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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 6 , PAGES 9 2 9 – 9 4 9

PARAMETER ESTIMATION OF SUB-GAUSSIAN STABLE
DISTRIBUTIONS

Vadym Omelchenko

In this paper, we present a parameter estimation method for sub-Gaussian stable distribu-
tions. Our algorithm has two phases: in the first phase, we calculate the average values of
harmonic functions of observations and in the second phase, we conduct the main procedure of
asymptotic maximum likelihood where those average values are used as inputs. This implies
that the main procedure of our method does not depend on the sample size of observations.
The main idea of our method lies in representing the partial derivative of the density function
with respect to the parameter that we estimate as the sum of harmonic functions and using this
representation for finding this parameter. For fifteen summands we get acceptable precision.
We demonstrate this methodology on estimating the tail index and the dispersion matrix of
sub-Gaussian distributions.

Keywords: stable distribution, sub-Gaussian distribution, maximum likelihood, charac-
teristic function

Classification: 93E12, 62A10

1. INTRODUCTION

Classical models in financial risk management and portfolio optimization are based on
normality, but normal models are known to have a number of shortcomings and there
is overwhelming empirical evidence that the normality assumption must be rejected
[3, 5, 13, 19, 24]. On the other hand, the use of normality is theoretically justifiable
because random effects that influence data are caused by a range of micro-effects, which
add up and hence allow us to use the central limit theorem [9, 25]. The assumption
of normality enables us to make many problems tractable, while replacing normality
by another distribution capable of capturing more features of the time series of prices
may lead to useless or even dangerous models unless the modeler can properly handle
the arising complexity entailed by introducing a non-normal innovation [17]. Hence, the
question is: what is the best compromise? How can we transform the model without
the need to rule out normality and without dropping common-sense assumptions which
entail normality? If we are to replace the normal assumption with a stable one, we
will also be able to use the central limit theorem and convolution properties of the
normal distribution will be also preserved [25]. However we will need to be able to
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estimate the parameters of the stable distributions properly, which is a challenging task
because stable distributions in general do not have an explicit form of either the density
or the distribution function except for a few cases [9, 25]. In this paper, we take up
this challenge. In the case of density functions of exponential types such as normal
or exponential densities, we can easily obtain explicit estimators of parameters such as
mean or variance. In such cases, we can easily obtain estimates of parameters for large
numbers of observations. The main goal of this work is to develop a method based on
maximum likelihood capable of handling large amounts of data and producing decent
precision as in the case of exponential type densities. This method consists of two phases:
in the first phase, we calculate the means of the harmonic functions of observations and
in the second phase, we conduct the main procedure using those average values as
inputs. The first phase enables us to deal with large amounts of data and the second
phase enables us to attain high precision and is independent of the sample size of the
data. This two-phase algorithm is called a method of projections which converges to the
maximum likelihood methodology. We apply this to univariate stable and multivariate
sub-Gaussian distributions. We will denote our methodology with MLP to emphasize
that our algorithm is based on maximum likehood estimation and projections.

1.1. Article structure

This article is organized as follows. In the Introduction we gave a brief description to
stable distributions and challenges that arise in estimating their parameters. In the
next sections, we give a complete definition of stable distributions, provide their basic
properties and discuss contributions of other authors to estimating their parameters.
Then, we provide the description of our method of the estimation of the tail index and
dispersion matrix of sub-Gaussian distributions and then move to conclusions.

2. SUB-GAUSSIAN DISTRIBUTIONS AND THEIR PROPERTIES

Sub-Gaussian distributions are a special case of stable distributions. They represent
symmetric and heavy tailed distributions whose dependence structure is given by a
matrix. To describe sub-Gaussian distributions, we need first to define general stable
distributions.

2.1. Definition of stable distributions

There are four equivalent definitions of univariate stable distributions that concern their
different statistical properties: two concern convolution properties, one concerns limit
properties and the last one concerns the form of the characteristic function [25]. The
definition that concerns the form of the characteristic function is the most important for
us because only this function has an explicit form unlike the density and distribution
functions.

Definition 2.1. The random variable X has a univariate sub-Gaussian distribution if
its characteristic function is of the form:
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ψ(u) = exp (iµu) exp
(
−σα|u|α

(
1− iβ · sign(u) tan

πα

2

))
, α 6= 1, (1)

ψ(u) = exp (iµu) exp
(
−σ|u|

(
1 + iβ · sign(u) ln(u)

2
π

))
, α = 1,

where α ∈ (0, 2], µ ∈ (−∞,∞), β ∈ [−1, 1] and σ > 0.

Note that if α = 2 we have a characteristic function of the normal distribution. If α < 2
then any moment EXa with a ≥ α is infinite. If a < α then EXa is finite [9, 25]. Hence
if α < 2, then the variance of X is infinite. A general univariate stable distribution is
denoted as Sα(σ, β, µ), where α, σ, β and µ are the tail index, the scale parameter, the
skewness parameter and the location parameter respectively.

Definition 2.2. The random vector X has a sub-Gaussian Distribution with the loca-
tion parameter µ and the matrix Q if its characteristic function is of the form

ψ(u) = exp(i · uTµ) exp
(
−

∣∣uT Qu
∣∣α/2

)
. (2)

Such a vector is called a sub-Gaussian vector.

