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Abstract. Let m be a group, and H be a semi-Hopf w-algebra. We first show that the
category g M of left m-modules over H is a monoidal category with a suitably defined
tensor product and each element « in 7 induces a strict monoidal functor Fy from g M
to itself. Then we introduce the concept of quasitriangular semi-Hopf 7-algebra, and show
that a semi-Hopf m-algebra H is quasitriangular if and only if the category g .M is a braided
monoidal category and F, is a strict braided monoidal functor for any « € w. Finally, we
give two examples of Hopf m-algebras and describe the categories of modules over them.
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1. INTRODUCTION

The notion of a quasitriangular Hopf algebra was introduced by Drinfel’d [4], when
he studied the Yang-Baxter equation. The category of modules over a quasitriangu-
lar Hopf algebra is a braided monoidal category. Moreover, the braiding structure of
a braided monoidal category can supply solutions to the quantum Yang-Baxter equa-
tion. Recently, Turaev [9] introduced Hopf 7-coalgebra, which generalizes the notion
of Hopf algebra. Virelizier also studied algebraic properties of Hopf group-coalgebras
and generalized the main properties of quasitriangular Hopf algebras to the setting of
quasitriangular Hopf 7-coalgebras in [10]. Wang introduced the concept of semi-Hopf
group algebra and investigated properties of coquasitriangular Hopf group algebras

This work is supported by NSF of China, No. 11171291, by Doctorate United Foundation,
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in [11]. Zhu, Chen and Li studied the categories of modules and comodules over
a Hopf group coalgebra in [13] and [14], respectively.

In this paper, we first investigate the category g M of left modules over a semi-
Hopf m-algebra H, where 7 is a group. We define a tensor product module of two
modules over H, and show that g M is a monoidal category with respect to such
a tensor product, and each element « in 7 induces a strict monoidal functor F,, from
g M to itself. Then we introduce the concept of quasitriangular semi-Hopf 7-algebra,
and show that a semi-Hopf m-algebra H is quasitriangular if and only if the category
gM is a braided monoidal category and F, is a strict braided monoidal functor
for any a € w. Finally, we give two examples of Hopf m-algebras and discuss the
categories of modules over them.

2. PRELIMINARIES

Throughout the paper, let = be a discrete group (with neutral element 1) and
k be a fixed field. All algebras and coalgebras, m-algebras and Hopf m-algebras
are defined over k. The definitions and properties of an algebra, coalgebra, Hopf
algebra, category and monoidal category can be found in [5]-[7], [12]. We use the
standard Sweedler notation for comultiplication. The tensor product ® = ®y is
always assumed to be over k. If U and V are k-spaces, 7py,v: UV =V ®@ U will
denote the twist map defined by 7y v (v ® v) = v ® u. The following definitions and
notations can be found in [1], [8]-[11].

Definition 2.1. A m-algebra (over k) is a family A = {Ay}aer of k-spaces
endowed with a family m = {m, g: Aa @ Ag = Aapla,pger Of k-linear maps (the
multiplication) and a k-linear map u: k — A; (the unit) such that m is associative
in the sense that for any «, 8,v € ,

Magy(Ma,p @1da,) = Ma gy (ida, @ mg),

Ma,1(ida, @ u) =ida, = m1o(u®ida,).

Note that (Ai,m1,1,u) is an algebra in the usual sense.

Definition 2.2. Let A = ({As}aer, m,u) be a w-algebra. A left m-module
over A is a family M = {M,}aer of k-spaces endowed with a family n = {ng/{ﬁz
Ay ® Mg — Magta ger of k-linear maps such that for any «, 3,y € ,

(1) nits, (da, @ n5) =nd5 ., (Map @idar,);
(2) n(u®@ida,) = id, -
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Definition 2.3. Assume that A = ({As}aer, m,u) is a w-algebra. Let M =
{My}aer and N = {N,}aer be two left m-modules over A. A left A-m-module map
from M to N is a family f = {fo: My — Ng}aer of k-linear maps such that

né\{ﬁ(ldAa ® fﬁ) = faﬁné\:[ﬂa Oé,ﬁ €.
Definition 2.4. A semi-Hopf 7-algebra is a m-algebra H = ({Ha}aer, m,u)
such that:

(1) Each H, is a k-coalgebra with comultiplication A, and counit &, « € 7.

(2) u: k— Hy and mq g: Ho ® Hg — Hap are coalgebra maps, o, 8 € 7.
Furthermore, if there is a family S = {So: Hy — Hy-1}aer of k-linear maps
(the antipode) such that the following condition (3) is satisfied, then H =
({Ha}aer, m,u) is called a Hopf 7m-algebra.

(3) Ma-10(Sa ®idh, ) A = ucq = Mg o-1(idy, ® Sa)Aa, @ € 7.

