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Abstract. We show existence of solutions to two types of generalized anisotropic Cahn-
Hilliard problems: In the first case, we assume the mobility to be dependent on the concen-
tration and its gradient, where the system is supplied with dynamic boundary conditions.
In the second case, we deal with classical no-flux boundary conditions where the mobil-
ity depends on concentration u, gradient of concentration ∇u and the chemical potential
∆u−s

′(u). The existence is shown using a newly developed generalization of gradient flows
by the author and the theory of Young measures.
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1. Introduction

This work deals with the existence of solutions to a variety of Cahn-Hilliard models

generalizing the applications in [17]. In what follows, we will introduce three types

of equations that will be discussed in this paper, where we use some notation and

Hilbert spaces as they are introduced below in Section 2.

1.1. Introductory example: Cahn-Hilliard equations on a closed mani-

fold. The first problem in most parts was treated in [17] and we will not spend too

much effort discussing it; we rather consider it as an introductory exercise for the

other two problems, as it will help to improve understanding of the method. In the

aforementioned paper, the author developed and applied a generalized concept of

gradient flows to the following problem:

Given a bounded and open domain Ω ⊂ R
n, n 6 3, with a smooth boundary Γ

and outer normal nΓ, show existence of solutions to the following problem in some
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suitable Hilbert space:

∂tu+ div[A(u,∇u)∇(∆u − s′(u))] = 0 on (0, T ]× Ω,(1.1)

[A(u,∇u)∇(∆u − s′(u))] · nΓ = ∇u · nΓ = 0 on (0, T ]× Γ,

u(0) = u0 for t = 0,

where we assume for some bounded interval (a, b) ⊂ R, 0 ∈ (a, b) that u0(x) ∈ (a, b)

for all x ∈ Ω, s(u) = s0(u) + s1(u) with

(i) s0 ∈ C2((a, b)) convex and lim
x→a

s′0(x) = −∞, lim
x→b

s′0(x) = ∞,
(ii) s1 ∈ C2(R).

Furthermore, we will assume that A : R × R
n → R

n×n is Lipschitz continuous,

bounded and uniformly elliptic, which means there is a constant C > 0 such that

C−1|ξ|2 6 (A(c, d)ξ) · ξ 6 C|ξ|2 for all (c, d) ∈ R × R
n and all ξ ∈ R

n. We will

use this problem in order to introduce the basic concepts of the theory. The weak

formulation of the above problem reads

∫ T

0

∫

Ω

∂tuψ −
∫ T

0

∫

Ω

(A(u,∇u)∇(∆u − s′(u))) · ∇ψ = 0(1.2)

∀ψ ∈ L2(0, T ;H1
(0)(Ω)),

∇u · nΓ = 0 on (0, T ]× Γ, u(0) = u0 for t = 0.

Though there is a huge literature on the Cahn-Hilliard equation (we refer to [1],

[3] and references therein), there seems to be only few results on concentration de-

pendent mobility A(u), among the most cited being Cahn, Elliot and Novick-Cohen

[5]. Other works are by Elliot and Garcke [10], Liu, Qi and Yin [21], Liu [6], the

one dimensional treatments by Dal Passo, Giacomelli and Novick-Cohen [7] and Liu

[20] and the works by Novick-Cohen [31], [32]. In these works, A(·) is assumed to be
either strictly monotone or Lipschitz continuous.

To the author’s knowledge there is so far no existence result for (1.2) with the

mobility depending on ∇u. A study of a viscous Cahn-Hilliard equation with the
mobility depending on fractional derivatives of order smaller than 1 can be found

in [26]. A recent result treating (1.1) (for A depending only on u) as a gradient flow

in the Wasserstein space is due to Lisini, Matthes and Savaré [19]. Numerical studies

of (1.1) can be found in [44], [45].

Rossi [37] and Grasselli, Miranville, Rossi and Schimperna [14] deal with a Cahn-

Hilliard equation of the form

∂tu−∆α(w) = 0, w = s′0(u)−∆u.
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The function α : R → R is then strictly monotone with C(|r|2p + 1) 6 α(r) 6

C−1(|r|2p+1) for some C > 0 and p > 0. Below, we will treat a Lipschitz-dependence

of A on w with A being strictly positive, see Subsection 1.4. Also note that our result

applies to A depending simultaneously on u, ∇u, and w.
The existence result for (1.2) can be formulated as follows:

Theorem 1.1. For 0 < T < ∞ and any u0 ∈ H1
(0)(Ω) there exists u ∈

H1(0, T ;H−1
(0) (Ω)) ∩ L2(0, T ;H2(Ω)) satisfying (1.2) with u(t, x) ∈ (a, b) for a.e.

(t, x) ∈ (0, T )× Ω, and there is a positive constant C ∈ R such that the estimate

(1.3) ‖∂tu‖2L2(0,t;H−1
(0)

)
+‖∆u−s′0(u)‖2L2(0,t;H1

(0)
)+‖u‖2L2(0,t;H2) 6 C(S(u0)−S(u(t)))

holds for all t ∈ (0, T ), where

(1.4) S(u) :=
∫

Ω

1

2
|∇u|2 +

∫

Ω

s(u).

For Ω being a bounded domain with smooth boundary Γ, we can also ask for

existence of a solution to the problem

∂tu+ divΓ(A(u,∇Γu)∇Γ(∆Γu− s′(u))) = 0 on (0, T ]× Γ,

u(0) = u0 for t = 0,

where divΓ, ∇Γ, and ∆Γ are the tangential divergence, tangential gradient, and

Laplace-Beltrami operator on Γ. To this aim, let TxΓ be the tangential space to

Γ at x ∈ Γ and TΓ :=
⋃
x∈Γ

{x} × TxΓ the tangential bundle. We suppose that

s has the properties as above and A : R × TΓ → R
n×n is Lipschitz continuous,

bounded and uniformly elliptic, which means there is a constant C > 0 such that

C−1|ξ|2 6 (A(u, c, d)ξ) · ξ 6 C|ξ|2 for all u ∈ R, (c, d) ∈ TΓ and all ξ ∈ TcΓ. The

weak formulation for all ψ ∈ L2(0, T ;H1
(0)(Γ)) reads

∫ T

0

∫

Γ

∂tuψ −
∫ T

0

∫

Γ

(A(u,∇Γu)∇Γ(∆Γu− s′(u))) · ∇Γψ = 0,(1.5)

u(0) = u0 for t = 0.

This problem is of particular interest for numerical simulations in vesicles formation

in biological membranes, see Lowengrub, Rätz, Voigt [22], as well as Mercker and

coworkers [23], [25], [24]. A former mathematical study of the Cahn-Hilliard and

the Allen-Cahn equations on manifolds can be found in [36]. The aforementioned

publication has its focus on singularities of the manifolds and assumes A ≡ const.
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Theorem 1.2. For 0 < T < ∞ and any u0 ∈ H1
(0)(Γ) there exists u ∈

H1(0, T ;H−1
(0) (Γ)) ∩ L2(0, T ;H2(Γ)) satisfying (1.5) and there is a positive constant

C ∈ R such that the estimate

‖∂tu‖2L2(0,t;H−1
(0)

(Γ))
+ ‖∆u− s′(u)‖2L2(0,t;H1

(0)
(Γ)) + ‖u‖2L2(0,t;H2(Γ))

6 C(S(u0)− S(u(t)))

holds for all t ∈ (0, T ), where

S(u) :=
∫

Γ

1

2
|∇Γu|2 +

∫

Γ

s(u).

The earliest proof of existence for the Cahn-Hilliard equation the author is aware

of is for A(·, ·) ≡ 1, a smooth convex function s0 : R → R and a small concave per-

turbation s1, and was given in [11]. Former attempts to the Cahn-Hilliard equation

using an energy functional S with s0 like above and s1 a small concave perturbation
were in [1], [8], [18], [27]. This form of s seems to be more physical (for a choice

(a, b) = (−1, 1)) as it forces the difference of the concentrations to remain between

the fixed boundaries −1 and 1.

1.2. Short sketch of the mathematical approach. The proofs of Theo-

rems 1.1 and 1.2 are based on a recent result by the author [17]. The basic idea

is to consider (1.2) as a gradient flow in H−1
(0) (Ω) of the functional S given in (1.4)

and with respect to local scalar products gu(·, ·). The scalar products gu(·, ·) are only
defined in u ∈ H1

(0)(Ω) ⊂ H−1
(0) (Ω). For r1, r2 ∈ H we define

gu(r1, r2) =

∫

Ω

∇pu1A(u,∇u)∇pu2 ,

where pui ∈ H1
(0)(Ω) solves

− div(A(u,∇u)∇pui ) = ri for i = 1, 2,

with boundary condition A(u,∇u)∇pui · nΓ = 0. As we will see below, with the

Fréchet-subdifferential dS, the problem can be formulated as the gradient flow

gu(∂tu, ϕ) = −〈dS(u), ϕ〉H−1
(0)

∀ϕ ∈ L2(0, T ;H−1
(0) (Ω)).

1.3. Cahn-Hilliard equation with dynamic boundary conditions and non-

linear mobility. The theory of Cahn-Hilliard equation with dynamic boundary

condition is rather young. Mathematical studies and references can be found in
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Miranville and Zelik [28], Gilardi, Miranville and Schimperna [13], Gal [12] and the

initial work by Racke and Zheng [34]. From the modeling point of view, note that

the equations derived below fall within the modeling framework developed in Heida

[16], [15] or by Qian, Wang and Sheng [33].

Here, we prove existence of a solution to the problem

∂tu = div(A(u,∇u)∇(s′(u)−∆u)) on Ω,

0 = A(u,∇u)∇(s′(u)−∆u) · nΓ on Γ,

∂tu = AΓ(u)(∆Γu− s′Γ(u)−∇u · nΓ) on Γ,

with u(0, ·) = u0(·) for t = 0 on Ω and Γ, and we assume A and s to be given

like in Section 1.1. AΓ is assumed to be bounded and Lipschitz continuous with

0 < C 6 AΓ(·) for some positive constant C and we assume again
(i) s0 ∈ C2((a, b)) convex and lim

x→a
s′0(x) = −∞, lim

x→b
s′0(x) = ∞,

(ii) s1 ∈ C2(R),

(iii) sΓ = s0 + s2 with s2 ∈ C2(R).