Here µ is the location parameter and Q is the matrix that determines the dependence
structure between the marginals. (Another name for these distributions is multivariate
elliptical stable distributions) Q is a positively definite matrix and in the case of α equal
to 2 we get the multivariate normal distribution whose covariance matrix is Q [22]. If
α > 1 then µ = E(X). A very important property of stable distributions is the fact
that any linear combination of stable random variables with the same α has a stable
distribution with the same α parameter as well. In other words, if X1, X2,. . . ,Xn, X
are i.i.d. sub-Gaussian distributions Xi ∼ ψ(u) = exp(−

∣∣uTQu
∣∣α/2), i = 1, 2, . . ., then

X1 +X2 + · · ·+Xn =d
1

n1/α
X,

[19, 22].

2.2. Simulation of sub-Gaussian distributions

If Z is a random vector with a characteristic function ψ(u) = exp(−{uT Qu}α/2) then

Z =
√
s ·G, (3)

[22] where s ∼ Sα/2

((
cos

(
πα
4

))2/α
, 1, 0

)
and G ∼ N(0,Q). G = CT Y, C ·CT = Q,

Y = (Y1, Y2, . . . , Yn)T , Yi ∼ N(0, 1), i = 1, 2, . . . , n and Yi, i = 1, 2, . . . , n are i.i.d. and
finally, s and G are independent. If we want to simulate a sample from Sα(1, β, 0), we
can do it as follows [2]:

X = Sα,β ·
sin(α(V +Bα,β))

cos(V )α

[
cos(V − α(V +Bα,β))

W

] 1−α
α

, (4)
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where

Bα,β =
arctan

(
β tan πα

2

)
α

,

Sα,β =
[
1 + β2 tan2

(πα
2

)]1/2α

,

X ∼ Sα(1, β, 0), W ∼ exp(1), V ∼ U(−π/2, π/2), V and W are independent. If
X ∼ Sα(1, β, 0) then for all σ > 0 and µ ∈ R we have Y = σX + µ ∼ Sα(σ, β, µ). (3)
and (4) enable us to simulate any sub-Gaussian distribution. The simulation of a gen-
eral multivariate stable distribution is a more complicated task and requires numerical
techniques to be conducted.

3. GENERAL MULTIVARIATE STABLE DISTRIBUTIONS

As it was noted, sub-Gaussian distributions represent a special case of multivariate stable
distributions and the latter are defined as follows.

Theorem 3.1. Let 0 < α ≤ 2. Then X = (X1, X2, . . . , Xn) is a stable random vector
with the tail index α iff there exists a finite measure Γ on the unit hypersphere Sn =
{s ∈ Rn|‖s‖ = 1} and a vector µ ∈ Rn such that for α > 0

Ψα(u) = exp
{
−

∫
Sd

(
1− i · sign((u, s)) tan

(πα
2

))
Γ(ds) + i · (u, µ)

}
. (5)

The pair (µ,Γ) is unique. [9, 25].

The measure Γ, called the spectral measure of the stable random vector X, specifies the
dependence structure between its marginal distributions.

Remark. Note that α is the same for all such marginal distributions.

4. APPROACHES TO PARAMETERS ESTIMATION OF STABLE
DISTRIBUTIONS

In the case of univariate stable distributions, we need to estimate four parameters:
α, σ, β, and µ. The most challenging task is estimating the parameter α [9]. In the
case of a general stable distribution, we estimate the parameter α, vector µ and the
spectral measure Γ, which bears all of the information about the values β and σ of their
univariate marginals. It can be easily shown that the matrix Q is a special case of Γ
[3, 9, 25]. Univariate marginals of sub-Gaussian distributions are symmetric, i. e. β = 0
for all of the marginals [25].

4.1. Parameters of univariate stable distributions

For estimating α, there are many methods. There are estimators in a form of an explicit
function of observations like the Hill estimator [6, 16]. The expression for the Hill
estimator is:

α̂ =
1

1
k

∑k
j=1 logXn+1−j:n − logXn−k:n

,
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where Xj:n is the sample j-th order statistics and k is the window parameter. This
estimator is easy to implement, but there are a number of shortcomings associated
with it because we take into account only those observations that are in the tail of the
distribution whose number is a small fraction of all observations. The definition of what
is in the tail and what is not there is problematic if we do not know α. For this purpose,
there exists the window parameter of the Hill estimator whose calibration requires us
to use sophisticated numerical methods and heavy dependency on the window size is
the main problem [6, 16]. There are methods for estimating α based on quantiles. The
main idea of McCulloch’s methodology [14] [14] is to use differences in quantiles, properly
normalized, in order to get rid of our dependence on location and scale parameters. Then,
two functions on the stability index and the skewness are numerically calculated from
the sample quantiles values and inverted to get the corresponding parameter estimates.
This method is consistent and can be used for the estimation of all of the parameters
of a univariate stable distribution, however it does not work well for certain choices
of the parameters’ values [14]. There are methods of estimating α and the rest of
the parameters by using the empirical characteristic function. The main idea of this
methodology consists in minimizing the distance between the characteristic function
(CF) and the empirical characteristic function (ECF) in an appropriate norm [1, 10, 28].
Let us denote by ψ the characteristic function of a stable distribution and by

ψ̂(u) =
1
n

n∑
j=1

exp (iuXj)

its empirical characteristic function. Since |ψ̂(u)| is bounded, all moments of ψ̂(u) are
finite for any fixed u. By the Law of Large Numbers ψ̂(u) is a consistent estimator of
ψ(u).

The method finds
θ = argminθ∈Θ‖ψ̂ − ψ‖,

where θ is a point in the parametric space Θ and ‖ · ‖ is a norm usually L∞ or an Lr

weighted norm with r > 0. The last type of the norm is more useful for implementation
and it can be written as

h(θ) =
∫ ∞

−∞
|ψ̂(u)− ψ(u, θ)|

r
W (u) du.