3. CATEGORY OF MODULES OVER A SEMI-HOPF m-ALGEBRA

Throughout this section, assume that H = ({Ha}aer, m,u) is a semi-Hopf 7-
algebra. Denote by g M the category of all left m-modules over H, whose morphisms
are left H-m-module maps.

Lemma 3.1. Suppose that (M,n™) and (N,n") are left m-modules over H. Then
the tensor product M @ N = {(M & N)q }aer Is also a left m-module over H, where
(M ® N)y = My ® N, the structure maps nM®N = {né\fé@N: H, ® Mg ® N3 —
Map ® Nagla ger are given by

772/’[581\7 = (ng{ﬁ ®77¢]1V:ﬁ)(idHa ®THQ,M5 ®idNﬂ)(Ao( ®idM5 ®idN5)-

Proof. On the one hand, for any h € H,,! € Hg, m € M, and n € N,, we have

Moy (da, @057 )(h @ L@ m@n)
ZUQ{EVN(Zh®11 m @l n)
=S i (lh-m) @by (I n)
= (hly) - m® (haly) - n
=Y ()1 m (hl)2 -

= no%%N(hl @memn)

= o (Ma,p @ iden), ) (h@1@m @ n).
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Hence nyg’vN(idHQ ® 77245”\/) = ﬂ(%@vN(maﬁ ® id(men), ). On the other hand, for

any A € k, m € M, and n € N, we have

M (w®idmen., ) A®men) =@ Ay @ m@n) = A(mon).
Hence U¥Q®N(u® idveny.) = idwen), . Thus, M @ N = {(M ® N)a }aer is a left
m-module over H. O

Let M,N,P € ygM. Define apnp = {tatacr: (M OIN)QP - M@ (N ® P)
by ao: (My ® Nuo) @ Py — My ® (No ® By, (m®@n)@p —~ m® (n® p), where
m € My, n € Ny, p € P,. Then we have the following lemma.

Lemma 3.2. The family apy n,p is a family of left H-m-module natural isomor-
phisms, where M, N, P € g M.

Proof. Forany o, € 7, h € H,, m € Mg, n € Ng and p € Pg, we have

s M0 iy, ® ag)(h @ ((m @ n) @ p))
=10 " (e (m e (n@p))
Zhl -m® hs - (n®p) :Zhl -m® (he -n & hs - p)
= aaﬂ(Z(hl -m® hg - TL) ® hs 'p)

aag(Zhl-(m®n)®h2'p)

= aasn 5V (R ((m @ n) @ p)).

This shows that n(])\(/[?(N(gP)(idHa ®ag) = aaﬁnfx]\é(gN)@P, and so ap,n,p is a left

H-m-module morphism. Consequently, ay; n p is a left H-m-module isomorphism.
Obviously, it is a family of natural isomorphisms of H-m-modules. O

Lemma 3.3. Let K = {K,}aer with K, = k. Define 775,53 H,® Kg — Kqup by
nfﬂ(h @A) =h-X:=¢eq(h)\. Then K is a left m-module over H.
Proof. Forany h € Hy,l € Hg, me K, =k, A€ k, n € K, =k, we have
ngm(idHa ® né{v)(h ®Ilem)= nfﬁv(h ®eg(l)m)
= e (h)(a(D)m) = cup(hl)m = nf%, (L & m)
= nfﬂﬁ(maﬁ Ridg, )(h®@l®m)

and
nfa(u ®idg, )(A®n) = nfa()\lH ®@n) =e1(Alg)n = In.

This shows that 1% 5. (idm, @nf ) = 55 ., (Ma,s @idk, ) and nf, (u®idk,) = idk,,.
Thus, K is a left m-module over H. O
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For any left m-module M over H, we have (K @ M)y = Ko @ My, = k® M,
and (M @ K)o = My @ Ko, = My ® k, « € w. Define I)y: K @ M — M and
rv: M@K — M by

(rM)a: k@ My = My, A®@m — Am,
(rm)a: Ma®k — My, m®A— Am.

Then it is easy to see that [ = {ly} and r = {ry} are two families of natural
isomorphisms of left H-mw-modules.
Summarizing the above discussion, one gets the the following theorem.

Theorem 3.4. (g M,®,K,a,l,r) is a monoidal category, where K is the unit
object.

For any « € =, define a functor F,: yM — gM by

Fo(M
Fa(M)ﬂ = Mg, 77/3,7( ) :77[]3\{7047 Fa(f)ﬁ = fas
where M is a left m-module over H and f is an H-m-module map. Obviously,
Fo(K) = K and (Fo(M) ® Fo(N))g = Fa(M)g @ Fa(N)g = Mpa @ Npa =
(M ® N)go = Fo(M ® N)g, where M and N are left m-modules over H. Then
by a straightforward verification, one can check the following theorem.

Theorem 3.5. F, is a strict monoidal functor from (gM,®, K, a,l,r) to itself,
where a € 7.