The existence to the above problem in case A = Id, AΓ = 1 was treated in the

above references for different forms of s and sΓ. Note that the first and third

equation of the problem are not coupled directly through boundary integrals but

only through ∇u · nΓ. Thus, the weak formulation of the problem splits for all

ψ, ϕ ∈ C1(0, T ;C∞(Ω)) into two parts:

∫ T

0

∫

Ω

∂tuψ −
∫ T

0

∫

Ω

(A(u,∇u)∇(s′(u)−∆u)) · ∇ψ = 0,(1.6)

∫ T

0

∫

Γ

∂tE(u)ϕ−
∫ T

0

∫

Γ

AΓ(E(u))(∆ΓE(u)− s′Γ(E(u))−∇u · nΓ)ϕ = 0

together with the initial condition, where we use E(u) to denote the trace of u on

Γ and P0 the projection operator defined below in (2.2). Our existence result then

reads as follows:

Theorem 1.3. For 0 < T < ∞ and any u0 ∈ H1
(0)(Ω) ∩H2(Ω) there exists u ∈

H1(0, T ;H−1
(0) (Ω)) ∩L2(0, T ;H2(Ω)) with E(u) ∈ H1(0, T ;L2(Γ)) ∩ L2(0, T ;H2(Γ)),

as well as P0(s
′(u)−∆u) ∈ L2(0, T ;H1

(0)(Ω)) satisfying (1.6), and there is a positive

constant C ∈ R such that the estimate

‖u‖2
H1(0,T ;H−1

(0)
(Ω))∩L2(0,T ;H1(Ω))

+ ‖P0(∆u − s′0(u))‖2L2(0,t;H1
(0)

)

+ ‖∆ΓE(u)−∇u · nΓ‖L2(0,T ;L2(Γ)) + ‖Eu‖2H1(0,T ;L2(Γ))∩L2(0,T ;H1(Γ))

6 C(S(u0)− S(u(t)))
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holds for all t ∈ (0, T ), where

S(u) :=
∫

Ω

1

2
|∇u|2 +

∫

Ω

s(u) +

∫

Γ

1

2
|∇ΓE(u)|2 +

∫

Γ

sΓ(Eu).

Note that the usual way for treating such equations is different from the gradi-

ent flow theory. In the usual approach, the Cahn-Hilliard problem with dynamic

boundary conditions

∂tu = div(∇(s′(u)−∆u)) on Ω,

0 = ∇(s′(u)−∆u) · nΓ on Γ,

∂tu = (∆Γu− s′Γ(u)−∇u · nΓ) on Γ,

is reformulated (for the moment informally) as

−∆−1
N ∂tu = −(s′(u)−∆u) + 〈µ〉 on Ω,

〈µ〉 = 〈s′(u)〉 − 〈∆u〉,

where 〈u〉 :=
∫
Ω
u and ∆−1

N is the inverse Laplacian for Neumann boundary condi-

tions. This formulation allows to perform integration by parts in the term ∆u and

thus to treat the problem in one single weak formulation of the form

∫ T

0

∫

Ω

−∆−1
N ∂tuψ +

∫ T

0

∫

Ω

(s′(u)ψ +∇u · ∇ψ)

+

∫ T

0

∫

Γ

∂tuψ +

∫ T

0

∫

Γ

(∇Γu · ∇Γψ + s′Γ(u)ψ) = 0.

However, for the nonlinear dependence of the mobility on u,∇u, the operator ∆−1
N

would have to be replaced by a time-dependent operator, imposing lots of technical

difficulties.

1.4. Cahn-Hilliard equation with mobility depending on the chemical

potential. The third type of the Cahn-Hilliard equation is a generalization of the

first type with an additional dependence on the “curvature” term w := −∆u+ s′(u)

(see below). Thus, we write down the problem as

∂tu− div(A(u,∇u,w)∇w) = 0 on (0, T ]× Ω,

w +∆u− s′(u) = 0 on (0, T ]× Ω,

(A(u,∇u,w)∇w) · nΓ = ∇u · nΓ = 0 on (0, T ]× Γ,

u(0) = u0 for t = 0,
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where s(u) = s0(u) + s1(u) with s0(u) = |u|p for some p > 2, and s1 ∈ C3,1
b (R) is

a three times continuously differentiable mapping with bounded derivatives up to

order 2.

Furthermore, we will assume that A : R×R
n×R → R

n×n is Lipschitz continuous,

bounded and uniformly elliptic, which means there is a constant C > 0 such that

C−1|ξ|2 6 (A(a, b, c)ξ) · ξ 6 C|ξ|2 for all (a, b, c) ∈ R× R
n × R and all ξ ∈ R

n. The

weak formulation of the above problem reads

∫ T

0

∫

Ω

∂tuψ +

∫ T

0

∫

Ω

(A(u,∇u,w)∇w) · ∇ψ = 0 ∀ψ ∈ L2(0, T ;H1
(0)(Ω)),(1.7)

w = −∆u+ s′(u), ∇u · nΓ = 0 on (0, T ]× Γ, u(0) = u0 for t = 0.

for which the following existence theorem holds:

Theorem 1.4. For 0 < T < ∞ and any u0 ∈ H1
(0)(Ω) there exists u ∈

H1(0, T ;H−1
(0) (Ω)) ∩ L2(0, T ;H2(Ω)), w ∈ L2(0, T ;H1

(0)(Ω)) satisfying (1.7) and

there is a positive constant C ∈ R such that the estimate

‖∂tu‖2L2(0,t;H−1
(0)

)
+ ‖∆u− P0(s

′
0(u))‖2L2(0,t;H1

(0)
) + ‖u‖2L2(0,t;H2) 6 C(S(u0)− S(u(t)))

holds for all t ∈ (0, T ), where

S(u) :=
∫

Ω

1

2
|∇u|2 +

∫

Ω

s(u).

The last result is of particular interest for the sharp interface limit. This limit is

obtained by replacing S by

Sε(u) :=

∫

Ω

1

2
|∇u|2 + 1

ε2

∫

Ω

s(u)

and solving a sequence of problems

∂tu
ε − div(A(uε,∇uε, wε)∇wε) = 0 on (0, T ]× Ω,

wε +∆uε − 1

ε2
s′(uε) = 0 on (0, T ]× Ω,

(A(uε,∇uε, wε)∇wε) · nΓ = ∇uε · nΓ = 0 on (0, T ]× Γ,

uε(0) = uε0 for t = 0.

For the corresponding sequence of solutions uε, we expect

uε → u,
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where u ∈ BV (Ω) with u(·) ∈ {−1, 1} almost surely, ∇u being equal to a varifold γ
with curvature κ, satisfying ∂tγ = κ in a weak sense. We refer to the work by Röger

and Schätzle [35], Mugnai and Röger [29], [30] or the survey by Serfaty [39]. Note

that with regard to the limit equations, the dependence of A on u and ∇u leads to
anisotropic behavior of the limit problem, where the surface velocity may depend on

the normal direction n. The quantity wε should converge to the curvature κ and

thus the dependence of A on w may affect the limit equations as the velocity may

then depend nonlinearly on κ. A rigorous study of these reflections is, unfortunately,

beyond the scope of this article. Two interesting modeling papers on the subject are

by Taylor and Cahn [41] and by Torabi, Lowengrub, Voigt and Wise [43].

1.5. Outline of the paper. In Section 2 we will introduce some standard Hilbert

spaces which will be frequently used in this paper and collect some basic facts on

them. We will furthermore introduce basic notation for the work with boundary

derivatives. In Section 3 we will introduce some functional analytical tools, in par-

ticular the theory of Young measures, whereas in Section 4, we will introduce the

theory of gradient flows in the way it is presented in [17].

Since we introduced the three types of problems by complexity of their analysis, we

will then go on first treating the problems from Subsection 1.1, making the reader

familiar with the method and notation in Section 5. The second step will be a

generalization to dynamic boundary conditions in Section 6, making it necessary to

look for a suitable Hilbert space in order to apply the gradient flow theory. Finally,

we will include the dependence of mobility on curvature and prove Theorem 1.4 in

Section 7.

2. Notation and preliminaries

For any Hilbert space H, we denote by Lp(0, T ;H) the Bochner space of Lp-

functions over (0, T ] having values in H and by H1(0, T ;H) the space of functions

u ∈ L2(0, T ;H) having ∂tu ∈ L2(0, T ;H). Furthermore, by C([0, T ],H) we denote

the continuous functions from [0, T ] to H, by Ck([0, T ],H) the k-times continuously

differentiable functions and by AC([0, T ];H) the set of absolutely continuous func-

tions over [0, T ].

2.1. Sobolev spaces on Ω. In order to study the examples below, we will fre-

quently make use of the following Banach and Hilbert spaces: We consider an open,

bounded domain Ω ⊂ R
n with smooth boundary Γ = ∂Ω and outer normal vec-

tor nΓ. Let W
k
p (Ω) denote the usual L

p-Sobolev space and W k
p,0(Ω) the closure of
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C∞
0 (Ω) in W k

p (Ω). We will also make use of the notation

(2.1) Hk(Ω) :=W k
2 (Ω) and Hk

0 (Ω) :=W k
2,0(Ω).

We use the definition of the fractional Sobolev spaces W s
p (Ω) and W

s
p (Γ) as given

in Adams [2] and set W s
2 (Ω) = (W−s

2,0 (Ω))
−1 for s < 0.

Let H−1(Ω) denote the dual of H1
0 (Ω). Furthermore, we introduce

H1
(0)(Ω) :=

{
ϕ ∈ H1(Ω):

∫

Ω

ϕ = 0

}

with the scalar product

〈ϕ, ψ〉H1
(0)

:=

∫

Ω

∇ϕ · ∇ψ ∀ϕ, ψ ∈ H1
(0)(Ω)

and its dual space H−1
(0) (Ω) with the scalar product

〈ϕ, ψ〉H−1
(0)

:= 〈∇∆−1
N ϕ,∇∆−1

N ψ〉L2 ∀ϕ, ψ ∈ H−1
(0) (Ω),

where ∆N is the Laplace operator with Neumann boundary conditions. More gen-

erally, we define

L2
(m)(Ω) :=

{
f ∈ L2(Ω):

∫

Ω

f = m

}
, Ck

(0)(Ω) := L2
(0)(Ω)∩Ck(Ω) ∀ k ∈ N∪{∞}

and denote by

(2.2) P0 : L
2(Ω) → L2

(0)(Ω), f 7→ f −
∫

Ω

f

the orthogonal projection onto L2
(0)(Ω). For simplicity, we may sometimes omit the

(Ω) if the context is clear (e.g. H1 instead of H1(Ω)). Then, −∆N : H1
(0)(Ω) →

H−1
(0) (Ω) is the Riesz isomorphism.

Lemma 2.1 ([17]). Let A ∈ L∞(Ω;Rn×n) have the property that there is 0 <

C 6 1 such that C|ξ|2 6 ξA(x)ξ 6 C−1|ξ|2 for a.e. x ∈ Ω and for all ξ ∈ R
n. For

ϕ ∈ H−1
(0),n(Ω) let pϕ ∈ H1

(0)(Ω) solve

− div(A∇pϕ) = ϕ on Ω, (A∇pϕ) · nΓ = 0 on Γ.

Then there is 0 < G 6 1 depending only on C such that for all ϕ ∈ H−1
(0) (Ω) we have

G‖ϕ‖2
H−1

(0)

6

∫

Ω

∇pϕ · (A∇pϕ) 6 G−1‖ϕ‖2
H−1

(0)

,
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2.2. Sobolev spaces on Γ. Since Γ is C∞, we may introduce the tangential

gradient ∇Γ in the following way: On Γ, let nΓ be the normal vector field and for

each arbitrary C∞-vector field a : Ω → R
3, let us define the normal part an and the

tangential part aτ on Γ via

an := a · nΓ, aτ := a− annΓ.

We define the normal derivative

∂na := ∇a · nΓ

and the tangential gradient ∇Γ for any scalar a through

∇Γa := (∇a)τ = ∇a− nΓ∂na.

