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Abstract. These notes are dedicated to the study of the complexity of several classes
of separable Banach spaces. We compute the complexity of the Banach-Saks property,
the alternating Banach-Saks property, the complete continuous property, and the LUST
property. We also show that the weak Banach-Saks property, the Schur property, the
Dunford-Pettis property, the analytic Radon-Nikodym property, the set of Banach spaces
whose set of unconditionally converging operators is complemented in its bounded operators,
the set of Banach spaces whose set of weakly compact operators is complemented in its
bounded operators, and the set of Banach spaces whose set of Banach-Saks operators is
complemented in its bounded operators, are all non Borel in SB. At last, we give several
applications of those results to non-universality results.
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1. INTRODUCTION

Our goal for these notes is to study the complexity of certain classes of Banach
spaces, hence, these notes lie in the intersection of descriptive set theory and the
theory of Banach spaces.

First, we study two problems related to special classes of operators on separable
Banach spaces being complemented in the space of its bounded operators or not.
Specifically, we will show that both the set of Banach spaces with its unconditionally
converging operators complemented in its bounded operators, and the set of Banach
spaces with its weakly compact operators complemented in its bounded operators,
are non Borel. The first is actually complete coanalytic. In both of these problems,
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we will be using results of [4] concerning the complementability of those ideals in its
space of bounded operators and the fact that the space itself contains cg.

Next, we study the complexity of other classes of Banach spaces, namely, Banach
spaces with the so called Banach-Saks property, alternating Banach-Saks property,
and weak Banach-Saks property. We show that the first two of them are complete
coanalytic sets in the class of separable Banach spaces, and that the third is at least
non Borel (it is also shown that the weak Banach-Saks property is at most I13). In
order to show some of these results we use the geometric sequential characterizations
of Banach spaces with the Banach-Saks property and the alternating Banach-Saks
property given by B. Beauzamy (see [5]). The stability under £3-sums of the Banach-
Saks property shown by J.R. Partington [23] will also be of great importance in our
proofs.

It is also shown that the set of Banach spaces whose set of Banach-Saks operators
is complemented in its bounded operators is non Borel. For this, a result by J. Diestel
and C. J. Seifert [11] that says that weakly compact operators T': C'(K) — X, where
K is a compact Hausdorff space, are Banach-Saks operators, will be essential.

In order to show that the class of Banach spaces with the Schur property is non
Borel we will rely on the stability of this property under ¢;-sums shown by B. Tanbay
[30], and, when dealing with the Dunford-Pettis property, the same will be shown
using one of its characterizations (see [28], and [13]) and Tanbay’s result. It is also
shown that the Schur property is at least I13.

Next, we show that the set of separable Banach spaces with the complete contin-
uous property CCP is complete coanalytic. For this we use a characterization of this
property in terms of the existence of a special kind of bush on the space (see [15]).
Also, we show that the analytic Radon-Nikodym property is non Borel.

We also deal with the local structure of separable Banach spaces by showing that
the set of Banach spaces with local unconditional structure is Borel.

At last, we give several applications of the theorems obtained in these notes to non-
universality like results. In all the results proved in these notes we will be applying
techniques related to descriptive set theory and its applications to the geometry
of Banach spaces that can be found in [12], and [29]. Also, this work was highly
motivated by D.Puglisi’s paper on the position of #(X,Y) in Z(X,Y), in which
Puglisi shows that the set of pairs of separable Banach spaces (X,Y) such that the
ideal of compact operators from X to Y is complemented in the bounded operators
from X to Y is non Borel (see [26]).
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2. BACKGROUND

A separable metric space is said to be a Polish space if there exists an equiv-
alent metric in which it is complete. A continuous image of a Polish space into
another Polish space is called an analytic set and a set whose complement is an-
alytic is called coanalytic. A measure space (X, .), where X is a set and & is
a o-algebra of subsets of X, is called a standard Borel space if there exists a Pol-
ish topology on this set whose Borel o-algebra coincides with «/. We define Borel,
analytic and coanalytic sets in standard Borel spaces by saying that these are the
sets that, by considering a compatible Polish topology, are Borel, analytic, and co-
analytic, respectively. Observe that this is well defined, i.e., this definition does
not depend on the Polish topology itself but on its Borel structure. A function
between two standard Borel spaces is called Borel measurable if the inverse image
of each Borel subset of its codomain is Borel in its domain. We usually refer to
Borel measurable functions just as Borel functions. Notice that, if you consider
a Borel function between two standard Borel spaces, its inverse image of analytic
or coanalytic sets is analytic or coanalytic, respectively, (see [29], Proposition 1.3,
page 50).