Here W (·) is a weight function and the optimal estimate is obtained as follows:

θ = argminθh(θ).

More generally the objective function is of the form:

h(θ) =
∫ ∞

−∞
|ψ̂(u)− ψ(u, θ)|

r
dG(u),

where G(·) is a distribution function. When G(·) is a step function and r = 2, the
objective function becomes

h(θ) =
n∑

i=1

|ψ̂(ui)− ψ(ui, θ)|2g(ui)



934 V. OMELCHENKO

with g(u) = dG(u)
du . The optimal selection of discreet points u1, u2, . . . , up is discussed

in Carrasco, Madan et. al, and Schmidt [1, 12, 26]. We will denote such estimates with
“CFB” where this abbreviation states for characteristic function based estimators.

DuMouchel [4], Zolotarev [29], and Nolan [19] developed methods of asymptotic max-
imum likelihood for estimating the parameters of stable distributions [4, 19, 29]. The
main limitation is that density functions of stable distributions do not have an explicit
form. Approximative methods are based on approximating functionals of density func-
tions. For a general problem of estimating the parameters α, σ, β, µ we maximize the
following expression:

l(α, σ, β, µ) =
n∑

i=1

log p (Xi;α, σ, β, µ) ,

where p(·) is the density function that we have to approximate. The reason why asymp-
totic maximum likelihood methods are popular in estimating parameters is the fact that
maximum likelihood estimators are consistent, efficient, and have asymptotic normality.
For large samples, if θ̂n is a maximum likelihood estimator of θ = (α, σ, β, µ) then

θ̂n ∼ N(θ, n−1B),

where n is the sample size and B is the inverse of the Fisher information matrix

Iij =
∫ ∞

−∞

∂p

∂θi

∂p

∂θj

1
p

dx.

So the large sample confidence intervals for each of the parameters are:

θ̂i ± z1−γ/2

σθ̂i√
n
,

where σθ̂1
, σθ̂2

, σθ̂3
, and σθ̂4

are the square roots of the diagonal entries of B. Asymptot-
ical maximum likelihood estimators developed by the aforementioned authors converge
to maximum likelihood and their quality is determined by the rate of the convergence
and easiness of their implementation. In this paper, we present a method for estimat-
ing α that is also based upon maximum likelihood estimation and can be efficiently
implemented by enumerating in one dimension.

4.2. Parameters of multivariate stable distributions

If X is a k-dimensional random vector that has a multivariate stable distribution with
the location parameter µ, tail index α, and the spectral measure Γ then for α > 1
µ = EX and

α̂ =
1
k

k∑
j=1

α̂j ,

here α̂j is the estimate of α obtained from the observations of the marginal Xj of X,
j = 1, . . . , k [11, 25]. However, we can not get the spectral measure by separate analyses
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of univariate marginals because it determines the dependence structure between them
[25]. There is a plethora of approaches to estimating the spectral measure. Nolan and
Panorska [20], develop a method based upon a discrete approximation of the spectral
measure. Pivato and Seco [23] estimate the spectral measure by its representation as
the sum of spherical harmonic functions [23]. McCulloch [15] developed the method of
estimating the spectral measure of a generalized bivariate stable distribution, based on
a series of maximum likelihood (ML) estimates of the stable parameters of univariate
projections of the data [15]. For a more detailed description of the spectral measure see
Samorodnitsky [25].

4.3. Estimators of the dispersion matrix Q of sub-Gaussian

As it was mentioned above, the matrix Q of sub-Gaussian distributions is a special case of
the spectral measure. It will be shown later that when we deal with the dispersion matrix
with the rank d, we can estimate its diagonal elements qii, as the scale parameter of one-
dimensional marginals Xi, i = 1, . . . , d and the elements qij with i 6= j, i, j = 1, . . . , d
can be estimated from the bivariate random vector (Xi, Xj). This means that large
dimensions are not a significant impediment in the case of sub-Gaussian distributions.
However, in the case of general stable distributions, it is almost impractical to estimate
the spectral measure if the dimension is higher than 3 [15]. In Kring et. al [11], there is a
method of finding a dispersion matrix with moment type estimators. Our method, whose
description is provided in the following sections, is based on the maximum likelihood.

5. PARAMETER ESTIMATION FOR THE MULTIVARIATE SUB-GAUSSIAN
DISTRIBUTIONS

If we want to estimate the parameters of a multivariate sub-Gaussian distribution with
parameters α and Q, we can do it in two stages:

• Estimation of the α parameter,

• Estimation of matrix Q using the estimate of α as an input,

where

Q =


σ2

1 σ1σ2r12 · · · · · · σ1σdr1d

σ1σ2r12 σ2
2 · · · · · · σ2σdr2d

σ1σ3r13 σ2σ3r23 · · · · · · σdσ3r23
· · · · · · · · · · · · · · ·

σ1σdr1d σ2σdr2d · · · · · · σ2
d

 .

The former task can be conducted by analyzing the marginal distributions because all
of the marginals have the same α parameter. After estimating α, we can put its estimate
α̂ into the formula of the characteristic function and use it to estimate the matrix Q.
Both estimation procedures will be conducted using the methodology of projections.

5.1. Estimation of the tail index

If X has a d-variate sub-Gaussian distribution with the parameters α, Q, and µ = 0
then every marginal Xi, i = 1, 2, . . . , d of X has a stable distribution Sα(σi, 0, 0) with
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the characteristic function of the form:

ψ(u) = exp(−σα
i |u|

α).