For a smooth manifold, this is equivalent to the Levi-Civita connection on Γ. Thus,

we may understand any vector field fτ tangential to Γ as an element of the TΓ, and

define the divergence

divΓ fτ := trace∇Γfτ ,

where we find for any sufficiently regular f :

div f = divΓ fτ + ∂n(fn).

The mean curvature of Γ is defined by

κΓ := trace(∇ΓnΓ)

and we have the following important result, which can be found for example in [4]:

Lemma 2.2 ([4], Lemma 3.4). Let Γ be a closed surface. For any f ∈ C1(Γ) we

have ∫

Γ

∇Γf =

∫

Γ

fκΓnΓ.

Furthermore, for any tangentially differentiable field q it follows that

∫

Γ

divΓ q =

∫

Γ

κΓq · nΓ.

The Laplace-Beltrami operator ∆Γ on Γ is defined as ∆Γf := divΓ ∇Γf . For a

nice introduction to surface gradients and the Laplace-Beltrami operator not based

on the Levi-Civita connection, we refer to Buscaglia and Ausas [4].
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R em a r k 2.3. Lemma 2.2 implies for the closed surface Γ that

−
∫

Γ

g∆Γf =

∫

Γ

∇Γg · ∇Γf ∀ f, g ∈ C2(Ω).

Via localization, projection and interpolation, we can introduce W s
2 (Γ) for s ∈ R

[2]. Note that

‖u‖2W 1
2 (Γ)

=

∫

Γ

|∇Γu|2 +
∫

Γ

u2.

For u ∈ C2(Ω), we set EΓ(u) := u|Γ, the trace of u on Γ, and ∂nu := ∇u · nΓ, with

EΓ(u), ∂nu both being functions on Γ. Like in Ω, consider the space

H1
(0)(Γ) :=

{
u ∈W 1

2 (Γ):

∫

Γ

u = 0

}
,(2.3)

‖u‖2H1
(0)

(Γ) :=

∫

Γ

|∇Γu|2

and introduce H−1
(0) (Γ) in an obvious way. We summarize the main embedding results

of interest from [2] in a short lemma:

Lemma 2.4. The operators EΓ : W
k
2 (Ω) → W

k−1/2
2 (Γ), k > 1, and ∂n :

W k
2 (Ω) → W

k−3/2
2 (Γ), k > 2, are continuous. Furthermore, W k1

2 (Ω) →֒ W k2
2 (Ω),

W k1
2 (Γ) →֒ W k2

2 (Γ) are continuous and compact for all k1 > k2 and k1, k2 ∈ R.

R em a r k 2.5. Note that there is 0 < C < 1 such that

C‖u‖W 1
2 (Ω) 6 ‖∇u‖L2(Ω) + ‖EΓ(u)‖L2(Γ) 6 C−1‖u‖W 1

2 (Ω),

i.e. the last chain of inequalities shows an equivalence of norms on W 1
2 (Ω).

Furthermore, for simplicity of notation, we write

(2.4) u ≡ EΓ(u) ∈ L2(Γ) ∀u ∈W 1
2 (Ω)

and thus we do not distinguish between W 1
2 (Ω)-functions and their traces, whenever

this will not cause confusion. Finally, we have the following result, which can be

found for example in the book by Temam [42]:
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Lemma 2.6 ([42], Theorem 1.2). Let

E(Ω) := {u ∈ L2(Ω)n : div u ∈ L2(Ω)}.

Then the operator

∂n : E(Ω) → H−1/2(Ω), u 7→ u · nΓ

is continuous.

3. Functional analytical tools and young measures

3.1. Tools from functional analysis. We state two fundamental results from

functional analysis which are known in various versions, among which we will use

the following:

Theorem 3.1 (Egorov’s theorem for L2(0, T ;H)). Let H be a Hilbert space and
(vn)n∈N ⊂ L2(0, T ;H) a sequence such that vn → v ∈ L2(0, T ;H) strongly and

pointwise for a.e. t ∈ (0, T ). Then for any ε > 0 there is Kε ⊂ (0, T ) compact with

L((0, T ) \Kε) < ε such that vn → v uniformly on Kε.

Theorem 3.2 (Lusin). For a Banach space B, let f ∈ Lp(0, T ;B) for some
1 6 p < ∞. Then for each ε > 0 there is a compact set Kε ⊂ (0, T ) such that

L((0, T ) \Kε) < ε and f ∈ C(Kε;B).

3.2. Young measures. For a separable metric space E, we denote by B(E) the

Borel σ-algebra, where L(0, T ) is the Lebesgue σ-algebra on (0, T ) and L(0, T )⊗B(E)

is the product σ-algebra. LetM(0, T ;E) denote the set of measurable functions over

(0, T ) with values in E. An L(0, T ) ⊗ B(E)-measurable function h : (0, T ) × E →
(−∞,∞] is a normal integrand if v 7→ h(t, v) is lower semicontinuous for all t ∈ (0, T ).

For a Hilbert space H, let B(H) denote the Borel σ-algebra with respect to ‖·‖H.
We say that an L⊗B(H)-measurable functional h : (0, T )×H → (−∞,∞] is a weakly

normal integrand if

v 7→ ht(v) := h(t, v) is sequentially weakly l.s.c. for a.e. t ∈ (0, T ).

Definition 3.3 (Time dependent parametrized measures). A parametrized mea-

sure in E is a family ν := {νt}t∈(0,T ) of Borel probability measures on E such that

t ∈ (0, T ) 7→ νt(B) is L-measurable for all B ∈ B(E).

We denote by Y(0, T ;E) the set of all parametrized measures.
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For computations below, the most important result on parametrized measures

is a generalization of Fubini’s theorem [9]: For every parameterized measure ν =

{νt}t∈(0,T ) there exists a unique measure ν on L(0, T )⊗ B(E) defined by

ν(I ×A) =

∫

I

νt(A) dt ∀ I ∈ L(0, T ), A ∈ B(E).

Moreover, for every L(0, T )⊗B(E)-measurable function h : (0, T )×E → [0,∞], the

function

t 7→
∫

E

h(t, ξ) dνt(ξ)

is L(0, T )-measurable and the Fubini integral representation holds:

(3.1)

∫

(0,T )×E

h(t, ξ) dν(t, ξ) =

∫ T

0

(∫

E

h(t, ξ) dνt(ξ)

)
dt.

If ν is concentrated on the graph of a measurable function u : (0, T ) → E, then

νt = δu(t) for a.e. t ∈ (0, T ), where δu(t) denotes the Dirac measure carried by {u(t)}.
In this case, by (3.1):

∫

(0,T )×E

h(t, ξ) dν(t, ξ) =

∫ T

0

h(t, u(t)) dt.

For calculations below, we will study the following situation: given two Hilbert

spacesH and H̃, we will consider a mapping g•(·, ·) : H̃×H×H → R being continuous

in H̃ and bilinear continuous in H with

C−1‖ξ‖2H 6 gu(ξ, ξ) 6 C‖ξ‖2H ∀u ∈ H̃, ξ ∈ H

for some constant C and

(3.2) gum(vm, ϕ) → gu(v, ϕ) ∀ϕ ∈ H,

whenever um → u strongly in H̃ and vm ⇀ v weakly in H. Starting from Section 4
below, we will assume H̃ →֒ H continuously, which is actually not needed for the
results in this section.

Corollary 3.4 ([17]). As a consequence of (3.2), we find for un → u strongly in

H̃ and ϕn ⇀ ϕ weakly in H:

gu(ϕ, ϕ) 6 lim inf
n→∞

gun(ϕn, ϕn).

The following statement is a generalization of [38], Theorem 3.2 and a direct

consequence of Corollary 3.4 and Theorem 4.3 of [40].

63



Theorem 3.5 ([17]). Let {vn}n∈N be a bounded sequence in L
p(0, T ;H) for some

p > 1, and let {un}n∈N be a sequence in L
p(0, T ; H̃) with un → u ∈ Lp(0, T ; H̃)

pointwise a.e. in (0, T ). Then there exists a subsequence k 7→ vnk
and a parametrized

measure ν = {νt}t∈(0,T ) ∈ Y(0, T ;H) such that for a.e. t ∈ (0, T )

lim sup
k→∞

‖vnk
(t)‖H <∞, νt is concentrated on L(t) :=

∞⋂

q=1

{vnk
(t) : k > q}w

of weak limit points of {vn}n∈N, and

lim inf
k→∞

∫ T

0

h(t, vnk
(t)) dt >

∫ T

0

(∫

H

h(t, ξ) dνt(ξ)

)
dt

for every weakly normal integrand h such that h−(·, vnk
(·)) is uniformly integrable

and

(3.3) lim inf
k→∞

∫ T

0

gum(vm(t), vm(t)) dt >

∫ T

0

(∫

H

gu(ξ, ξ) dνt(ξ)

)
dt.

In particular, ∫ T

0

(∫

H

‖ξ‖pH dνt(ξ)

)
6 lim inf

k→∞

∫ T

0

‖vnk
‖pH dt,

and, setting

v(t) :=

∫

H

ξ dνt(ξ), we have vnk
⇀ v in Lp(0, T ;H).

Finally, if νt = δv(t) for a.e. t ∈ (0, T ), then

〈vnk
, w〉H → 〈v, w〉H in L1(0, T ) ∀w ∈ Lq(0, T ;H),

1

p
+

1

q
= 1,

and up to extraction of a further subsequence independent of t (still denoted by vnk
)

vnk
(t)⇀ v(t) for a.e. t ∈ (0, T ).
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4. Gradient flow theory

The theory developed in [17] deals with equations of the form

(4.1) ∂tu ∈ −∇l,uS(u) + f(t)

with S being a (possibly nonconvex) lower semicontinuous entropy functional on
a Hilbert space H, ∇l,uS being the limiting subgradient with respect to a densely
defined metric structure g• and f ∈ L2(0, T ;H).

More precisely, consider Hilbert spaces H0 →֒ H̃ →֒ H with the set B(H) of

positive definite continuous bilinear forms. We then use the following terms and

notation:

Definition 4.1. We call any tuple (H0, H̃,H, g) of Hilbert spaces H0, H̃, H and
a mapping g• : H̃ → B(H) satisfying (1) and (2) an entropy space:

(1) H0 →֒ H̃ →֒ H, where the embeddings are dense, and the embedding H0 →֒ H̃
is compact. We denote by ‖·‖H, ‖·‖H̃, ‖·‖H0 the respective norms and by 〈·, ·〉H
the scalar product on H.

(2) g is a densely defined metric in the following sense: There is a positive constant

1 6 G∗ <∞ such that

(4.2)
1√
G∗

|〈x, y〉H| 6 |gu(x, y)| 6
√
G∗|〈x, y〉H| ∀u ∈ H̃, ∀x, y ∈ H,

for all u ∈ H̃ and g• is strong-weak-continuous in the following sense: if un → u

strongly in H̃ and ϕn ⇀ ϕ weakly in H as n→ ∞, then

(4.3) gun(ϕn, ψ) → gu(ϕ, ψ) as n→ ∞ ∀ψ ∈ H.

This means that with every point u ∈ H̃ we associate a local scalar product and
local norm

〈x, y〉g(u) := gu(x, y), ‖x‖g(u) :=
√
gu(x, x) ∀x, y ∈ H.

