projection P− which sat-

isfies conditions (3.2) and (3.3) with e−K replacing e
+
K . Introduce estimate quantities,

η̃1(uh) =

( ∑

K∈Th

hK‖(f − Luh)− π
(k−1)
K (f − Luh)‖20,K

)1/2

,

η̃2(uh) =

( ∑

K∈Th

∫

∂K\∂Ω

h2
K |∇β|2∞,K |[uh]|2 ds

)1/2

,

η̃3(uh) =

( ∑

K∈Th

∫

∂K∩Γ−

(h2
K |∇β|2∞,K(g − uh)

2 + |βc · n|2|(g − π(k)
e g)|2) ds

)1/2

,

where π
(k−1)
K = 0 if k = 0.

Theorem 4.2. Assume that Th is a shape-regular triangulation satisfying flow

condition (4.11), and let u and uh be the solutions of problems (2.1) and (2.4),

respectively, u ∈ H1(Ω) and |β| > βmin > 0. Then we have

(4.12) |||u − uh|||h 6 C(η̃1(uh) + η̃2(uh) + η̃3(uh)), k > 0.

P r o o f. We only need to estimate |||uh∗ −uh|||h∗ . Using the projection P− instead

of Ph in (4.10), we obtain for vh∗ ∈ Sh∗ that

(4.13) ah∗(uh∗ − uh, vh∗)

= (f − Luh, vh∗ − P−vh∗)h +
∑

K∈Th

∫

∂K−\Γ−

β · n[uh](vh∗ − P−vh∗) ds

−
∫

Γ−

β · n(g − uh)(vh∗ − P−vh∗) ds = S1 + S2 + S3.
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Now we estimate terms S1, S2, and S3. First, by using Lemma 4.1 and (3.2), we

have

S1 = (f − Luh − π
(k−1)
K (f − Luh), vh∗ − P−vh∗)h

6 η̃1(uh)

( ∑

K∈Th

h−1
K ‖vh∗ − P−vh∗‖20,K

)1/2

6 Cη̃1(uh)|||vh∗ |||h∗ .

Next, using flow condition (4.11) and the orthogonal property of P−, we may write
∫

∂K−\Γ−

β · n[uh](vh∗ − P−vh∗) ds

=

∫

e−
K
\Γ−

β · n[uh](vh∗ − P−vh∗) ds+

∫

∂K−∩e0
K

β · n[uh](vh∗ − P−vh∗) ds

6

∫

e−
K
\Γ−

(β − βc) · n[uh](vh∗ − P−vh∗) ds+

∫

e0
K

|β · n[uh](vh∗ − P−vh∗)| ds.

Then, it follows from Lemma 3.1, the inverse inequality, and Lemma 4.1 that

S2 6 Cη̃2(uh)

( ∑

K∈Th

‖vh∗ − P−vh∗‖2L2(∂K)

)1/2

6 Cη̃2(uh)|||vh∗ |||h∗ .

Similarly, we have

S3 = −
∫

Γ−

β · n(g − uh)(vh∗ − P−vh∗) ds

= −
∫

Γ−

(β − βc) · n(g − uh)(vh∗ − P−vh∗) ds

+

∫

Γ−

βc · n(g − uh)(vh∗ − P−vh∗) ds

6 Cη̃3(uh)|||vh∗ |||h∗ +

∫

Γ−

βc · n(g − π(k)
e g)(vh∗ − P−vh∗) ds 6 Cη̃3(uh)|||vh∗ |||h∗ .

Theorem 4.2 follows from substituting estimates S1, S2, and S3 into (4.13) and using

the inf-sup condition (2.8) on Sh∗ . �

If β is a constant vector, under the conditions of Theorem 4.2, we can obtain

a sharper error upper bound as follows:

(4.14) |||u − uh|||h 6 C

( ∑

K∈Th

hK‖(f − αuh)− π
(k−1)
K (f − αuh)‖20,K

+

∫

Γ−

|β · n|2|(g − π(k)
e g)|2 ds

)1/2

.

We now give the lower bound estimates of the error u− uh.

17



Theorem 4.3. Let u and uh be the solutions of problems (2.1) and (2.4), respec-

tively, u ∈ H1(Ω). Then, the following local lower bounds hold:

hK‖(f − Luh)− π
(k)
K (f − Luh)‖20,K(4.15)

6 8hK‖α(u− uh)‖20,K + 8hK‖β · ∇(u − uh)‖20,K ,
∫

∂K

|β · n|2|[uh]|2 ds =
∫

∂K

|β · n|2|[u− uh]|2 ds.(4.16)

Furthermore, we have the global lower bound estimate:

(4.17) η1(uh) + η2(uh) + η3(uh) 6 Cα|||u − uh|||h,

where Cα = max{8|α|∞h/σ0, 8}.

P r o o f. Taking π
(k)
K = Ph, we have

hK‖(f − Luh)− π
(k)
K (f − Luh)‖20,K
6 4hK‖f − Luh‖20,K = 4hK‖L(u− uh)‖20,K
6 4hK(‖α(u− uh)‖0,K + ‖β · ∇(u − uh)‖0,K)2,

which implies (4.15). Equality (4.16) is obvious. From (4.15) and (4.16) we arrive

at (4.17). �

Applying the results of Theorem 4.1 and Theorem 4.3, we have the upper bound

and the lower bound estimates, that is, for η(uh) = η1(uh) + η2(uh) + η3(uh), there

holds

C−1
α η(uh) 6 |||u − uh|||h 6 Cη(uh),

where the lower bound may be local. This shows that our a posteriori error estimates

are reliable and efficient, and the error bounds are almost sharp.

5. Numerical experiments

In this section we present numerical examples to illustrate our theoretical analysis.

In our experiments, we take Ω = (1, 2)× (1, 2), β = (x, y), α = 2, the exact solution

u(x, y) = sinx sin y, and use the linear discontinuous finite element. In order to

make the triangulation satisfy flow condition (1.4) with respect to β, we first draw

the streamlines of β (see Figure 5.1 left), and then construct the meshes so that each

element has one edge lying on one of the streamlines (see Figure 5.1 right). Thus,

flow condition (1.4) holds with respect to β.
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Figure 5.1. Meshes satisfying the flow condition with respect to β = (x, y): The streamlines
of β (left) and the actual mesh (right).

Denote by eh the error between the exact solution and the DG solution with

mesh size h in the L2-norm, and the numerical convergence order is computed by

r = ln(eh/eh/2)/ ln 2. Let η(uh) =
3∑

i=1

ηi(uh) be the a posteriori error estimator (see

Theorem 4.1). Introduce the efficiency index σ = η(uh)/|||u− uh|||h. In Table 5.1, for
successively halving h, we display the errors and the orders of convergence, as well as

the index σ for the approximate solutions. As expected, we see that the convergence

order is optimal and the error estimator is robust and effective.

‖u− uh‖
h error order |||u − uh|||h σ

1/4 5.2327e-3 – 2.5632e-2 1.3305

1/8 1.3172e-3 1.9901 8.4502e-3 1.3149

1/16 3.3002e-4 1.9968 2.7439e-3 1.2490

1/32 8.2567e-5 1.9989 8.9478e-4 1.2560

1/64 2.0648e-5 1.9996 2.9517e-4 1.2191

1/128 5.1624e-6 1.9999 9.8670e-5 1.2251

Table 5.1. Histories of convergence and efficiency indexes
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