If p(x, α) is a density function of the stable distribution then:

I(α) =
∫ ∞

−∞
J2(x, α)p(x, α) dx, J(x, α) =

∂L(x, α)
∂α

=

(
∂p(x,α)

∂α

)
p(x, α)

, (6)

α̂
ML

=

α :
n∑

j=1

J(Xj , α) = 0

 , (7)

where I(α) is the Fisher information and X1, X2, . . . , Xn is the vector of observations.
This shift to the sum follows from the expression of the maximum likelihood function

L(X, α) =
1
n

n∑
i=1

ln p(Xj |α),

which is an additive function.

5.2. The core of the methodology

Using the methodology of projections, we can approximate the function J(X,α) which
enables us to obtain the estimates whose precision converges to that of the ML-estimators,
and to calculate the Fisher information. We will express the approximation of the func-
tion J(X,α) in terms of {1, exp(it1X), exp(it2X), . . . , exp(itkX)}, i. e., its approxima-
tion will be in the form Jk(X,α) where

Jk(X,α) =
k∑

j=0

aj exp(itjX) =
k∑

j=0

aj cos(itjX) + i

k∑
j=0

aj sin(itjX), (8)

where t1, . . . , tk are different constants that can be chosen arbitrarily. We used the
constants t1, . . . , tk whose absolute values are smaller than 1 and a1, a2, . . . , ak are the
unknown values that we need to estimate.

Remark. Note that we refer to the almost-sure convergence of Jk(X,α) to J(X,α)
provided that X ∼ Sα(σ, 0, 0) [8, 27].

The idea of the method described below was proposed by Kagan [8] however, it was
applied to other types of distributions where power projections were used instead of
trigonometric ones. We project onto the space with a scalar product defined as follows:

If X ∼ Sα(1, 0, 0) and tm, tn are constants, then a product between exp(itmX) and
exp(itnX) is defined as

〈exp(itmX), exp(itnX)〉 = E exp(itmX) · exp(itnX) = E exp(iX(tm + tn))

=
∫ ∞

−∞
p(x, α) exp(ix(tm + tn)) dx = exp (−|tm + tn|α).
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For any projection Jk(x, α) it holds:

(Jk(x, α)− J(x, α)) ⊥ exp(itjx), j = 1, 2, . . . , k, (9)

in other words:

〈(Jk(X,α)− J(X,α)), exp(itjX)〉 = 0, j = 1, 2, . . . . , k (10)

or

E((Jk(X,α)− J(X,α)) · exp(itjX)) = 0, j = 1, 2, . . . , k. (11)

Hence, we have: ∫ ∞

−∞
(Jk(x, α)− J(x, α))p(x, α) exp(itjx) dx = 0

or ∫ ∞

−∞
Jk(x, α)p(x, α) exp(itjx) dx =

∫ ∞

−∞
J(x, α)p(x, α) exp(itjx) dx.

Let us calculate each integral in the above equality separately:∫ ∞

−∞
Jk(x, α)p(x, α) exp(itjx) dx =

∫ ∞

−∞

k∑
v=0

av exp(itvx)p(x, α) exp(itjx) dx

=
k∑

v=0

av

∫ ∞

−∞
exp(itvx)p(x, α) exp(itjx) dx =

k∑
v=0

av

∫ ∞

−∞
p(x, α) exp(ix(tj + tv)) dx

=
k∑

v=0

av exp (−|tv + tj |α), j = 1, 2, . . . , k.

We can reverse the order of the sum and the integral because the number of the items
in the sum is finite. The second integral will be calculated as follows:

∫ ∞

−∞
J(x, α)p(x, α) exp(itjx) dx =

∫ ∞

−∞

(
∂p(x,α)

∂α

)
p(x, α)

p(x, α) exp(itjx) dx

=
∫ ∞

−∞

∂p(x, α)
∂α

exp(itjx) dx =
∂

∂α

∫ ∞

−∞
p(x, α) exp(itjx) =

∂

∂α
exp (−|tj |)α

.

The integral and derivative can be interchanged because of the Leibnitz rule and the
fact that p(x, α) ≥ 0. Hence we get the following system of linear equations:

k∑
v=0

av exp (−|tv + tj |)α =
∂

∂α
exp (−|tj |)α

, j = 1, 2, . . . , k,

which can be written in the form:

∂

∂α
exp (−|tj |)α = − exp (−|tj |)α · |tj |α · ln |tj |,
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k∑
v=0

av exp (−|tv + tj |α) = − exp (−|tj |)α · |tj |α · ln |tj |, j = 1, 2, . . . , k.

In the matrix form, the system looks as follows:


1 e−|t1|

α · · · e−|tk|α

e−|t1|
α

e−|t1+t1|α · · · e−|t1+tk|α

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
e−|tk|α e−|tk+t1|α · · · e−|tk+tk|α

 ·


a0

a1

a2

· · ·
· · ·
ak

 =



0
−|t1|α ln |t1|e−|t1|

α

−|t2|α ln |t2|e−|t2|
α

· · ·
· · ·

−|tk|α ln |tk|e−|tk|α

 .

We take into account the fact that α ∈ (1, 2] in financial applications, and substitute
its values into the system of equations where a1, a2, . . . , ak are unknown. We solve this
system by manipulating the values of α and choosing such a value of the tail index
for which

∣∣∣∑n
j=1 Jk(Xj , α)

∣∣∣ is minimal. Note that in this system of equations only
a1, a2, . . . , ak are unknown and nothing else.