We denote by g̃u the unique automorphism on H such that

(4.4) gu(v, ϕ) = 〈g̃u(v), ϕ〉H ∀ϕ ∈ H.

We will assume that S is a proper functional S : H → (−∞,∞]. Then we define the

set-valued subdifferential dS(u) at u ∈ D(S) ∩ H̃ through

(4.5) δ ∈ dS(u) ⇔ 〈δ, v〉H 6 lim inf
hց0

S(u + hv)− S(u)
h

∀ v ∈ H.
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For a convex and lower semicontinuous S, the last definition is equivalent to the
usual definition of the Fréchet-subdifferential used by Rossi and Savaré [38]

dfS(u) = {ξ ∈ H : S(w) − S(u)− 〈ξ, w − u〉H > o(|w − u|) as w → u},

where the above Landau notation should be understood as

(4.6) lim inf
w→u

S(w) − S(u)− 〈ξ, w − u〉H
|w − u| > 0.

For non-convex functionals, it is evident that dfS(u) ⊂ dS(u) but, in infinite di-
mension, (4.5) need not imply (4.6).

The subgradient ∇uS(u) of S in u ∈ H̃ ∩D( dS) is defined by

(4.7) δ ∈ ∇uS(u) ⇔ ∃δ̃ ∈ dS(u) : gu(δ, v) := 〈δ̃, v〉H ∀ v ∈ H,

where the index u refers to the local metric. If no confusion occurs, we write∇S(u) =
∇uS(u).
In what follows, we denote the local slope by

(4.8) |∂S|(u) := lim sup
w→u, w∈D(S)

|S(u) − S(w)|
‖u− w‖g(u)

,

implying

(4.9) sup
δ∈∇uS(u)

‖δ‖g(u) 6 sup
δ∈∇uS(u)

〈g̃u(δ), δ〉H
‖δ‖g(u)

6 sup
δ∈∇uS(u)

lim inf
hց0

S(u + hg̃u(δ))− S(u)
h‖g̃u(δ)‖H

6 lim sup
w→u, w∈D(S)

|S(u)− S(w)|
‖u− w‖g(u)

= |∂S|(u) ∀u ∈ D(dS)

and in case dS is single valued, |∂S|(u) = ‖∇S(u)‖g(u) .
Finally, for every subset A ⊂ H we define the affine hull aff A and its minimal

section A◦ through

aff A :=

{∑

i

tiai : ai ∈ A, ti ∈ R,
∑

i

ti = 1

}
,

|A◦| := inf
ξ∈A

‖ξ‖H, A◦ := {ξ ∈ A : ‖ξ‖H = |A◦|}.

Definition 4.2 ([38], [17]). We say that for any u ∈ H, ξ ∈ H is an element
of the limiting subdifferential dlS(u) of S in u if there are un ∈ H with un → u
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strongly and ξn ∈ dS(un) such that ξn ⇀ ξ weakly in H. The limiting subgradient
is defined through

∇l,uS(u) = g̃−1
u (dlS(u)).

Thus, equation (4.1) has to be understood in the sense of

(4.10) gu(∂tu, ϕ) ∈ 〈dlS(u), ϕ〉H + gu(f, ϕ) ∀ϕ ∈ L2(0, T ;H).

In case that the graph of (S, dS) is strongly-weakly closed in H×H× R, i.e.

(4.11)
ξn ∈ dS(vn), rn = S(vn)
vn → v, ξn ⇀ ξ, rn → r

}
⇒ ξ ∈ dS(v), r = S(v),

we find dlS = dS. As explained by Rossi and Savaré [38], this condition yields
closedness and convexity of dS, the continuity condition

(4.12) vn → v, sup
n
(|∂S(vn)|,S(vn)) <∞ ⇒ S(vn) → S(v) as nր ∞

and the the following chain rule: If v ∈ H1(0, T ;H), ξ ∈ L2(0, T ;H) with ξ(t) ∈
dlS(v(t)) for a.e. t ∈ (0, T ), and S ◦ v is a.e. equal to a function s of bounded
variation, then

(4.13)
d

dt
s(t) = 〈ξ, v′(t)〉H.

Lemma 4.3 (See [38]). If S is convex, condition (4.11) is fulfilled. In particular,

(4.13) holds.

For the rest of the paper, we assume that S is an entropy functional in the following
sense:

Definition 4.4. Let (H0, H̃,H, g) be an entropy space with G∗ > 1. We say

that S : H → (−∞,∞] is an entropy functional on (H0, H̃,H, g) if it satisfies:
(1) D(S) ⊂ H̃ and S : H → R is proper, lower semicontinuous, i.e. the domain

D(S) of S is nonempty.
(2) S + ‖·‖H has compact sublevels, i.e. there exists τ∗ > 0 such that the sets

{
v ∈ H : S(v) + 1

2τ
min

{
1,

1√
G∗

}
‖v‖2H < C

}

are compact for any τ < τ∗ and any C > 0 and there is a constant S0 > 0 such

that

(4.14) S(v) + 1

2τ∗
min

{
1,

1√
G∗

}
‖v‖2H > −S0.
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(3) S satisfies the estimate

‖u‖H0 6 C(S(u) + |∂S|2(u) + 1).

We close this section stating the first of the three existence theorems from [17]

which we will use below:

Theorem 4.5. Let H0, H̃, H, g and S satisfy Definitions 4.1 and 4.4 with dlS(u)
being convex and closed for all u ∈ H, and

(4.15) S(u) = SH(u) + SH̃(u)

with functionals SH : H → R being proper, lower semicontinuous, and SH̃ : D(S) ⊂
H̃ → R being continuous with respect to H̃. Furthermore, let f ∈ L2(0, T ;H). Then,

for each u0 ∈ H0 and every 0 < T ∈ R, there exists a solution u ∈ H1(0, T ;H) ∩
L2(0, T ;H0) to (4.10), satisfying the Lyapunov inequality

(4.16)
1

2

∫ t

0

‖∂tu‖2g(u) +
1

2

∫ t

0

|(f −∇lS(u))◦|2 + S(u(t)) 6 S(u(0)) +
∫ t

0

〈f, u〉H

for a.e. t ∈ (0, T ).

If S additionally fulfils the continuity assumption (4.12) then there is a negligible set
N ⊂ (0, T ) such that

1

2

∫ t

s

|∂tu|2 +
1

2

∫ t

s

|(f −∇lS(u))◦|2 + S(u(t)) 6 S(u(s)) +
∫ t

s

〈f, u〉H
∀ t ∈ (s, T ), ∀ s ∈ (0, T ) \ N .

5. Proofs of Theorems 1.1 and 1.2

We introduce the spaces

H := H−1
(0) (Ω), H̃ := H1

(0)(Ω), H0 := H2(Ω),

such that we find H0 →֒ H̃ →֒ L2(Ω) →֒ H with all embeddings being dense and
compact.
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Definition 5.1. Let S : H → (−∞,∞] be given through (1.4) with S(u) := ∞
for all u 6∈ H̃. Then we consider the restriction S̃ := S

∣∣
L2 of S to L2(Ω) and define

the set valued L2-subdifferentials (δS/δu)(u) ⊂ L2(Ω) and (δ0S/δu)(u) ⊂ L2
(0)(Ω)

at u ∈ D(S̃) through:

u ∈ D(S̃) : δ ∈ δS
δu

(u) ⇔ 〈δ, v〉L2 6 lim
hց0

S̃(u+ hv)− S̃(u)
h

∀ v ∈ L2(Ω),

u ∈ D(S̃) ∩ L2
(0)(Ω): δ ∈

δ0S
δu

(u) ⇔ 〈δ, v〉L2 6 lim
hց0

S̃(u+ hv)− S̃(u)
h

∀ v ∈ L2
(0)(Ω).

We only prove Theorem 1.1 starting with two lemmas by Abels and Wilke. The-

orem 1.2 is proved likewise.

Lemma 5.2 ([1], Lemma 4.1, Corollary 4.4). Assume s1 ≡ 0, then S : L2
(0)(Ω) →

R and S : H → R are proper, lower semicontinuous and convex.

Abels and Wilke [1] identified the L2- and H- subdifferential of S in the Fréchet-
sense:

Lemma 5.3 ([1]). Assume s1 ≡ 0 and set s′0 = ∞ for x 6∈ (a, b). Then, for the

L2-subdifferential of S defined through (1.4), we have

(5.1) D
(δ0S
δu

)
=

{
c ∈ H2(Ω) ∩ L2

(0)(Ω): s
′(c) ∈ L2(Ω),

s′′(c)|∇c|2 ∈ L1(Ω), ∂nc
∣∣
∂Ω

= 0
}

and

(5.2)
δ0S
δu

(ũ) = −∆ũ+ P0s
′(ũ).

Moreover,

(5.3) ‖ũ‖2H2 + ‖s′(ũ)‖2L2 +

∫

Ω

s′′(ũ)|∇ũ|2 6 C
(∥∥∥δ

0S
δu

(ũ)
∥∥∥
2

L2
+ ‖ũ‖2L2 + 1

)

for some constant C independent of ũ.

For the H-subdifferential we have

D(dS) =
{
c ∈ D

(δ0S
δu

)
:
δ0S
δu

(c) ∈ H1
(0)(Ω)

}
,(5.4)

dS(ũ) = ∆N (−∆ũ+ P0s
′(ũ)),(5.5)

69



and in particular,

(5.6) ‖ũ‖2H2(Ω) 6 C(‖dS(ũ)‖2H + ‖ũ‖2L2(Ω) + 1).

Note that the term +1 in (5.3) and (5.6) was not present in the original statements.

As S in the setting of Lemma 5.3 is convex, the graph of (dS,S) is strongly-weakly
closed in the sense of (4.11). In particular, this implies the chain-rule condition (4.13)

and convexity of dS(u) for all u ∈ D(dS).
In case s1 6≡ 0, S : H → R remains lower semicontinuous and equations (5.1)–(5.5)

still hold with modified constants. Finally, the following lemma holds:

Lemma 5.4. dS is single valued and strong-weak closed. In particular, (4.13)
holds.

P r o o f. It is easy to verify that dS(u) is single valued for all u ∈ D(dS). For
un → u strongly in H and ξn = dS(un) such that ξn ⇀ ξ weakly in H, note that due
to the boundedness of the sequences un and ξn we find the boundedness of ‖un‖H0

and thus un ⇀ u weakly in H2(Ω), un → u strongly in H1
(0)(Ω) and un → u a.s. in

Ω up to a subsequence. Furthermore, for wn := −∆un + P0s
′(un) we find wn ⇀ ω

weakly in H1
(0)(Ω) for some ω ∈ H1

(0)(Ω).

Now, let

S̃(u) := S(u)−
∫

Ω

s1(u).