4. QUASITRIANGULAR SEMI-HOPF 7-ALGEBRAS

Throughout this section, assume that H = ({Ha}aer, m,u) is a semi-Hopf 7-
algebra, and that M is the category of left m-modules over H, which is a monoidal
category as stated in the last section.

Definition 4.1. H is called a quasitriangular semi-Hopf m-algebra, if there exists

an invertible element R € H; ® H; such that the following conditions are satisfied:

(1) AZP(h)R = RAq(h);

(2) (Al [029] ld)(R) = Ri3Ro3;

(3) (id ® A1)(R) = RizRi2,
where « € m, h € Hy, Ri2 = R®1, Ry3 = 1® R, Ri3 = (Th, 1, ®1d)(1® R) €
Hy ® Hi ® H; and AP = 7, g, o A,. In this case, R is called a quasitriangular
structure of H.
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Remark 4.2. We remark that H; is a usual quasitriangular bialgebra if H is
quasitriangular, and that H is called an almost cocommutative semi-Hopf 7-algebra
if only (1) is satisfied.

Let R =>s; ®t;. Then the three conditions in Definition 4.1 can be formulated

(2

as follows:

(1) S hosi @ hat; = 3 sih ® tiha;

(2) i(si)l ® (s:)2 ® i = Esz ® s; @ tit};
3) isz@ (ti)1 @ (ti)2 = Zs 55 Qt; @ty

4,

where a € m, h € H, and A, (h) = > hy1 ® hy as usual.

Lemma 4.3. If H is almost cocommutative, then there exists a left H-w-module
isomorphism M @ N = N ® M for any left m-modules M and N over H.

Proof. Assumethat R =) s;®t; € Hy® H; is an invertible element satisfying

condition (1) of Definition 4.1. Let M and N be two left m-modules over H. For any
a €7, define (epr,n)a: Mo ® Ny — No @ M, by

(erm.N)a(m @ n) == Tar, N, (R - (m @ n)) Zt n®s;-m,

where m € M, and n € N,. Since R is invertible, (cas, N )o is a k-linear isomorphism.
Now for any o, 8 € m, m € Mg, n € Ng and h € H,, we have

a5 (idm, @ (earn)p)(h@m@n)
—ng?M(Zh(@ti'n(@Si'm)
—Zm n) ® hs - (s; m):Z(h1t~)~n®(hgsi)~m
_Zthg n@ (sihi) - Zt (ha - n) ®@s; - (hi -m)
= (eMN)a (Zhl m hy - n) (ear,v)apnag " (h®@m @ n).

Hence 77N®M(1dHa ® (cmN)g) = (cM,N)agnyg@N. This shows that cps v is a left
H-m-module map, and so

emn ={(cMN)ataer: MON - N M

is a left H-m-module isomorphism. O
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Theorem 4.4. Assume that H is quasitriangular with a quasitriangular struc-
ture R. Then the category g M is a braided monoidal category and F,, is a strict

braided monoidal functor for any a € .

Proof. By Theorems 3.4 and 3.5, it follows that y M is a monoidal category
and F, is a strict monoidal functor for any o € 7.
For any M, N € gM, let

e N ={(cMN)ataer: MON > N@M

be defined as in Lemma 4.3. Then cp,n is a left H-m-module isomorphism. Let
f={fataer: M — M and g = {ga}aecr: N — N’ be two left H-m-module maps.
Then for any a € w1, m € M, and n € N,, we have

(ga®fa)(cM,N)a(m®n):(ga®fa)(zti'n®si'm>
_Zga i ®fa Sz Zt ga ®Sz fa( )

= (CM’,N’)a(fa( ) ® ga(n)) = (CM’,N/)a(fa ® ga)(m @ n).

Hence (9 ® f)em,n = ear N (f ® g), which shows that ¢y is a family of natural
isomorphisms of left H-m-modules.
Now let M, N,P € yM and a € 7. Then for any m € M,, n € N, and p € P,,

we have

(em.N@P)a(m@n®p) = Zt (n@p)@si-m=> (t)1-n®(t)-p&s;-m

[

:Zti'n®tj'p®(5j5i M=)t -n®t;-p@s;-(s;-m)

%7 i,j
= (idn, ® (cam,P)a (Zt ‘nes;- m®p)
= (idn, ® (CM,P)a)((CM,N)a ®idp,)(m®@n ®p)
and

(emen.Pla(m@n®p) = Zt p®@si- (m@n) Zt P (si)1-m® (si)2 -7

:Z(tjt ) PRS;-MmEs; - ant (ti-p)®sj-m®s; -
0] 2

= ((em,pla ® idNa)(Zm @t p®R s n)
= ((CM’p)a ® idNu)(idMa ® (cN,p)a)(m Xdn ®p).
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This shows that CM,NRP = (ldN X CM’p)(CMJV X ldp) and CM@N,P = (CM’p X
idy)(idar®cn,p). Therefore, ;M is a braided monoidal category with the braiding c.