If we denote the components of the previous equation as follows

A(α) =


1 e−|t1|

α · · · e−|tk|α

e−|t1|
α

e−|t1+t1|α · · · e−|t1+tk|α

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
e−|tk|α e−|tk+t1|α · · · e−|tk+tk|α

 , b(α) =



0
−|t1|α ln |t1|e−|t1|

α

−|t2|α ln |t2|e−|t2|
α

· · ·
· · ·

−|tk|α ln |tk|e−|tk|α

 ,

a(α) = (A(α))−1·b(α), and F (X) = {1, 1
n

∑n
m=1 exp(it1Xm), . . . , 1

n

∑n
m=1 exp(itkXm)},

then

n∑
j=1

Jk(Xj , α) =
k∑

j=1

aj

n∑
m=1

exp(itjXm) = n · F (X) · a(α). (12)

Summary of the methodology of estimating α

Note that F (X) can be calculated externally and used as an input into the methodology
of projections. This means that the MLP procedure does not depend on the sample
size. Let us denote with Ω the finite set of all considered values of α. Then we get a
two-phase algorithm:

• 1) Calculation of the F (X),

• 2) Choosing such a value of α from Ω which minimizes |F (X) · a(α)|.

The resulting estimator is

α
MLP

= arg min
α∈Ω

∣∣∣F (X) · a(α)
∣∣∣ . (13)
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In Table 1, we compare the maximum likelihood projections method for k = 15 with
the CFB estimates. The empirical mean and variance of the estimates of α are obtained
from simulating 100 samples with stable distributions, and every sample contains 5000
elements. From those 100 estimates we calculate the mean and variance. In Table 1,
µest and σest denote the mean and the standard deviation of the estimates respectively.

α Type of estimator µest σ2
est µest ± 2σest

1.1 αMLP 1.1052 0.017 [1.070,1.139]
αCFB 1.0997 0.02 [1.059,1.140]

1.2 αMLP 1.2054 0.018 [1.167,1.243]
αCFB 1.2005 0.021 [1.059.1.140]

1.3 αMLP 1.3000 0.018 [1.262,1.337]
αCFB 1.3000 0.022 [1.254,1.345]

1.4 αMLP 1.4074 0.022 [1.363,1.451]
αCFB 1.3997 0.023 [1.350,1.440]

1.5 αMLP 1.5010 0.021 [1.458,1.543]
αCFB 1.5002 0.024 [1.450,1.540]

1.7 αMLP 1.6988 0.020 [1.638,1.759]
αCFB 1.7002 0.021 [1.637,1.762]

1.8 αMLP 1.8004 0.018 [1.764,1.836]
αCFB 1.8006 0.020 [1.755,1.845]

1.9 αMLP 1.8988 0.015 [1.868,1.929]
αCFB 1.9000 0.019 [1.860,1.931]

Tab. 1. Comparison of the Mean and Standard Deviation of the

MLP for k = 15 and the CFB Estimates. Simulated values from

samples with 5000 elements.

5.3. Auxiliary statements

The following lemma facilitates the estimation of the dependence structure of sub-
Gaussian distributions because if we use it, we will be able to find Q by using pairs
of marginal distributions.

Lemma 5.1. The estimates of parameters rij , i, j = 1, 2, . . . , d can be obtained only
from the marginals Xi and Xj , i, j = 1, 2, . . . , d. If σi = σj = 1 then

Ψij(ui, uj) = exp

{
−

∣∣∣∣(ui, uj) ·
(

1 rij
rij 1

)
·
(
ui

uj

)∣∣∣∣α/2
}
.

In particular, if rij = 1 then Xj = Xi a.s. If rij = −1 then Xj = −Xi a.s. However
rij = 0 does not imply independence. rij is a measure of the linear dependence between
the marginals Xi and Xj , i, j = 1, 2, . . . , d [11].
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P r o o f .
Ψ(0, 0, . . . , ui, 0, . . . , 0, uj , 0, . . . 0) = Ψij(ui, uj)

= exp

{
−

∣∣∣∣(ui, uj) ·
(

1 rij
rij 1

)
·
(
ui

uj

)∣∣∣∣α/2
}
,

which follows from the elementary operations of products of matrices and proves the
first statement. If X is a random variable with the characteristic function

ΨX(u) = exp
(
−|uT Qu|α/2

)
with

Q =


σ2

1 σ1σ2r12 · · · · · · σ1σdr1d

σ1σ2r12 σ2
2 · · · · · · σ2σdr2d

σ1σ3r13 σ2σ3r23 · · · · · · σdσ3r23
· · · · · · · · · · · · · · ·

σ1σdr1d σ2σdr2d · · · · · · σ2
d

 ,

then the random vector Y = (X1/σ1, . . . , Xd/σd) has the dependence structure of the
form

q =


1 r12 · · · · · · r1d

r12 1 · · · · · · r2d

r13 r23 · · · · · · r23
· · · · · · · · · · · · · · ·
r1d r2d · · · · · · 1

 ,

where ri,j ∈ [−1, 1], i, j = 1, 2, . . . , d.
In other words, if X = (X1, X2, . . . , Xd) has a symmetric stable distribution with

matrix Q and the tail index α, then the random vector Y = (1/σ1X1, . . . , 1/σdXd) has
a symmetric stable distribution with the matrix q and the tail index α.