Then S̃(·) is convex and therefore, the graph of dS̃ is strongly weakly closed by
Lemma 4.3. For a further subsequence and for ζn := dS̃(un) we get weak convergence
of ζn ⇀ ζ = dS̃(u) = −∆u + P0s

′
0(u) in H and P0(s

′
1(un)) → P0(s

′
1(u)) strongly

in L2. Thus,

ξn = ζn + s′1(un)⇀ ζ + P0(s
′
1(u)) = −∆u+ P0(s

′(u))

weakly in H̃. This implies (4.11) and thus (4.13). �

For u ∈ H̃, we define for r1, r2 ∈ H:

(5.7) gu(r1, r2) =

∫

Ω

∇pu1A(u,∇u)∇pu2

=

∫

Ω

r1p
u
2 = 〈r1, p2〉H−1

(0)
,H1

(0)
=

∫

Ω

r2p
u
1 = 〈r2, p1〉H−1

(0)
,H1

(0)
,

where pui ∈ H1
(0)(Ω) solves

(5.8) − div(A(u,∇u)∇pui ) = ri for i = 1, 2,
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with boundary condition A(u,∇u)∇pui · nΓ = 0. It is immediate to check that g is

a densely defined metric in the sense of Definition 4.1.

The above considerations together with (4.9) yield that S fulfils all requirements
of Definition 4.4. As a consequence of Theorem 4.5 we get the existence of a solution

u ∈ H1(0, T ;H)∩L2(0, T ;H0) to (4.10) and it remains to reconstruct an expression

of the form (4.1):

For any u ∈ D(S), r ∈ L2(Ω) with p from (5.8), γ ∈ AC(0, T ;L2(Ω)) with

γ(0) = u, γ′(0) = r we use Lemma 5.4 and write

gũ(∇ũS, r) =
d

dt
S(γ(t))

∣∣∣
0
=

∫

Ω

δ0S
δu

(ũ)r =

∫
− div

(
A(u,∇u)∇δ0S

δu
(ũ)

)
p

to obtain the specific form of (4.10). Equation (4.1) in the present setting reads

(note that gu(∂tu, r2) = 〈∂tu, p2〉H−1
(0)

,H1
(0)
)

∂tu ∈ div
(
A(u,∇u)∇δ0S

δu
(ũ)

)
(5.9)

or gu(∂tu, ϕ) ∈ −〈dlS(u), ϕ〉H ∀ϕ ∈ L2(0, T ;H).

Estimate (4.16) together with the above calculations yields (1.3). Theorem 1.2 can

be proved similarly having in mind that the proof of Lemma 5.3 presented by Abels

and Wilke [1] is the same for a closed surface Γ with H1
(0)(Γ) defined through (2.3).

6. Proof of Theorem 1.3

6.1. The entropy space. We introduce the space Ṽ through

Ṽ := H1
(0)(Ω)× L2(Γ), ‖u = (uω, uγ)‖2Ṽ := ‖uω‖2H1(Ω) + ‖uγ‖2L2(Γ),

where in L2(Γ), we take the Hausdorff measure on Γ. Note that

V := {u = (uω, uγ) ∈ Ṽ : EΓ(uω) = uγ}

is a closed subspace of Ṽ , being isomorphic with H1
(0)(Ω) and with the equivalent

norm (cf. Remark 2.4)

‖u = (uω, uγ)‖2V := ‖∇uω‖2L2(Ω) + ‖uγ‖2L2(Γ).

We furthermore introduce

‖(uω, uγ)‖2H1
Γ(Ω) :=

∫

Ω

|∇uω|2 +
∫

Γ

|∇Γuγ |2,

H1
Γ := {(uω, uγ) ∈ V : uω ∈ H2(Ω)}‖·‖H1

Γ
(Ω)
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and the dual space H∗
Γ := (H1

Γ)
−1. For any function v ∈ H−1

(0) (Ω) having the property

that there is ṽ ∈ L2
(0)(Ω) with

∫

Ω

vψ = 〈v, ψ〉H−1
(0)

,H1
(0)

=

∫

Ω

ṽψ ∀ψ ∈ H1
(0)(Ω)

we formally write ṽ = P0(v). We finally introduce the space H
1
∆(Ω) through

‖(uω, uγ)‖2H1
∆
:=

∫

Ω

(P0(∆uω))
2 +

∫

Γ

(∂nuω −∆Γuγ)
2 + ‖u‖2H1

Γ(Ω),

H1
∆ := {(uω, uγ) ∈ H1

Γ : uω ∈ H3(Ω)}‖·‖H1
∆ .

R em a r k 6.1. Since for u ∈ V , u ∈ H1
Γ or u ∈ H1

∆ we have uγ = EΓ(uω)

like in (2.4), we will sometimes abuse notation and not distinguish between uγ and

EΓ(uω), i.e. we will often write u ≃ uγ ≃ uω whenever the meaning is clear from the

context.

In what follows, we will say that u ∈ H2(Ω) weakly solves the system

−∆uω = f in Ω,

−∆Γuγ + ∂nu = g on Γ

if and only if it is a solution to the problem

(6.1)

∫

Ω

∇u · ∇ϕ+

∫

Γ

∇Γu · ∇Γϕ =

∫

Ω

fϕ+

∫

Γ

gϕ ∀ϕ ∈ H2(Ω).

In particular, we infer in case g = 0 for ϕ ≡ 1 that
∫
Ω
f = 0.

Lemma 6.2.

H1
∆ = {u ∈ H1

Γ : ∆u ∈ L2(Ω), (∂nuω −∆Γuγ) ∈ L2(Γ)}
= {(uω, uγ) ∈ H1

Γ : uω ∈ H2(Ω), uγ ∈ H2(Γ)}.

P r o o f. We show for (uω, uγ) ∈ H1
Γ with uω ∈ H3(Ω) that there is C > 0

independent of u such that

(6.2) ‖∆u‖L2 6 C(‖P0(∆u)‖L2 + ‖∂nuω −∆Γuγ‖L2(Γ) + ‖u‖2H1
Γ(Ω)).

The major point of the following argumentation is that for P0 given in (2.2), both

∆u and P0(∆u) are functions in L
2(Ω) and the difference P0(∆u)−∆u = −

∫
Ω∆u

is a constant function. We then indirectly show that this constant has to be 0.
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Assume (6.2) is does not hold. Then there is a sequence of functions (um)m∈N ⊂
H1

Γ, um ∈ H3(Ω) for all m, such that

‖∆um‖L2 = 1 > m(‖P0(∆um)‖L2 + ‖∂num,ω −∆Γum,γ‖L2(Γ) + ‖um‖2H1
Γ(Ω)).

We set f̃m := −P0(∆um), fm := −∆um, gm := ∂num − ∆Γum and find f̃m → 0

strongly in L2(Ω), gm → 0 strongly in L2(Γ), um → 0 strongly in H1
Γ and fm ⇀ f

weakly in L2(Ω). With hm :=
∫
Ω fm and (2.2) we find fm = f̃m + hm. We equally

consider hm as constant functions and write formally

|hm| =
∫

Ω

|hm| = 1

|Ω|1/2 ‖hm‖L2 6
1

|Ω|1/2 (‖∆um‖L2 + ‖P0(∆um)‖L2).

Thus, there exists h ∈ R such that hm → h in R for a subsequence. Since

|hm| |Ω|1/2 = ‖hm‖L2 > ‖∆um‖−‖P0(∆um)‖ → 1, we get fm = (f̃m+hm) → h̃ 6= 0

strongly in L2(Ω), where h̃ is the constant function with h̃ = h a.e. Note that due

to regularity of u and the definitions above, for any m we have

∫

Ω

∇um · ∇ϕ+

∫

Γ

∇Γum · ∇Γϕ =

∫

Ω

fmϕ+

∫

Γ

gmϕ ∀ϕ ∈ H2(Ω),

and thus, in the limit, u is a solution to

∫

Ω

fϕ =

∫

Ω

∆uϕ = 0 ∀ϕ ∈ H2(Ω).

By our conclusions drawn from (6.1), this implies ∆u = P0(∆u), a contradiction

with ∆u− P0(∆u) = h 6= 0.

Now, considering u ∈ H1
∆ and any sequence (um)m∈N ⊂ H3(Ω) such that um → u

in ‖·‖H1
∆
, we find ∆u ∈ L2. Since ∂num,ω − ∆Γum,γ → f̃ for some f̃ ∈ L2(Γ), we

find for all sufficiently regular ψ ∈ C3
(0)(Ω)

∫

Γ

fψ −
∫

Ω

ψ∆u = lim
m→∞

(∫

Γ

(∂num,ω −∆Γum,γ)ψ −
∫

Ω

ψ∆um

)

= lim
m→∞

(∫

Γ

(∇Γum,γ) · ∇Γψ +

∫

Ω

∇ψ · ∇um
)

=

(∫

Γ

(∇Γuγ) · ∇Γψ +

∫

Ω

∇ψ · ∇u
)

=

(∫

Γ

(∂nuω −∆Γuγ)ψ −
∫

Ω

ψ∆u

)
.

This is the first equality of the statement.
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Let u ∈ H1
∆ and set f := −∆u, g := −∆Γuγ +∂nu. Assume u ∈ C∞(Ω) such that

the following estimates hold:

‖u‖H2(Ω) 6 C(‖f‖L2(Ω) + ‖u‖H2(Γ)),(6.3)

‖u‖H2(Γ) 6 C(‖g‖L2(Γ) + ‖∂nu‖L2(Γ)) 6 C(‖g‖L2(Γ) + ‖u‖
W

3/2
2 (Ω)

).(6.4)

Ehrling’s Lemma yields for every δ > 0 a constant Cδ such that

(6.5) ‖u‖
W

3/2
2 (Ω)

6 δ‖u‖H2(Ω) + Cδ‖u‖H1 .

Combining (6.3)–(6.5), we get the second part of the lemma. �

In order to construct an entropy space in sense of Definition 4.1, we make the

following choice of the triple of function spaces:

H0 := H1
∆, H̃ := H1

Γ, H := H−1
(0) (Ω)× L2(Γ).

With the additional space

‖u‖Γ :=

∫

Ω

u2ω +

∫

Γ

u2γ , L2
Γ := L2

(0)(Ω)× L2(Γ)

the chain of dense embeddings H0 →֒ H̃ →֒ L2
Γ →֒ H holds with the first and second

embedding being compact.

Corollary 6.3. The triple (H0, H̃,H) satisfies point (1) of Definition 4.1.

Note that H−1 = H1
(0)(Ω)×L2(Γ) and onH we introduce the local scalar products

(6.6) gu(r1, r2) :=

∫

Ω

∇pu1,ωA(u,∇u)∇pu2,ω +

∫

Γ

pu1,γAΓ(u)p
u
2,γ = 〈r1, p2〉H,H−1

=

∫

Ω

r1,ωp
u
2,ω +

∫

Γ

r1,γp
u
2,γ =

∫

Ω

r2,ωp
u
1,ω +

∫

Γ

r2,γp
u
1,γ

= 〈r2, p1〉H,H−1 ,

where pui = (pui,ω, p
u
i,γ) ∈ H−1 satisfy the equations

(6.7)

∫

Ω

(A(u,∇u)∇pui,ω)∇ϕω +

∫

Γ

AΓ(u)p
u
i,γϕγ = 〈ri, ϕ〉H,H−1

for i = 1, 2 and ∀ϕ ∈ H−1,

with the constraint

(A(u,∇u)∇pui,ω) · nΓ = 0.
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In other words, pui ∈ H−1 solves

− div(A(u,∇u)∇pui,ω) = ri,ω on Ω and A(u,∇u)∇pui,ω · nΓ = 0 on Γ,

AΓ(u)p
u
i,γ = ri,γ on Γ.

Note that in general pui,γ 6= EΓ(p
u
i,ω).