Let o € w. Then for any M, N € yM and j € m, it is obvious that Fy(car,n)g =
(em,N)sa = (cp, (M), Fa(nN))p- Hence Fo(cm,n) = cp,(m),F.(N), and consequently,
F, is a strict braided monoidal functor for any « € 7. O

Theorem 4.5. Suppose that yM is a braided monoidal category, and F, is
a strict braided monoidal functor for any o € w. Then H is quasitriangular.

Proof. Supposethat yM is a braided monoidal category with a braiding ¢, and
F, is a strict braided monoidal functor for any a € 7. Thency g: HOH — HR®H is
a left H-m-module isomorphism, and hence (cg,pr)1: H1®Hy — H1® Hj is a k-linear
isomorphism. Let R = 7g, 1, ((crr)1(1 ® 1)) € Hy ® Hy. Then Lemmas 4.8-4.10
below show that R is a quasitriangular structure of H. O

Throughout the following Lemma 4.6, Corollary 4.7 and Lemmas 4.8-4.10, assume
that g M is a braided monoidal category with a braiding ¢, F,, is a strict braided
monoidal functor for any o € 7, and let R = 75, g, ((cp,u)1(1® 1)) = > s, ®1t; €

H, ® Hy be given as above. In this case, we have (ca,p)1(1® 1) = 75, 1, (R) =
Zti X 8.

Lemma 4.6. Let M, N € ygM. Then we have

(er,N)a(m @n) = Ta N (R-(m@n)) =Y ti-n®s;-m,
where o € T, m € M, and n € N,.

Proof. Let a € m, m € M, and n € N,. Then one can easily check that the
two maps m = {Mglger: H — Fo(M) and @ = {Rg}ger: H — Fo(N) defined by
mpg(h) =h-m and ig(h) = h-n, B € m, h € Hg, are left H-m-module maps. In this
case, m1(1) = m and 71 (1) = n.

Since cpr,n is a family of natural isomorphisms of left H-m-modules, we have
Cr, (M), Fou(N) (M @T) = (W @ M)cy . Since F, is a strict braided monoidal func-
tor, Fo(cm,N) = cp, (M), F.(N), and hence (car,n)a = Fa(camr,n)1 = (Cr, (), F(N))1-
Thus, we have
= (e, N)a(M1 @71)(1 @ 1) = (cr, (rm),Fo(v))1 (M1 @71) (1 ® 1)
= (e, (), ra iy (Mm@M)N (1@ 1) = (M@M)ch,r)1(1@1)
=M m)(ca,u)1(1®1)=(m ®m1)(z t ® si)

i

:Zti~n®si~m:TMmNa(R'(m®n)).

(em,N)a(m @n)
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Corollary 4.7. For any o € w and =,y € H,, we have

(cam)a(x®Y) =T, 1, (R(x @ Y)) thy®8 x.

Proof. It follows by putting M = N = H in Lemma 4.6. (]

Lemma 4.8. R is an invertible element in Hy ® H;.

Proof. Since (cgpm)i: Hi ® Hi — Hy ® Hy is a k-linear isomorphism, there
exists an element a € H; ® H; such that (cg,m)i1(a) =1® 1. From Corollary 4.7, it
follows that 7, g, (Ra) =1® 1, and so Ra =1® 1. Then (cy,p)i(aR—-1®1) =
TH:,Hy (R(GR —-1® 1)) = THy,H: (RGR — R) = THy,H: (R - R) = 0, which implies
that aR — 1® 1 = 0, since (cg,zr)1 is a k-linear automorphism of H; ® Hj, and so
aR =1®1. Thus, R is an invertible element in H; ® H; with R~! = a. U

Lemma 4.9. The following equations hold in Hy ® Hy ® Hi:
(1) (id ® Al)(R) = Ri3R19;
(2) (A1 ®id)(R) = Ri3Ras.

Proof. Since cis a braiding and H € gy M, we have

caHon = (idg @ cap)(cap ®idy), coeomp = (cog @ idy)(idy ® cu,m),

and hence
(capon)1 = (1dm, @ (ca,m)1)((cam)1 ®ida,),

(caomu)1 = ((ca,m)1 ®idw, ) (idu,  (cu,m)1)-

By Lemma 4.6 (and Corollary 4.7), we have

(carer)1(1®1®1) Zt 1) ®s; = ZA ® s;

and
(idw, ® (e,a)1)((c ) @idy, ) (1@ 1® 1)
:(idHl CHH (Zt ®Sl®1) :Zti®tj®5j5i~
4,J

Hence > A(ti) ® s; = ) t; ®t; ® s;s;, and so ZS“@A( i) =2.8;8;®t; ®t;. This
i i, 1,
shows equation (1). Equation (2) can be proved similarly. O
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Lemma 4.10. Let o € m and h € H,. Then we have

AP(h)R = RAq(h).