If G ∼ N(0,Q) and s ∼ Sα/2

((
cos

(
πα
4

))2/α
, 1, 0

)
, and s and G independent, then

X =
√
sG ∼ Sα(0,Q),

i. e., its characteristic function is ΨX(u) = exp
(
−|uT Qu|α/2

)
If G is 2-dimensional,

with Q of the form (
1 r
r 1

)
,

then according to the Cholesky factorization [7],

G = (G1, G2), G1 = Z1, G2 = rZ1 +
√

1− r2Z2, Z1, Z2 i.i.d. Z1, Z2 ∼ N(0, 1)

and
X =

√
sG, X1 =

√
sZ1, X2 =

√
s(rZ1 +

√
1− r2Z2).

Hence r = 1 implies X1 = X2 and r = −1 implies X1 = −X2.
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Let X1 ∼ Sα(1, 0, 0) and X2 ∼ Sα(1, 0, 0) be independent. Then the characteristic
function of the random vector X = (X1, X2) is of the form

ΨX(u) = exp {−|u1|α − |u2|α} .

However, the characteristic function of the sub-Gaussian random vector Y with the tail
index α and

Q =
(

1 0
0 1

)
is of the form

ΨY (u) = exp
{
−|u2

1 + u2
2|

α/2
}
, ΨX(u) 6= ΨY (u).

�

Remark. The exactness of the parameter estimates of matrix Q does not diminish as
the dimension increases. The problem of estimating Q is parallelizable because Lemma
5.1 enables us to concentrate on pairs of marginal distributions.

To estimate Q, we can determine rij from the pairs Xi and Xj , i, j = 1, 2, . . . , d.
First, we estimate parameters σi = rii i = 1, 2, . . . , d from the univariate marginal
distributions and then we estimate rij , i, j = 1, 2, . . . , d. The number of such pairs is(

d
2

)
=
d(d− 1)

2
.

Values rij can be calculated separately and if the number of parallel processors is at least
d(d−1)

2 then the calculation will be accelerated d(d−1)
2 times, which equals the number

of the parameters ri,j = rj,i i, j = 1, 2, . . . , d of the sub-Gaussian distribution.

r = 0 ⇒ X1 =
√
sZ1, X2 =

√
sZ2, Z1, Z2 ∼ N(0, 1), i.i.d.(

d
2

)
=
d(d− 1)

2
= O(d2).

5.4. Parameter estimation of a two-dimensional sub-Gaussian distribution
with known α and unknown Q

Without loss of generality, we can assume that matrix Q is of the form

Q =
(

1 r
r 1

)
with unknown r because we can always get this form by scaling and translating of the
initial random vector. Lemma 5.1 enables us to concentrate only on pairs of marginal
distributions of the sub-Gaussian distribution to be able to estimate the whole matrix Q.
Let us denote the density function of the two-dimensional random vector by p(x, y; r).
Suppose that α is known because its estimate can be obtained from the univariate
marginal distributions.



942 V. OMELCHENKO

This random vector has the characteristic function of the form:

ψ(u1, u1; r) = exp
{
−(2(1 + r))α/2

uα
1

}
. (14)

We will use the method of projections to obtain the MLP estimate of r as follows:

I(r) = E

[(
∂p(X,Y ; r)

∂r

)2
]
, (15)

J(x, y, r) =
∂p(x, y, r)

∂r
. (16)

The ML estimate of r will be obtained by solving the equation

r̂
ML

=

r :
n∑

j=1

J(Xj , Yj , r) = 0

 , (17)

where (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are the observations. A technique analogous to
the one that we used for estimating function J for α can be used for estimating r
[8]. In this case, we will obtain to another system of equations but the core of the
approach is much the same. Let us project the random function J(X,Y, r) to the space
{1, e−it1(X+Y ), . . . , e−itk(X+Y )}, k ∈ N . We assume that t0 = 0. Let us define the scalar
product in this space in a way similar to the case of estimating α:〈

e−iti(X+Y ), e−itj(X+Y )
〉

= E
[
e−iti(X+Y ) · e−itj(X+Y )

]
= E

[
e−i(ti+tj)(X+Y )

]
= ψ(ti + tj , ti + tj)

ψ(ti + tj , ti + tj ; r) = exp
{

(2(1 + r))α/2|ti + tj |α
}
. (18)

Let us approximate J(X,Y, r) by

Jk(X,Y, r) =
k∑

j=0

aj · eitj(X+Y ). (19)

Because we project J(X,Y, r) to the space {1, e−it1(X+Y ), . . . , e−itk(X+Y )}, k ∈ N , we
have

(J(X,Y, r)− Jk(X,Y, r)) ⊥ eitj(X+Y ), j = 1, 2, . . . , k. (20)

Hence we have ∫ ∞

−∞
(J(x, y, r)− Jk(x, y, r)) eitj(x+y)p(x, y, r) dxdy = 0
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or ∫ ∞

−∞
J(x, y, r)eitj(x+y)p(x, y, r) dxdy =

∫ ∞

−∞
Jk(x, y, r)eitj(x+y)p(x, y, r) dxdy.

Calculating the first integral yields

∫ ∞

−∞
J(x, y, r)eitj(x+y)p(x, y, r) dxdy =

∫ ∞

−∞

(
∂p(x,y,r)

∂r

)
p(x, y, r)

eitj(x+y)p(x, y, r) dxdy

=
∫ ∞

−∞

(
∂p(x, y, r)

∂r

)
eitj(x+y) dxdy =

∂

∂r

∫ ∞

−∞
p(x, y, r)eitj(x+y) dxdy =

∂

∂r
ψ(tj , tj ; r)

where
∂

∂r
ψ(tj , tj ; r) =

∂

∂r
exp

{
−(2(1 + r))α/2

tαj

}
= − exp

{
−(2(1 + r))α/2

tαj

}
2α/2−1αtαj (1 + r)α/2−1

.