Corollary 6.4. g• : H̃ → B(H) satisfies point (2) of Definition 4.1.

P r o o f. For fixed r2 consider r1,m and p1,m = (p1,m,ω, p1,m,γ), solutions of (6.7)

for r1,m, such that r1,m ⇀ r1 weakly in H and (um)m∈N ⊂ H̃ with um → u. We

check that p1,m ⇀ p̃1 and p̃1 solves (6.7) for u and r1. Thus, from the representation

in (6.6), we conclude

gum(r1,m, r2) → gu(r1, r2).

�

6.2. The entropy functional and existence of solutions. In this part, we

shall rigorously use notation announced in Remark 6.1 for functions u ∈ H̃ = V .

Note that this notation is not applicable to L2
Γ, H or H−1, which is why we still use

full notation in those spaces.

Definition 6.5. Let S be a proper functional S : H → (−∞,∞]. Then we con-

sider the restriction S̃ := S
∣∣
L2

Γ

of S to L2
Γ and define the set valued L

2-subdifferential

(δΓS/δu)(u) ⊂ L2
Γ at u ∈ D(S̃) through

δ ∈ δΓS
δu

(u) ⇔ 〈δ, v〉L2
Γ
6 lim inf

hց0

S̃(u+ hv)− S̃(u)
h

∀ v ∈ L2
Γ.

R em a r k 6.6. Comparing with Section 5, due to the Riesz isomorphism −∆N :

H1
(0)(Ω) → H−1

(0) (Ω), we find

(6.8) dS(u) =
{
(sω, sγ) : (−∆−1

N sω, sγ) ∈
δΓS
δu

(u)
}
.

We introduce the following functional on L2
Γ or H:

(6.9) S(u) :=
{∫

Ω(s(uω) +
1
2 |∇uω|2) +

∫
∂Ω(sΓ(uγ) +

1
2 |∇Γuγ |2) for u ∈ H1

Γ(Ω),

∞ otherwise

with s, sΓ as introduced in Subsection 1.3.
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Lemma 6.7. The functional S is lower semicontinuous on H and L2
Γ. If s1 ≡

s2 ≡ 0, S is convex on both the spaces.

P r o o f. If s1 ≡ s2 ≡ 0, convexity is trivial. Furthermore, for any sequence

un ∈ H with a constant C > 0 such that S(un) < C, we find un to be bounded in

H̃, i.e. due to the particular structure of s(·), a short calculation yields

S(u) 6 lim inf
n→∞

S(un).

In case s1, s2 6≡ 0, note that up to a minimizing subsequence un → u strongly in L2
Γ

and the statement follows from the Lipschitz continuity of s1 and s2. �

Lemma 6.8. Let S be given through (6.9). Then

(6.10) D
(δΓS
δu

)
= {c ∈ H1

Γ(Ω): s
′(c) ∈ L2

Γ, s
′′(c)|∇c|2 ∈ L1(Ω),

s′′(c)|∇Γc|2 ∈ L1(Γ)}

and

(6.11) ‖ũ‖H1
∆(Ω) 6 C

(∥∥∥δΓS
δu

(ũ)
∥∥∥
2

L2
Γ

+ ‖ũ‖2L2(Ω) + 1
)
.

Furthermore, ũ ∈ D(dS) implies δS
δΓu

(ũ) ∈ H1
(0) × L2(Γ),

(6.12) ‖ũ‖H1
∆(Ω) 6 C(‖ dSΓ(ũ)‖2H + ‖ũ‖2L2(Ω) + 1),

and for any u ∈ D(S), the L2
Γ-subdifferential is given through

(6.13)
〈δΓS
δu

, ψ
〉
L2

Γ

= 〈P0(s
′(u)), ψω〉L2(Ω) − 〈P0(∆u), ψω〉L2(Ω)

+ 〈∇u · nΓ + s′Γ(u)−∆Γu, ψγ〉L2(Γ)

for all ψ = (ψω , ψγ) ∈ L2
Γ.

We postpone the proof to Subsection 6.3.

R em a r k 6.9. Thus, as the last lemma yields ‖u‖H0 6 (S(u) + 1 + ‖ dS‖H), we

have shown that S satisfies all claims of Definition 4.4.

The proof of the next lemma follows the proof of Lemma 5.4 and is left to the

reader.
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Lemma 6.10. dS is single valued and strong-weak closed.
Now, for any u ∈ D(dSΓ), r ∈ L2

Γ with p from (6.7), γ ∈ AC(0, T ;L2
Γ) with

γ(0) = ũ, γ′(0) = r we formally write

d

dt
S(γ(t))

∣∣∣
0
>

∫

Ω

(δΓSΓ

δu
(u)

)
ω
rω +

∫

Γ

(δΓSΓ

δu
(u)

)
γ
rγ .

In particular, the last inequality holds for r ∈ H and we thus find

lim
h→0

S(u + hv)− S(u)
h

>

∫

Ω

− div(A(u,∇u)∇(s′0(u)−∆u))pω

+

∫

Γ

(δΓSΓ

δu
(u)

)
γ
AΓ(u)pγ = 〈∇S, r〉g(u) ,

where p is the solution for r in (6.7). Similarly to Section 5 we deduce that the

gradient flow (4.10) is equivalent to

(6.14) 〈∂tu, p〉H,H−1 =

∫

Ω

div(A(u,∇u)∇(s′(u)−∆u))pω

−
∫

Γ

(δΓSΓ

δu
(u)

)
γ
AΓ(u)pγ ∀ p ∈ L2

Γ,

or, as pω and pγ are independent, the last equation is also equivalent to (1.6). The-

orem 1.3 is then a consequence of Theorem 4.5.

R em a r k 6.11. Even though (∂tu)ω and (∂tu)γ are not directly related to each

other, note that still the condition u ∈ L2(0, T ;H1(Ω)) relates the values on Γ with

those in Ω.

6.3. Proof of Lemma 6.8. The proof mostly follows the lines of the proof of

Theorem 4.3 in [1]. The idea is the following. For any u ∈ D(δS/δu), we know that

for w ∈ (δS/δu)(u)

〈w, v〉L2
Γ
> lim

t→0

1

t
(S(u) − S(u + tv)) ∀ v ∈ L2

Γ.

Supposing that all calculations involved are valid, we get

(6.15) lim
t→0

1

t
(S(u)−S(u+tv)) =

∫

Ω

(s′0(u)v)+

∫

Ω

∇u·∇v+
∫

Γ

s′0(u)v+

∫

Γ

∇Γu·∇Γv.

However, we do not know if s′0(u) ∈ L2
Γ, but we have to prove this. The a priori

estimates in (6.10) suggest to take v = s′0(u) as a test function in (6.15). This would

lead to

〈w, s′0(u)〉L2
Γ
> ‖s′0(u)‖L2

Γ
+

∫

Ω

s′′0(u)|∇u|2 +
∫

Γ

s′′0 (u)|∇Γu|2
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and thus give the apriori estimates. However, the singular behavior of s′0 in a and b

makes it necessary to use a linearization of s′0 given by f
±
n below. Also, we have to

make sure that the values of the test function u+ tv lie in the interval (a, b) almost

surely. This will be achieved by the correcting term m(f+
n (ũt))ψu below.

Now turning to the proof, let us recall 0 ∈ (a, b) and assume without loss of

generality s′0(0) = s0(0) = 0 (shift s0, s1 and s2 by affine functions) and define

s+0 (x) := max{0, s0(x)}, s−0 (x) := min{0, s0(x)}. Furthermore, assume for the mo-
ment s1 ≡ s2 ≡ 0. Due to the assumptions on s0, for any n ∈ N large enough

there exist an ∈ (a, 12a) with s
′
0(an) = −n and bn ∈ (12b, b) with s

′
0(bn) = n and we

introduce the functions

f+
n (u) :=





s′0(u) for c ∈ (12b, bn),

n+ s′′0 (bn)(u− bn) for c > bn,

0 for c 6 0,

f−
n (u) :=





s′0(u) for c ∈ (an,
1
2a),

n+ s′′0 (an)(u − an) for c 6 an,

0 for c 6 0,

and extend f+
n (·), f−

n (·) respectively to (0, 12b) and (12a, 0), monotone and C
2(R),

so that they are approximating (s+0 )
′ and (s−0 )

′. Note that also y 7→ y + f+
n (y) is

strictly monotone and we introduce Mn := sup
c∈[a,b]

|f+
n (u)′|.

Now, let u ∈ D(SΓ), i.e. u ∈ H1
Γ and 0 < t 6 2/Mn. By continuity and strict

monotonicity we get unique existence of

ũt(x) = u(x)− tf+
n (ũt(x))

and the theorem on the inverse function yields ũt(x) = Fn
t (u(x)), where F

n
t : [a, b] →

[a, b] is a continuously monotone differentiable mapping with

Fn
t (x) → x, (Fn

t )
′(x) → 1, as t→ 0 uniformly on [a, b].

Thus, we see that for u ∈ H1
Γ(Ω), also ũt ∈ H1(Ω) × L2(Γ). Furthermore, the

properties of Fn
t yield ũt → u in H1(Ω) × L2(Γ) as t → 0. Finally, monotonicity of

f+
n (·) yields 0 < ũt < u if u > bn.

For ϕ ∈ C2(R) being monotone decreasing with ϕ(x) = 1 for x < 0, ϕ(x) = 0 for

ϕ > b/2 and ϕ′ > −4/b define ψu(x) := ϕ(u(x))/m(ϕ(u(x))), where m(ϕ(u(x))) =
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∫
Ω
ϕ(u(x)) such that

∫

Ω

∇ψu · ∇u =

∫

Ω

ϕ′(u)

m(ϕ(u))
|∇u|2 6 0,

∫

Γ

∇Γψu · ∇Γu =

∫

Γ

ϕ′(u)

m(ϕ(u))
|∇Γu|2 6 0

and ut := ũt + tm(f+
n (ũt))ψu ∈ H1

Γ ∩D(S) for t small enough, i.e.
∫
Ω
ut = 0.

Thus, we can easily calculate

S(u)− S(ut) >
∫

Ω

(s0(u)− s0(ut)) + t

∫

Ω

∇u · ∇f+
n (ut)−

t2m(f+
n (ũt))

2

2

∫

Ω

|∇ψu|2

+

∫

Γ

(s0(u)− s0(ut)) + t

∫

Γ

∇Γu · ∇Γf
+
n (ut)−

t2m(f+
n (ũt))

2

2

∫

Γ

|∇ψu|2.