Proof. Since cy g is a left H-m-module map, we have

nl M (dm, ® (com)) = (cau)ani$?, Vaem

Let a € w and h € H,. By Lemma 4.6 or Corollary 4.7, we have

et (i, ® (caph)(h®@1@1) =ni PH (h ®Y ® Sz) = It ® hos;

and

(CH,H)ana1 (h®1®1)=(crH)ao (Z}h@hz) = Ztih2®8ih1.

Hence Z hit; ® hos; = Eﬁihg ® s;h1, and so Z hos; ® hit; = Eszhl ® t;ho. That
is, ACP(W)R = RAL(h). 0

Combining Theorems 4.4 and 4.5, one gets the following theorem.

Theorem 4.11. Let H = ({Hy}aen, m, u) be a semi-Hopf m-algebra. Then H is
a quasitriangular semi-Hopf mw-algebra if and only if the category gy M is a braided
monoidal category and F,, is a strict braided monoidal functor for any a € 7.

5. EXAMPLES

In this section, we will give two examples of Hopf m-algebras, and consider the
category of modules over them.

Let H = ({Ha}aer, m, u) be a semi-Hopf m-algebra. Then H; is a usual bialgebra,
and hence the category g, M of the left Hi-modules is a monoidal category as usual.
Let V € g, M. For any o, € 7, let M, = Hy @, V and né\fﬁ = Ma,p PF, idy:
Hy, ® Hs @, V. — Hop ®m, V. Then it is easy to see that M = {My}aer is
a left m-module over H with the module structure map n = {né\fﬁ}mgeﬂ. Denote
M by H®pg, V. Let f: U — V be a left Hi-module map. Then idy ®pu, f =
{idg, ®p, f: Ho®y, U — Hy®p, V}aer is aleft H-m-module map. Thus, we have
a functor F' from g, M to g M as follows:
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where V is an object of g, M and f is a morphism of z, M. We have another functor
G from gM to g, M as follows:

G: HM_>H1M7 G(M):Mla F(f):fla

where M = {M,}aer is an object of gy M and f = {fs}aer is a morphism of y M.
For the unit object K of the monoidal category i M as stated in the last two sections,
G(K) = K1 = k is exactly the unit object k of the monoidal category g, M. For any
M,NegM,GIM®N)=(M®®N); =M ® Ny =G(M)®G(N). Then one can
easily check that G is a strict monoidal functor from g M to g, M.

For any Hy-module V, let 6(V): GF(V) — V be the canonical H;i-module iso-
morphism H; ®g, V — V, h®v +— h-v. Then one can easily check that 6 is a natural
isomorphism from GF to id, m-.

Example 5.1. Let 7 be a cyclic group of order 2 generated by c. Then, 7 = {1, a}
with a? = 1. Let H; be a 2-dimensional k-space with a k-basis {ho, h2}, and H, a 2-
dimensional k-space with a k-basis {h1, hs}. Define k-linear maps m11: H1 Q@ H; —
Hy by ml’l(ho ® ho) = mlyl(hz ®h2) = hg and m1’1(h0 ® hg) = mlyl(hz ® ho) = ho;
Ma,a: Ho @ Hy — Hi by Mo o(h1 @ hs) = ma,o(hs ®h1) = ho and mq,o(h1 @ h1) =
Ma,a(h3 @ hg) = ho; m1o: H1 @ Hy — Hy by m1 o(ho @ h1) = mi,o(he ® hg) = hy
and m1 q(ho ® h3) = m1,o(ha ® h1) = hs; and mq1: Hy @ Hi — Hqo by ma1 =
M1 ,aTH, H,- Define a k-linear map u — Hy by u(X) = Mg, A € k. Then one can
check that H = ({H1, Hy}, m,u) is a w-algebra with hg = 1.

Define k-linear maps Ay: Hy — Hy ® Hy by A(h;) = h; ® h;, and e1: H; — k
by €1(h;) = 1, i = 0,2. Then one can see that Hj is a coalgebra. Similarly, H, is
also a coalgebra with comultiplication and counit given by A,: H, — H, ® H,,
A(hl) =h; ®h;,and €4: Hy — k, 5a(hi) =1,:=1,3.

With the above structure, a straightforward verification shows that H is a semi-
Hopf m-algebra. Moreover, H is a Hopf m-algebra with the antipode S = {S1, Sa}
given by

Si: Hy — Hy, hgw— hg, hor ho;
Se: Hy — Hy, hiv> hs, hz+— hy.

It is easy to see that R = 1 ® 1 is a (trivial) quasitriangular structure of H. If
Char(k) # 2, then H has a nontrivial quasitriangular structure as follows:

R=3(1®141®hy+ha®1—hy® hy).