Given a Polish space X the set of analytic or coanalytic subsets of X is denoted
by 31(X) or II}(X), respectively. Hence, the terminology %1-set or ITi-set is used
to refer to analytic sets or coanalytic sets, respectively.

Let X be a standard Borel space. An analytic or coanalytic subset A C X is said
to be complete analytic or complete coanalytic if for each standard Borel space Y
and each B C Y analytic or coanalytic, respectively, there exists a Borel function
f: Y — X such that f~!(A) = B. This function is called a Borel reduction from B
to A, and B is said to be Borel reducible to A.

Let X be a standard Borel space. We call a subset A C X }1-hard (I1}-hard) if
for each standard Borel space Y and each B C Y analytic (coanalytic) there exists
a Borel reduction from B to A. Therefore, to say that a set A C X is ¥}-hard
(IT}-hard) means that A is at least as complex as Y1-sets (II}-sets) in the projective
hierarchy. With this terminology we have that A C X is complete analytic (complete
coanalytic) if and only if A is ¥1-hard (II}-hard) and analytic (coanalytic).

As there exist analytic non Borel and coanalytic non Borel sets we have that ¥1-
hard and ITi-hard sets are non Borel. Also, if X is a standard Borel space, A C X,
and there exists a Borel reduction from a ¥{-hard or II}-hard subset B of a standard
Borel space Y to A, then A is X1-hard or IIi-hard, respectively. We refer to [29],
page 56, and [21], Section 26, for more on complete analytic and coanalytic sets.
Complete analytic sets or complete coanalytic sets are also called Y1-complete sets
or IIi-complete, respectively.
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Consider a Polish space X and let #(X) be the set of all its non empty closed
sets. We endow .Z (X)) with the Effros-Borel structure, i.e., the o-algebra generated
by

{FCcX; FNU # 0},

where U varies among the open sets of X. It can be shown that .%(X) with the
Effros-Borel structure is a standard Borel space ([21], Theorem 12.6). The following
well-known lemma (see [21], Theorem 12.13) will be crucial in some of our proofs.

Lemma 1 (Kuratowski-Ryll-Nardzewski selection principle). Let X be a Polish
space. There exists a sequence of Borel functions (Sp)nen: % (X) — X such that
{Sn(F)}nen is dense in F for all closed F' C X.

In these notes we will only work with separable Banach spaces. We denote the
closed unit ball of a Banach space X and its unit sphere by Bx and Sx, re-
spectively. It is well known that every separable Banach space is isometrically
isomorphic to a closed linear subspace of C(A) (see [21], page 79), where A de-
notes the Cantor set. Therefore, C(A) is called universal for the class of sep-
arable Banach spaces and we can code the class of separable Banach spaces by
SB = {X C C(A); X is a closed linear subspace of C(A)}. As C(A) is clearly
a Polish space we can endow .7 (C(A)) with the Effros-Borel structure. It can be
shown that SB is a Borel set in .% (C(A)) and hence it is also a standard Borel space
(see [12], Theorem 2.2). It now makes sense to wonder if specific sets of separable
Banach spaces are Borel or not.

Throughout these notes we will denote by {S,, }nen the sequence of Borel functions
Sp: SB — C(A) given by Lemma 1 (more precisely, the restriction of those functions
to SB). Hence, for all X € SB, {S,(X)}nen is dense in X. By taking rational linear
combinations of the functions {S,, }, we can (and will) assume that, for all X € SB, all
n,k € N, and all p, ¢ € Q, there exists m € N such that ¢S5, (X) + pSi(X) = S (X).

Denote by N<N the set of all finite tuples of natural numbers plus the empty set.
Given s = (80,...,80-1),t = (to,...,tm—1) € NV we say that the length of s is
|s| =mn, s; = (s0,...,8-1) foralli € {1,...,n}, s0 =0, s <t iff n <mands; =t;
for all i € {0,...,n — 1}, i.e., if ¢ is an extension of s. We define s < ¢ analogously.
Define the concatenation of s and ¢ as s™t = (Sg, ..., Sn—1,t0,- -, tm—1). A subset T
of N<N is called a tree if ¢ € T implies ¢); € T for all i € {0,..., [t[}. We denote the
set of trees on N by Tr. A subset I of a tree T is called a segment if I is completely
ordered and if s,t € I with s <, thenl € I for all [ € T such that s <1 <. Two
segments I, I> are called completely incomparable if neither s < ¢ nor ¢ < s hold if
sel, and t € I,.
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As N<V is countable, 2Y°" (the power set of N<VN) is Polish with its standard
product topology. If we think about Tr as a subset of N it s easy to see that Tr
is a closed set in 2N<N, so it is a standard Borel space. A 3 € NV is called a branch
of a tree T if 3; € T for all i € N, where ; is defined analogously as above. We
call a tree T' well-founded if T has no branches and ill-founded otherwise, we denote
the set of well-founded and ill-founded trees by WF and IF, respectively. It is well
known that WF is a complete coanalytic set of Tr, hence IF is complete analytic (see
[21], Theorem 27.1).