For the first part of the above expression we get

∫

Ω

(s0(u)− s0(ut)) + t

∫

Ω

∇u · ∇f+
n (ut)−

t2m(f+
n (ũt))

2

2

∫

Ω

|∇ψu|2

>

∫

Ω∩{u>b/2}

ts′0(ut)f
+
n (ut) +

∫

Ω∩{a/2<u<b/2}

(s0(u)− s0(ũt + dn))

− t2m(f+
n (ũt))

2

2

∫

Ω

|∇ψu|2

+

∫

Ω∩{u<a/2}

(s0(u)− s0(ũt + dn)) + t

∫

Ω

∇u · ∇f+
n (ut)

>

∫

Ω∩{u>b/2}

ts′0(ut)f
+
n (ut) +

∫

Ω∩{a/2<u<b/2}

(s0(u)− s0(ũt + dn))

+ t

∫

Ω

∇u · ∇f+
n (ut)−

t2m(f+
n (ũt))

2

2

∫

Ω

|∇ψu|2,

where we have used s0(u(x))− s0(ut(x)) > s′0(ut(x))(u(x)−ut(x)) and ut(x) < u(x)

if u(x) > b/2, s′0(u(x)) > f+
n (ut(x)) as well as s0(u(x)) − s0(u(x) + tdn(x)) > 0 if

u(x) 6 a/2 and t 6 a/(2Mn). We similarly conclude

∫

Γ

(s0(u)− s0(ut)) + t

∫

Γ

∇Γu · ∇Γf
+
n (ut)−

t2m(f+
n (ũt))

2

2

∫

Γ

|∇ψu|2

>

∫

Γ∩{u>b/2}

ts′0(ut)f
+
n (ut) +

∫

Γ∩{a/2<u<b/2}

(s0(u)− s0(ũt + dn))

+ t

∫

Γ

∇Γu · ∇Γf
+
n (ut)−

t2m(f+
n (ũt))

2

2

∫

Γ

|∇ψu|2.
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Now, let w ∈ (δΓS/δu)(u), we then get by definition (note that S is convex in case
s1 ≡ s2 ≡ 0)

〈w, f+
n (ũt)− dn〉L2

Γ
>

1

t
(S(u)− S(ũt))

=

∫

Ω∩{u>b/2}

s′0(ut)f
+
n (ut) +

1

t

∫

Ω∩{a/2<u<b/2}

(s0(u)− s0(ũt + dn))

+

∫

Ω

∇u · ∇f+
n (ut)

+

∫

Γ∩{u>b/2}

s′0(ut)f
+
n (ut) +

1

t

∫

Γ∩{a/2<u<b/2}

(s0(u)− s0(ũt + dn))

+

∫

Γ

∇Γu · ∇Γf
+
n (ut)

− tm(f+
n (ũt))

2

2

∫

Ω

|∇ψu|2 −
tm(f+

n (ũt))
2

2

∫

Γ

|∇ψu|2,

which yields for t→ 0:

〈w, f+
n (u)− dn〉L2

Γ
>

∫

Ω∩{u>b/2}

s′0(u)f
+
n (u) +

∫

Ω∩{a/2<u<b/2}

s′0(u)(f
+
n (u)− dn)

+

∫

Ω

∇u · ∇f+
n (u)

∫

Γ∩{u>b/2}

s′0(u)f
+
n (u)

+

∫

Γ∩{a/2<u<b/2}

s′0(u)(f
+
n (u)− dn) +

∫

Γ

∇Γu · ∇Γf
+
n (u)

and

〈w, f+
n (u)− dn〉L2

Γ
>

∫

Ω∩{u>b/2}

f+
n (u)2 +

∫

Ω∩{a/2<u<b/2}

s′0(u)(f
+
n (u)− dn)

+ t

∫

Ω

(f+
n )′(u)∇u · ∇ut

∫

Γ∩{u>b/2}

f+
n (u)2

+

∫

Γ∩{a/2<u<b/2}

s′0(u)(f
+
n (u)− dn) + t

∫

Γ

(f+
n )′(u)∇Γu · ∇Γut.

We make use of the simple estimate ‖m(f+
n (u))‖L2

Γ
6 C‖f+

n (u)‖L2
Γ
, following directly

from the definition of m(f+
n (u)), yielding for n→ ∞

‖w‖2L2
Γ
&

∫

Ω

(s+0 )
′(u)2 +

∫

Ω

(s+0 )
′′(u)|∇u|2 +

∫

Γ

(s+0 )
′(u)2 +

∫

Γ

(s+0 )
′′(u)|∇Γu|2.

Together with a similar calculation for f−
n , this yields the estimate (6.10). In partic-

ular, s′0(u) ∈ L2(Ω)× L2(Γ) implies u ∈ (a, b) almost surely with respect to L2
Γ.
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Thus, we find for some δ > 0 that |{x : u(x) ∈ (a + δ, b − δ)}| > 0 and for

some non negative ϕ ∈ C∞
0 ((a + δ, b − δ)), with sptϕ = [a + δ, b − δ], define ϕu :=

ϕ(u(x))/m(ϕ(u(x))), being in H1(Ω)× L2(Γ).

Now, let M ∈ N and ψM ∈ C∞(R) be such that ψM (x) = 0 for |x| > M + 1,

ψM (x) = 1 for |x| < M and ψ′
M (x) 6 2 for all x. Note that by the properties of s0,

u ∈ H1
Γ implies χM := ψM (s′0(u)) ∈ (H1

Γ ⊕R) and χM = 0 if |s′0(u)| > M +1. Thus,

for ϕu as above and any ψ ∈ C∞
(0)(Ω), u ∈ D(S), we find some t0 > 0 such that also

ũ := u+ tχMψ − tϕum(χMψ) ∈ D(S) for all 0 < t < t0.

Thus, we find for w ∈ (δΓS/δu)(u)

〈w, χMψ − ϕum(χMψ)〉 > lim
t→0

1

t
(S(u)− S(ũ))

= lim
t→0

(∫

Ω

1

t
(s0(u)− s0(ũ)) +

∫

Ω

∇u · ∇(χMψ − ϕum(χMψ))

)

+ lim
t→0

(∫

Γ

1

t
(s0(u)− s0(ũ)) +

∫

Γ

∇Γu · ∇Γ(χMψ − ϕum(χMψ))

)

>

∫

Ω

(s′0(u)(χMψ − ϕum(χMψ))) +

∫

Ω

∇u · ∇(χMψ − ϕum(χMψ))

+

∫

Γ

(s′0(u)(χMψ − ϕum(χMψ))) +

∫

Γ

∇Γu · ∇Γ(χMψ − ϕum(χMψ)).

In order to investigate the behavior as M → ∞, note that trivially m(χMψ)) → 0

and χM → 1 pointwise and due to the boundedness by 1 also in L2(Ω) × L2(Γ).

Furthermore, as ψ′
M is bounded by 2 and ψ

′
M (s′0(u)) → 0 pointwise for M → ∞, it

is straight forward to see

∫

Ω

∇u · ∇(ψM (s′0(u))ψ) =

∫

Ω

∇u · (χM∇ψ) +
∫

Ω

s′′0(u)ψ
′
M (s′0(u))|∇u|2

→
∫

Ω

∇u · ∇ψ as M → ∞

and similarly for
∫
Γ ∇Γu · ∇Γ(ψM (s′0(u))ψ). Thus, we find

〈w,ψ〉L2
Γ
>

∫

Ω

(s′0(u)ψ) +

∫

Ω

∇u · ∇ψ +

∫

Γ

s′0(u)ψ +

∫

Γ

∇Γu · ∇Γψ.

Replacing ψ by −ψ, we find equality. Using partial integration, definition (6.1), and
Lemma 6.2, we get

〈w,ψ〉L2
Γ
=

∫

Ω

s′0(u)ψ −
∫

Ω

∆uψ +

∫

Γ

(∇u · nΓ + s′0(u)−∆Γu)ψ
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and hence wω = P0(s
′
0(u))−P0(∆u), wγ = (∇u ·nΓ+s

′
0(u)−∆Γu) in the weak sense

yielding (6.13) and u ∈ H0. Then (6.11) follows immediately from the calculation

whereas (6.12) follows from (6.11) and (6.8).

It is elementary to verify that the statement still holds in case s1 6≡ s2 6≡ 0: To

this aim, note that the domain D(dS) remains the same and that u is essentially
bounded by a < u < b. In particular, calculating the δΓ/δu-derivative of

Ŝ(u) :=
∫

Ω

s1(u) +

∫

Γ

s2(Eu)

for u ∈ D(dS), it is easy to see that estimate (6.13) remains valid. Thus, having in
mind the above estimates in case s1 ≡ s2 ≡ 0, it is easy to verify that (6.11) still

holds.

7. Proof of Theorem 1.4

We will now prove Theorem 1.4 in four steps: First we will construct an approx-

imate problem that can be directly solved using Theorem 4.5. Then we will show

convergence of a subsequence of the approximate solutions as the approximation pa-

rameter tends to zero and demonstrate that the limit function solves the original

problem. We then finally prove a technical lemma on the subdifferentials.

Sections 5 and 6 suggest that the correct choices for the three Hilbert spaces are

H := H−1
(0) (Ω), H̃ := H1

(0)(Ω), H0 := H2(Ω),

but in fact, we need a different choice. Note that one is tempted to directly consider

the problem as a generalized gradient flow

∂tu = −∇S(u),

where the gradient is with respect to the metric structure g•(·, ·) defined through

g• : H0 → B(H),

u 7→ gu(·, ·)

and using w = −∆u+ s′(u) we obtain

(7.1) gu(r1, r2) =

∫

Ω

∇pu1A(u,∇u,w)∇pu2 =

∫

Ω

r1p
u
2 =

∫

Ω

r2p
u
1 ,

where pui solves

− div(A(u,∇u,w)∇pui ) = ri for i = 1, 2.
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However, g• then is defined on H0 instead of H̃ and Theorem 4.5 does not apply. Ap-
proximating the problem by a version that is smoothed in w and using a compactness

property of w we will circumvent this problem.

The basic formal idea behind the following proof is to identify a set A ⊂
L2(0, T ;H0) that is not compact in L

2(0, T ; H̃) but still has sufficiently nice proper-

ties in order to guaranty (4.3) and (3.3).

7.1. An approximate problem. We start by considering the following problem:

Like in Section 5, we choose

H0 := H2(Ω) ∩H1
(0)(Ω), H̃ := H1

(0), and H = H−1
(0) (Ω).

We extend w to R
n by 0 and for any η > 0 we consider w ∗ ϕη, where ϕη is the

standard mollifier.

For any u ∈ H1
(0)(Ω)∩H2(Ω) we then consider the following scalar product on H:

for r1, r2 ∈ H we define

(7.2) gηu(r1, r2) =

∫

Ω

∇pu1A(u,∇u,w ∗ ϕη)∇pu2 =

∫

Ω

r1p
u
2 =

∫

Ω

r2p
u
1 ,

where pui solves

(7.3) − div(A(u,∇u,w ∗ ϕη)∇pui ) = ri for i = 1, 2.

It is immediate to check that g is a densely defined metric in the sense of Defini-

tion 4.1. For convenience of notation, we write the gradient with respect to gη as ∇η,

i.e.

gηu(∇ηS(u), ψ) = 〈dS(u), ψ〉H ∀ψ ∈ H,

and denote by ∇η,l the corresponding limiting subgradient with respect to ∇η ac-

cording to Definition 4.2.

This time, instead of Lemma 5.3, we consider

Lemma 7.1. Let S and s be as introduced in Subsection 1.4. Then for the

L2-subdifferential we have

(7.4) D
(δ0S
δu

)
=

{
c ∈ H2(Ω) ∩ L2

(0)(Ω): s
′(c) ∈ L2(Ω),

s′′(c)|∇c|2 ∈ L1(Ω), ∂nc
∣∣
∂Ω

= 0
}

and

(7.5)
δ0S
δu

(ũ) = −∆ũ+ P0s
′(ũ).
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Moreover,

(7.6) ‖ũ‖2H2(Ω)+‖s′(ũ)‖2L2(Ω)+

∫

Ω

s′′(ũ)|∇ũ|2 6 C
(∥∥∥δ

0S
δu

(ũ)
∥∥∥
2

L2(Ω)
+‖ũ‖2L2(Ω)+1

)

for some constant C independent of ũ.