Now we consider the functors F': gy M — gM and G: gM — g, M given as
above. We have already shown that G is a strict monoidal functor. Let (p¢);:
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Ki =k — F(k)1 = H Qu, k, A = Ao ®pg, 1 = 1 ®p, A be the canonical k-
linear isomorphism, and let (¢g)a: Ko = k = F(k)o = Ho ®p, k be the k-linear
map defined by (p0)a(A) = Ahy @, 1 = hy ®g, A. Then one can easily check
that w0 = {(po0)1, (po)a} is a left H-m-module isomorphism from K to F(k). Let
V,W € g, M. Define oo (V,W)1: (F(V)® F(W)); = F(V® W), by

(VW) (h @, v) @ (I ®p, w) =15, (h-v®1-w),
hle H,veV, we W,

and w2 (V,W)a: (F(V)@ F(W))a = F(V@ W), by

SDQ(Va W)Ot((h @ H, ’U) ® (l @ Hy w)) =M O H, ((h?)h) U® (h?)l) : U)),
h,le Hy, veV, weW.

Then a straightforward verification shows that oo(V, W) = {@2(V, W)1, 02 (V, W) }
is a left H-m-module isomorphism from F(V) ® F(W) to F(V @ W). Moreover,
one can easily check that ¢o(V, W) is a family of natural isomorphisms of left -
modules over H indexed by all couples (V, W) of objects of g, M. Now by a standard
verification, one can check that (F, g, ¢2) is a monoidal functor from g, M to g M.

We have already seen that there is a natural isomorphism 6: GF — id, am as
given before. It is easy to check that 6 is a natural monoidal isomorphism from GF
to idHlM'

Let M = {M;y,M,} € yM. Let o(M)1: My — FG(M); = Hy ®p, My be the
canonical left Hi-module isomorphism, and let o(M),: M, — FG(M), = Hy ®,
M, be the k-linear map defined by o(M)s(m) = hy ®p, hs - m, m € M,. Then one
can check that o(M), is a bijection with the inverse given by (o0(M),) " '(h®@m) =
h -m, where h € H, and m € M;. Now by a straightforward verification, one
can check that o(M) = {o(M)a}aer is a left H-m-module map, and so it is an H-
m-module isomorphism. Moreover, ¢ is a natural isomorphism from id, 4 to FG.
Then a standard verification shows that ¢ is a natural monoidal isomorphism from
id, m to F'G. This shows that g M and g, M are equivalent monoidal categories.

Finally, since H; is the group algebra of the cyclic group {1, ho} of order 2, the
category m, M can be well described. When Char(k) # 2, H; is semisimple. There
are only two simple Hj-modules V) and V; in this case. V{ and V; are both one-
dimensional with the actions given by hy-v =wv forv € Vy and ho-v = —v for v € V.
When Char(k) = 2, there is a unique simple H;-module Vj as given above, and the
regular module H; is the unique non-simple indecomposable H;-module, which is
projective and uniserial.

In order to give another example, we first give some properties of a semi-Hopf
m-algebra.
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Definition 5.1. Let H = ({Hy}aer, m,u) be a semi-Hopf m-algebra. A family
e = {en }aer of nonzero elements with e, € H, is called a generalized idempotent if
eaeg = eqp for all a, 8 € m. Furthermore,

(1) if e; =1, then e is called a strong generalized idempotent;

(2) if An(eq) = €q @ €4 for all o € 7, then e is called a group-like generalized
idempotent;

(3) if 7 is abelian and e h = he, for all a, 5 € m and h € Hg, then e is called
a central generalized idempotent.

Remark 5.2. Assume that H = ({Ha}aer, m,u) is a semi-Hopf m-algebra and
e = {€a}acnr is a generalized idempotent in H. Then the set {e,; a € 7} forms
a group, which is isomorphic to 7. If e is strong, then eje,-1 = e,-1€, = €1 = 1 for
all a € 7. If e is group-like, then e,(e,) =1 for all @ € 7.

Lemma 5.3. Assume that H = ({Hu}aer, m,u) Is a semi-Hopf m-algebra and
that H has a strong generalized idempotent e = {e4}ocr. Then yM and g, M are
equivalent categories.