Calculating the second integral yields∫ ∞

−∞
Jk(x, y, r)p(x, y, r)eitj(x+y) dxdy =

∫ ∞

−∞

k∑
m=0

ameitm(x+y)eitj(x+y)p(x, y, r) dxdy

=
k∑

m=0

am

∫ ∞

−∞
ei(tm+tj)(x+y)p(x, y, r) dxdy =

k∑
m=0

amψ(tj + tm, tj + tm; r)

and

k∑
m=0

amψ(tj + tm, tj + tm; r) =
k∑

m=0

am exp
(
−|tj + tm|α(2(1 + r))α/2

)
(21)

and finally we get the following system of equations

k∑
m=0

am exp
(
−|tj + tm|α(2(1 + r))α/2

)
= − exp

{
−(2(1 + r))α/2

tαj

}
αtαj (2(1 + r))α/2−1

,

(22)

where j = 0, 1, . . . , k.
If we denote the components of the previous equation in the following way:

A(r) =



exp
(
−|t0 + t0|α(2(1 + r))α/2

)
· · · · · · · · · exp

(
−|t0 + tk|α(2(1 + r))α/2

)
exp

(
−|t1 + t0|α(2(1 + r))α/2

)
· · · · · · · · · exp

(
−|t1 + tk|α(2(1 + r))α/2

)
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

exp
(
−|tk + t0|α(2(1 + r))α/2

)
· · · · · · · · · exp

(
−|tk + tk|α(2(1 + r))α/2

)


,
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a(r) =


a0

a1

· · ·
· · ·
ak

 ,b(r) =



− exp
{
−(2(1 + r))α/2

tα0

}
2α/2−1αtα0 (1 + r)α/2−1

− exp
{
−(2(1 + r))α/2

tα1

}
2α/2−1αtα1 (1 + r)α/2−1

· · ·
· · ·

− exp
{
−(2(1 + r))α/2

tαk

}
2α/2−1αtαk (1 + r)α/2−1


,

then the equations of the MLP methodology will be as follows

A(r)a = b(r), a(r) = (A(r))−1b(r).

We can get Jk(X,Y ; r) without the imaginary part after making the following assump-
tions:
1)

Jk(X,Y ; r) =
k∑

j=−k

aj exp(itj(X + Y ));

2) aj = a−j , tj = −t−j ; and
3) t0 = 0.

Under these assumptions, we have

Jk(X,Y ; r) =
k∑

j=−k

aj exp(itj(X + Y ))

= a0 exp(it0(X + Y )) +
k∑

j=1

(aj exp(itj(X + Y )) + aj exp(−itj(X + Y )))

= a0 exp(it0(X + Y )) +
k∑

j=1

aj2 cos((X + Y )tj).

If we assume t0 = 0, the imaginary part will equal zero:

Jk(X,Y ; r) = a0 +
k∑

j=1

aj2 cos((X + Y )tj)

or, if we denote the vector (1, 2 cos((X + Y )t1), . . . , 2 cos((X + Y )tk)) by F (X,Y ) the
function Jk will take on the following matrix form

Jk(X,Y, r) = (1, 2 cos((X + Y )t1), . . . , 2 cos((X + Y )tk))


a0

a1

· · ·
ak

 = F (X,Y )(A(r))−1
b(r).

If we solve the equation r :
n∑

j=1

Jk(Xj , Yj , r) = 0


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or r :

 n∑
j=1

F (Xj , Yj)

 (A(r))−1b(r) = 0

 . (23)

It is equivalent to replacing the sum with the mean:{
r : F (X,Y)(A(r))−1b(r) = 0

}
, (24)

where F (X,Y) = 1
n

∑n
j=1 F (Xj , Yj).

The latter means that the level of complexity of the problem does not rise with the
number of observations. We only need to calculate the mean of k samples cos(tj(X1 +
Y1)), . . . , cos(tj(Xn + Yn)), j = 1, 2, . . . , k and substitute those values in the equation
(23). Then, taking into account that r ∈ (−1, 1), we will partition the interval and choose
the value of r for which the absolute value of the expression in (23) is the smallest. The
cases in which r = 1 or r = −1 are trivial because if r = 1 then X = Y a.s. and if
r = −1 then X = −Y a.s.

Summary of the methodology of estimating r

Let us denote with Ω the finite set of all considered values of r. Then we get a two-phase
algorithm:

• 1) Calculation of the F (X,Y),

• 2) Choosing such a value of r from Ω which minimizes |F (X,Y) · a(r)|.

The resulting estimator is

r
MLP

= arg min
r∈Ω

∣∣∣F (X,Y) · a(r)
∣∣∣ . (25)

In Table 2 we compare the estimates of r by MLP methodology for k = 15 with
those obtained by CFB. We simulated one hundred samples with 5000 elements of the
observations of sub-Gaussian distributions where all of their univariate marginals have
the distribution S1.5(1, 0, 0) to estimate the dispersion matrix by means of the two
aforementioned methodologies. Column “r” shows the real value of the parameter,
column µest shows the means of the estimates of the 100 parameters whose real value
is in column “r”. Column σest shows the standard deviations of the 100 estimates by
MLP methodology. Column µest ± 2σest shows 2-σ confidence intervals of the estimates
which have a normal distribution [8, 14, 19]. In the majority of cases, the 2-σ interval
for MLP are thinner than those of CFB.