For the H-subdifferential we have

D(dS) =
{
c ∈ D

(δ0S
δu

)
:
δ0S
δu

(c) ∈ H1
(0)(Ω)

}
,(7.7)

dS(ũ) = ∆(−∆ũ+ P0s
′(ũ)),(7.8)

i.e. dS(ũ) is single valued and

(7.9) ‖ũ‖2H2(Ω) 6 C(‖ dS(ũ)‖2H + ‖ũ‖2L2(Ω) + 1).

Furthermore, we find:

Lemma 7.2. dS is strongly-weakly closed.

Similar to Section 5, we observe that gη• and S satisfy all conditions of Theorem 4.5,
so we get the existence of a solution uη ∈ H1(0, T ;H)∩L2(0, T ;H0) to the equation

(7.10)

∫ T

0

gηuη
(∂tuη, ψ) = −

∫ T

0

〈dS(uη), ψ〉H ∀ψ ∈ L2(0, T ;H),

or

(7.11) ∂tuη = −∇ηS(uη),

where u(0) = u0 for t = 0. This is a weak formulation to the problem

∂tuη − div(A(uη,∇uη, wη ∗ ϕη)∇wη) ∋ 0 on (0, T ]× U,

wη +∆uη − s′(uη) = 0 on (0, T ]× U,

(A(uη,∇uη, wη ∗ ϕη)∇wη) · nΓ = ∇uη · nΓ = 0 on (0, T ]× ∂U,

uη(0) = u0 for t = 0.

Note that the solution satisfies the a priori estimate

(7.12)
1

2

∫ t

0

‖u′η‖2gη(uη)
+

1

2

∫ t

0

‖∇η,lS(uη)‖2gη(uη)
+ S(uη(t))

6 S(u(0)) for a.e. t ∈ (0, T ).
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However, we wish to study the behavior of solutions as η → 0. In this context, note

that we cannot decide whether wη ∗ ϕη → w in L2(0, T ;L2(Ω)) as we do not know

whether wη → w in L2(0, T ;L2(Ω)). (As wη depends nonlinearly on uη and s
′ is not

Lipschitz in R.)

7.2. Convergence of the approximate problem. It is thus necessary to repeat

some of the steps in [17]. First, as n 6 3, we find H0 →֒→֒ C(Ω) compactly and thus

uη ∈ L2(0, T ;C(Ω)).

We find a subsequence (uηk
)k∈N with ηk → 0 as k → ∞ such that there is u ∈

H1(0, T ;H) ∩ L2(0, T ;H0) with

uηk
⇀ u weakly in H1(0, T ;H) ∩ L2(0, T ;H0),

uηk
→ u strongly in L2(0, T ; H̃) ∩ L2(0, T ;C(Ω)),

uηk
(t) → u(t) in C(Ω) ∩H1(Ω) for a.e. t ∈ (0, T ).

Now, let ε > 0. By Egorov’s theorem, there is a compact set K0 ⊂ (0, T ) with

L((0, T ) \ K0) < ε/2 such that uniformly for all t ∈ K0 we find uηk
(t) → u(t)

strongly in C(Ω)∩H1(Ω). For each k ∈ N\{0}, Lusin’s theorem yields the existence
of a compact set Kk ⊂ (0, T ) with L((0, T ) \Kk) 6 2−k−1ε and uηk

∈ C(Kk;C(Ω)).

Defining Kε :=
∞⋂
k=0

Kk, we find L((0, T ) \Kε) 6 ε, uηk
∈ C(Kε;C(Ω)) for all k and

by the pointwise convergence also uηk
→ u uniformly in C(Kε;C(Ω)) and strongly

in L2(0, T ;H1(Ω)). In particular, we find |u(t, x)| 6 Cε, |uηk
(t, x)| 6 Cε for all k for

some constant Cε > 0 for all (t, x) ∈ K ×Ω. Now, it is evident that s′0(uηk
) → s′0(u)

strongly in L2(Kε;L
2(Ω))as well as ∆uηk

⇀ ∆u weakly in L2(0, T ;L2(Ω)), implying

wηk
⇀ w = −∆u+ s0(u) weakly in L

2(Kε;H
1
(0)(Ω)).

Thus, we may perform the following calculation:

lim
k→∞

∫

Kε

∫

Ω

w2
ηk

= − lim
k→∞

∫

Kε

∫

Ω

∆uηk
wηk

+ lim
k→∞

∫

Kε

∫

Ω

s′(uηk
)wηk

= lim
k→∞

∫

Kε

∫

Ω

∇uηk
∇wηk

+ lim
k→∞

∫

Kε

∫

Ω

s′(uηk
)wηk

=

∫

Kε

∫

Ω

∇u∇w +

∫

Kε

∫

Ω

s′(u)w

=

∫

Kε

∫

Ω

w2,

where we have used boundedness of uηk
to get local Lipschitz continuity of s′(·). In

particular, we find for fixed ε a further subsequence wε
ηk
such that wε

ηk
(t) → wε(t)

in L2(Ω) for a.e. t ∈ Kε. A standard diagonalization argument yields the existence

of a subsequence such that wηk
(t) → w(t) in L2(Ω) for a.e. t ∈ (0, T ).
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We consider the space Ĥ := H1
(0)(Ω)× L2(Ω) and

ĝ• : Ĥ → B(H),

(u,w) 7→ ĝ(u,w)(·, ·),

where

ĝu,w(r1, r2) =

∫

Ω

∇pu1A(u,∇u,w)∇pu2 =

∫

Ω

r1p
u
2 =

∫

Ω

r2p
u
1

and pui solves

− div(A(u,∇u,w)∇pui ) = ri for i = 1, 2,

and we immediately check with (7.1) and (7.2) that

gηu(·, ·) = ĝ(u,w∗ϕη)(·, ·), gu(·, ·) = ĝ(u,w)(·, ·).

We find with the above estimates and Theorem 3.5 two Young measures µ,ν ∈
Y(0, T ;H) associated with u′ηk

and ∇ηk
S(uηk

) such that u′ηk
⇀

∫
H ξ dµt(ξ) and

∇ηk
S(uηk

)⇀
∫
H
ξ dνt(ξ) weakly in L

2(0, T ;H). Our final aim is now to identify the

sets of concentration of µ,ν:

We find with help of Theorem 3.5 and Corollary 3.4 that

lim inf
k→∞

∫ T

0

ĝ(uηk
,wηk

)(∂tuηk
, ∂tuηk

) >

∫ T

0

∫

H

ĝ(u,w)(ξ, ξ) dµt(ξ) and

lim inf
k→∞

∫ T

0

(∇ηk
S(uηk

))2 >

∫ T

0

∫

H

ĝ(u,w)(ξ, ξ) dνt(ξ).

Also, with help of (7.11) as well as Corollary 7.3 below, arguing as in the proof

of Theorem 4.5 in [17], we find that µt, νt are concentrated on (˜̂gu,w)
−1(dlS(u)) =

g̃−1
u (dlS(u)) for t ∈ Kε for all ε > 0. As dlS(u) is convex for all u and ε was
arbitrary, the theorem is proved. �

Corollary 7.3 ([17]). For a bounded sequence ϕn ∈ H and un → u strongly in

H̃, we have ϕn ⇀ ϕ weakly in H if and only if g̃un(ϕn)⇀ g̃u(ϕ) weakly in H, where
g̃u is defined through (4.4).

7.3. Proof of Lemma 7.1. The proof is similar to Subsection 6.3: This time,

s′0(0) = s0(0) = 0 and we define s+0 (x) := max{0, s0(x)}, s−0 (x) := min{0, s0(x)}.
For a0 ∈ (s′0)

−1(−1/2), b0 ∈ (s′0)
−1(1/2), there are for any n ∈ N an ∈ (−∞, a0)

with s′0(an) = −n and bn ∈ (b0,∞) with s′0(bn) = n and we introduce f+
n and f

−
n

similarly to Subsection 6.3, so that both f+
n (·), f−

n (·) are monotone and C2(R) with

y 7→ y + f+
n (y) being strictly monotone and C2(Rn), too.
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Now, let u ∈ D(S), i.e. u ∈ H1
Γ and define ũt := u− f+

n (ũt)

ut := ũt + tm(f+
n (ũt))/Ln(Ω) ∈ H1

Γ ∩D(S)

for t small enough.

Using the notation dn := m(f+
n (ũt))/Ln(Ω) and following the outline of Section 6.3

or the proof of Theorem 4.3 in [1], we calculate for w ∈ (δΓS/δu)(u)

〈w, f+
n (ũt)− dn〉L2

Γ
>

1

t
(S(u)− S(ut))

>

∫

Ω∩{u>b/2}

f+
n (ũt)

2 +
1

t

∫

Ω∩{a/2<u<b/2}

(s0(u)− s0(ũt + dn)) +

∫

Ω

∇u · ∇f+
n (ut),

which yields for t→ 0

〈w, f+
n (u)− dn〉L2

Γ
>

∫

Ω∩{u>b/2}

f+
n (u)2

+

∫

Ω∩{a/2<u<b/2}

s′0(u)f
+
n (u) + t

∫

Ω

(f+
n )′(ut)∇u · ∇ut

and for n→ ∞ by monotone convergence together with a similar calculation for f−
n

we get

1 + ‖w‖2L2
Γ
&

∫

Ω

s′0(u)
2 +

∫

Ω

s′′0(u)|∇u|2,

which is (6.10).

We find for any ψ ∈ C∞
(0)(Ω) and u ∈ D(dS) some t0 > 0 such that ũ := u+ tψ ∈

D(S) for all 0 < t < t0.

Thus, for w ∈ (δ0S/δu)(u) we find

〈w,ψ〉 > lim
t→0

1

t
(S(u)− S(ũ))

= lim
t→0

(∫

Ω

1

t
(s0(u)− s0(ũ)) +

∫

Ω

∇u · ∇ψ
)

>

∫

Ω

s′0(u)ψ +

∫

Ω

∇u · ∇ψ.

Replacing ψ by −ψ, we find equality. Using partial integration, we get

〈w,ψ〉L2
Γ
=

∫

Ω

P0(s
′
0(u))ψ −

∫

Ω

∆uψ ∀ψ ∈ C∞(Ω),

and hence, the standard theory of elliptic equations tells us that u solves wω −
P0(s

′
0(u)) = −∆u with ∂νu = 0, implying u ∈ H2(Ω) and ‖u‖H2(Ω) 6 C‖w‖L2 (see

also Abels and Wilke [1], Section 2).

If s1 ≡ 0, S is convex and the graph of (dS,S) is strongly-weakly closed in the
sense of (4.11), and dS(u) is single valued for all u ∈ D(dS). These properties remain
even in the case s1 6≡ 0, since (δ/δu)(s1(u)) = s′1(u), whereas the subdifferentials

remain in the form (7.5) and (7.8).
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