Proof. We use the functors F' and G given before. We have already seen that 6
is a natural isomorphism from GF to id, -

For any M = {Ma}oer € uM and o € 7, let 0(M)o: My, — FG(M), =
H, ®p, M; be defined by o(M),(m) = eq ®p, (eq-1 - m), m € M,. Then it is
obvious that o(M), is a k-linear map. Let 7(M),: Hy ®p, M1 — M, be the k-
linear map defined by 7(M)q(h @, m) = h - m, where h € H, and m € M;. Then
for any « € m, m € M,, h € H, and m’ € My, we have (7(M),0(M)q)(m) =
T(M)o(eaq @, (Eq-1 M) = €q + (€q-1 - M) = (€q€q-1)-m = 1-m = m and
(O (M)ar(M)a)(h @51, ') = €q @ty (eams - (b 1)) = e0 @11, ((ca-sh) - m') =
€aa-1h®p, m' = h®pg, m'. This shows that (M), is a k-linear isomorphism with
(0(M)o) ™t =7(M)q, a € 7. Now it is easy to see that 7(M) = {7(M)a }acx is a left
H-m-module map, and so it is an isomorphism. It follows that o(M) = {o(M )4 tacr
is a left H-m-module isomorphism from M to FG(M). Then it is easy to check that
o(M) is a family of natural morphisms indexed by all objects M of g M. Therefore,
o is a natural isomorphism from id, o to F'G. O

Proposition 5.4. Assume that 7 is abelian and that H = ({Hu}aer, m,u) is
a semi-Hopf m-algebra with a generalized idempotent e = {eq }aer. If € is a central,
strong and group-like generalized idempotent, then g M and g, M are equivalent
monoidal categories.

Proof. Suppose that e is a central, strong and group-like generalized idempotent.
We use the notations introduced in the proof of Lemma 5.3.
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Note that the unit object of the monoidal category g, M is the trivial H;-module
k with the action given by h -1 = e1(h), where h € H;. Hence F(k) = H ®p, k =
{Ho ®p, k}acn. For any a € w1, Hy = (eaeq-1)Hy = eq(eq-1Hy) C e H1 C Hy,,
and hence H, = e,H;. It follows that H, is a free right Hi-module of rank one
with an H;-basis e,, since e,-1eq = 1. Therefore, H, ®m, k is a one-dimensional
k-vector space with the k-basis e, ®pg, 1. Thus, there is a k-linear isomorphism
(po)a: Ko =k = Ho Qp, ky, A = deq @, 1 = e ®pg, A for any a € 7. Now
let o, € m, h € H, and A € Kg = k. Then h - (po)g(A) = h - (eg ®m, \) =
(egh) QH, A = (eagea—lh) RH, A = €ap OH, (ea—lh) A = eqs OH, 61(6a—1h))\ =
€ap OH, Ea-1(€a-1)€a(R)A = €ap ®n, €a(R)A = (po)as(ca(R)A) = (go)as(h - A).
Thus, ¢g is a left H-m-module isomorphism from K to F(k).

Let U,V € g, M and a € w. Define oo (U, V): (F(U) @ F(V))o = F(U ® V)4
by

02(UV)a((h®@p, ) @ (1 @u, v)) = eq @n, ((eq-1h) - T R (eq-11) - v),

where h,l € H,, x € U and v € V. Since H, is a free right H;-module of rank one
with an Hj-basis e, as stated before, it is easy to check that ¢o(U, V), is a k-linear
isomorphism. Let h,l € H,, y € Hg with o, € m, z € U and v € V. Then

Y 02(U,V)al((h®m, ) © (I @, v))
=yeq Qp,y ((eq-1h) -2 ® (eq-11) - v)
= egacp—1y Om, ((€a—1h) -z @ (eq-11) - v)
= €80 OH, (eg-1y) - ((ea-1h) - 2 ® (eq-1l) - v)
= epa®m, (((es-1y)1€a-1h) - 7@ ((e5-1y)260-11) - )
= epa ®m, ((eg-1y1€a-1h) - @ (e5-1y2€4-11) - v)
=Y esa @m, (e(gay-191h) - 2 @ (e(ga)-1121) - v)
= 2(U,V)ga (D (01 @, 2) © (3ol @1, 0))
= 02U, V)galy - (h @n, ) @ (I ®p, v))).

It follows that wo(U, V) is a left H-m-module isomorphism. A straightforward verifi-
cation shows that o(U, V) is a family of natural isomorphisms of left H-m-modules
indexed by all couples (U, V') of objects of g, M.

Let U,V,W € gy M and o € 7. For any h,l,s € Hy,x € U,v €V and w € W,

we have

(p2(U,V @ W)a(idpw), ® p2(V,W)a)aa)(((h ®@m, ) ® (I ®n, v)) ® (s On, w))
= (p2(U, V@ W)a(idpw), @2V, W)a))((h@n, 2) @ ([ ©n, v) ® (s ©n, w)))
= SDQ(Ua Ve W)Ot((h ®H, {E) ® (ea ®H, ((ea—ll) U (ea—ls) w)))
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— o @, ((ca1h) 28 ((€a-16a) - ((car]) -V E (ca15) - w))
=eq Qm, ((eq-1h) z® ((eq-11) - v ® (€q-18) - w))

and
(F(a)ap2(U @V, W)alp2(U,V)a @ idpuw), ) (((h @m, ) © (®m, v)) @ (s @, w))
= (F(a)ap2(UV,W)a)((ea @, ((eq-1h) - & (eq-11) - v)) ® (s @p, w))
a)a(ea @m, ((ea-1€a) - ((ea-1h) - 2 ® (eq-11) - v) @ (eq-15) - w))
a)a(ea @m (((ea-1h) -2 @ (eq-11) - v) ® (€4-15) - w))