Convergence rate

The convergence rate of MLP estimates of α presented in Table 3. We simulate 100
samples from S1.5(1, 0, 0) with 5000 elements and estimate α by means of the MLP
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r Type of estimator µest σest µest ± 2σest

0.0 rMLP -0.0027 0.034 [-0.070,0.041]
rCFB 0.00012 0.045 [-0.089,0.090]

0.1 rMLP 0.10123 0.036 [0.029,0.173]
rCFB 0.10212 0.043 [0.016,0.188]

0.2 rMLP 0.19981 0.032 [0.135,0.263]
rCFB 0.20123 0.039 [0.123,0.279]

0.3 rMLP 0.30121 0.029 [0.243,0.359]
rCFB 0.29986 0.037 [0.225,0.373]

0.4 rMLP 0.40012 0.028 [0.344,0.456]
rCFB 0.39876 0.033 [0.332,0.464]

0.5 rMLP 0.50087 0.028 [0.444,0.556]
rCFB 0.50176 0.031 [0.439,0.563]

0.6 rMLP 0.59987 0.026 [0.547,0.651]
rCFB 0.60002 0.025 [0.550,0.650]

0.7 rMLP 0.70012 0.025 [0.650,0.750]
rCFB 0.69900 0.027 [0.645,0.753]

0.8 rMLP 0.78891 0.026 [0.736,0.840]
rCFB 0.80078 0.027 [0.746,0.854]

0.9 rMLP 0.89989 0.018 [0.861,0.937]
rCFB 0.90003 0.019 [0.862,0.938]

Tab. 2. Comparison of the mean and standard deviation of the MLP

estimates of r for k = 15 to those of the CFB estimates for α = 1.5.

methodology in the software Mathematica 9. When k ≥ 15, we can not see any im-
provement in terms of the precision of the mean of the estimates, the smallness of the
standard deviation of the estimates and the thinness of the µ ± 3σ intervals. For the
estimates of r, we also can not observe any improvement in precision for k ≥ 15 and
have analogous results.

CONCLUSION

In this paper, we presented sub-Gaussian distributions and the technique of estimating
their parameters that is based on the maximum likelihood and yields estimators that
converge to ML ones according to Kagan [8]. According to our results, this convergence
is fast and for k = 15, it outperforms CFB in precision. The methodology is based on
operations that are elementary for modern computers: finding average values, finding
inverses of matrices and product of matrices. This means that neither a large number
of observations nor a large k are significant impediments. The methodology takes into
account special properties of sub-Gaussian distributions and enables us to find estimates
of dispersion matrix of any dimension.



Parameter estimation of sub-Gaussian stable distributions 947

k Computation Time µest σest µest ± 3σest

1 0.265 1.49322 0.03872 [1.3704,1.6094]
2 0.390 1.50028 0.02610 [1.4219,1.5786]
3 0.570 1.49900 0.02632 [1.4001,1.5779]
4 0.780 1.49709 0.02370 [1.4259,1.5682]
5 1.061 1.50309 0.02259 [1.4353,1.5708]
6 1.357 1.50359 0.02105 [1.4402,1.5667]
7 1.702 1.50109 0.02094 [1.4382,1.5682]
8 2.106 1.50241 0.02116 [1.4389,1.5658]
9 2.558 1.49919 0.02269 [1.4312,1.5671]
10 2.995 1.49844 0.02216 [1.4319,1.5649]
15 6.225 1.50003 0.02333 [1.4300,1.5700]
20 10.514 1.50119 0.01979 [1.4418,1.5605]
30 21.528 1.50197 0.02146 [1.4375,1.5663]
40 37.191 1.50025 0.02181 [1.4348,1.5656]
50 57.408 1.49341 0.02085 [1.4308,1.5559]
100 249.43 1.49775 0.02236 [1.4306,1.5648]
150 515.33 1.49906 0.02088 [1.4364,1.5617]
200 896.18 1.49500 0.02112 [1.4312,1.5587]
400 3513.91 1.49916 0.02192 [1.4333,1.5649]
1000 21970.6 1.49800 0.02043 [1.4367,1.5593]

Tab. 3. The rate of convergence of the estimates of α when its true

value is 1.5. Simulated values from samples with 5000 elements.
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[11] S. Kring, S. Rachev, M. Höchstötter, and F. J. Fabozzi: Estimation of Alpha-Stable Sub-
Gaussian Distributions for Asset Returns. In: Risk Assessment: Decisions in Banking
and Finance. Physica-Verlag, Heidelberg 2008, pp. 111–152.

[12] D. B. Madan and E. Seneta: The variance gamma model from shared market returns. J.
Bus. 63 (1990), 511–524.

[13] B. Mandelbrot: The variation of certain speculative prices. J. Bus. 26 (1963), 394–419.

[14] J. H. McCulloch: Simple consistent estimators of stable distribution parameters. Com-
mun. Statist. — Simula 15 (1986), 1109–1136.

[15] J. H. McCulloch: Estimation of the bivariate stable spectral representation by the pro-
jection method. Comput. Econom. 16 (2000), 47–62.

[16] S. Mittnik and S. Rachev: Tail estmation of the stable index alpha. Applied mathematics.
Letters 9 (1996), 3, 53–56.

[17] S. Mittnik and M. S. Paolella: Prediction of Financial Downside-Risk with Heavy-Tailed
Conditional Distributions. In: Handbook of Heavy Tailed Distributions in Finance: Book
1 (2003), pp. 385–403.

[18] J. P. Nolan: Modeling Financial Data with Stable Distributions. In: Handbook of Heavy
Tailed Distributions in Finance, Handbooks in Finance: Book 1 (2003), pp. 105–130.

[19] J. P. Nolan: Maximum likelihood estimation and diagnostics for stable distributions. In:
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