=eq Qm; ((ea-1h) T ® ((eq-11) v ® (eq-15) - W)).
Therefore, for any objects U, V, W of y, M, we have

2(U,V @ W)(idpw) @ p2(V, W))arw),r(v),rw)
= Flav,v,w)p2(U @ V,W)(p2(U, V) @ idpw))-
For any h € H,, v € V and A € K, = k with « € 7, we have

(F(lv)ap2(k, V)a((w0)a @ idpr), ) (A @ (h@m, v))
= (F(v)ap2(k,V)a)((ea @n, A) @ (h ®@p, v))
=F(lv)a(ea ®m, ((eq-1€0) - A® (eq-1h) - v))
=F(ly)a(ea @, (A® (eq-1h) - v))
=eo ®m, (Aeq-1h)-v)

eareq-1h g, v

AMh ®mp, v)

= (pv))a(A @ (h@n, v)).

Hence F(ly)p2(k,V)(po ® idpvy) = lp(v) for any object V' of g, M. Similarly, one
can show that F'(ry)p2(V, k)(idpy ® wo) = rpvy for any object V' of g, M. Thus,
we have proved that (F, ¢g, ¢2) is a monoidal functor.
Note that G is a strict monoidal functor from g M to g, M as stated before.
Finally, a straightforward verification shows that 6 is a natural monoidal isomor-
phism from GF' to id, s, and o is a natural monoidal isomorphism from id, v to
FG. Hence g M and g, M are equivalent monoidal categories. O

Example 5.2. Assume that Char(k) # 2. Let 7 be any group. For any « € 7, let
H, be a 4-dimensional vector space with a k-basis {en, ga, ha, o }. Define k-linear
maps A,: H, - H,® H, and ¢,: H, — k by

Aa(ea):ea@)eav Aa(ha):ha®ga+ea®ha;
Aa(ga):ga®ga; Aa(xa):xa®ea+ga®xaa
ealen) =€alga) =1, Ea(ha) = €alxq) =0.
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Then a straightforward verification shows that (H,, Ay, €4) is a coalgebra over k for
any o € m.
For any «, 8 € 7, define a k-linear map ma,g: Ho ® Hy — Hop by

€alg = €ap, €adp = Jap, eahg = hag, €aTg = Tag,
9alp =gops  Ga9s = €ap,  Gahs = Tap, Galp = hap,
hatg = hag, hags = —%ap, haohg =0, hozg =0,
Ta€B = TaB, Tagg= —hag, Tohg=0, Targ =0,

where we denote mq g(y ® z) by yz for any y € H, and z € Hg. Then define a k-
linear map u: k — Hy by u(1) = e7. A tedious but standard verification shows that
H = ({Hy}oer, m,u) is a m-algebra with e; = 1. Moreover, one can check that H is
a semi-Hopf 7-algebra.

For any o € =, define a k-linear map So: Hy — Hy-1 by Sa(en) = eq-1,
Sa(9a) = ga-1, Sa(ha) = q-1 and So(x,) = —he-1. Then one can check that
H = ({Hy}oer, m,u,S) is a Hopf m-algebra.

For any A € k, let

R\=11®1+100+0n®1—g ®g1)
+3Mz1 @21 — 21 @b+ hi @21 + by @ Ry).

Then one can check that Ry is a quasitriangular structure of H for any A € k.

Let e = {ea}aer. Then e is a strong group-like generalized idempotent. Now
assume that 7 is abelian. Then e is central. It follows from Proposition 5.4 that
gM and g, M are equivalent monoidal categories. Thus, in order to describe the
left m-modules over H, we only need to describe the left H;-modules.

Note that H; is a usual Hopf algebra, which is generated, as an algebra, by g1
and hy. Algebra H; is isomorphic, as a Hopf algebra, to Sweedler’s 4-dimensional
Hopf algebra. Hence there are only 4 non-isomorphic finite-dimensional indecompos-
able modules Vp, Vi, Uy and U;. Modules Vj and V; are both one-dimensional with
the actions given by g, -v = (—1)*v and hy -v = 0 for all v € V;, where i = 0, 1. Mod-
ules Uy and Uy are both 2-dimensional. The matrix representation g;: Hy; — Ms(k)
corresponding to U; is given by

0i(g1) = ((_Ol)i (_1())i1>7 0i(h1) = ((1) 8>7

where 7 = 0,1. Moreover, Uy and U; are both projective and uniserial. For details,

one can see [2] and [3].
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