There is a really important index that can be defined on the set of trees called the
order index of a tree. For a given tree T' € Tr we define the derived tree of T as

T'={seT; IHteT, s<t}.

By transfinite induction we define (T¢)¢con, where ON denotes the ordinal num-
bers, as follows:

T =T,
T = (T?), if a =B +1 for some 3 € ON,

T = ﬂ T8, if a is a limit ordinal.
B<a

We now define the order index on Tr. If there exists an ordinal number o < wy,
where w; denotes the smallest uncountable ordinal such that T® = § we say the
order index of T is o(T) = min{a < wy; T* = (}. If there is no such countable
ordinal we set o(T') = wy. The reason why we introduce this index is because of the
way it interacts with the notion of well-founded and ill-founded trees. We have the
following easy proposition (see [29], Chapter 3, Section 2).

Proposition 2. A treeT € Tr on the natural numbers is well-founded if and only
if its order index is countable, i.e., if and only if o(T) < ws.

For a tree T € Tr and k € N, let T(k) = {s € N<V; (k)"s € T} and T}, = {s €
T; (k) < s}. We have another useful application of the order index to well-founded
trees (see [29], Chapter 3, Section 2).

Proposition 3. Let T € WF with o(T') > 1, then o(T'(k)) < o(T') for all k € N.

Now that we have seen all the descriptive set theoretical background we need in
order to understand our results and their proofs let us start with the real math.
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3. {,-BAIRE SUMS

We now treat £,-Baire sums of basic sequences; this tool will be crucial in many of
our results in these notes. For each p € [1,00) and each basic sequence & = (e, )nen,
we define a Borel function s ,: Tr — SB in the following manner. For each ¢ € Tr,
and x = (2(s))seco € coo(0) we define

p )1/ p
éb )

el o =suv] (3] atehes
neN, I,..., I, incomparable segments of 9},

i=1"sel;

where ||-||¢ is the norm of span{&’}. We define ¢g ,(0) as the completion of cyo(6)
under the norm ||-||¢..¢. The space pg p,(6) is known as the £,,-Baire sum of span{&’}
(index by ). Pick Y C C(A) such that ¢z ,(N<V) is isometric to Y. If we consider
the natural isometries of v ,(0) into pg ,(N<N), we can see pg , as a Borel function
from Tr into SB. With this in mind, we have (see [29], Proposition 3.1, page 79):

Proposition 4. Let ¢ ,: Tr — SB be the function defined above. Then ¢g ), is
a Borel function. The same is true if we define ||| £,0,0 as

Zx(s)e\:ﬂ

sel

lzlle.06 = Sup{ ; I segment off)},
&

and let pg o(0) to be the completion of (coo(8), ||-||£,0.0)-

Let 0 € Tr, p € [1,00), and let & = (en)nen be a basic sequence. We denote by
&* the same sequence as & but with the first term deleted. We clearly have that

R <EB sag*,pw(x))) ,

AEA £p

e p(0) is isomorphic to

where A = {\ € N; (A) € 6}, and the term R appears because of the empty co-
ordinate of #. The following lemma is of great importance for understanding the
geometry of pg ,(0).

Lemma 5. The Borel function ¢s ,: Tr — SB defined above has the following
properties:
(i) If 8 € IF, then g ,(0) contains span{&’}.
(it) If @ € WF, then g ,(0) is £p-saturated, i.e., every infinite dimensional subspace
of pe ,»(0) contains a copy of £,.
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The analogous is true for pgo: Tr — SB, ie.:
(i) If 6 € IF, then g 0(0) contains span{é&’}.
(it) If @ € WF, then ¢g o(8) is co-saturated, i.e., every infinite dimensional subspace
of peg,0(0) contains a copy of .

Before we prove this lemma, let us show a simple lemma that will be important
in our proof.

Lemma 6. A finite sum of {,-saturated or cy-saturated spaces is {,-saturated or
co-saturated, respectively.

Proof. Say (Xi,|1),---,(Xn,|"||n) are ¢,-saturated. Let (X, |-||x) be the

sum of those spaces. As this is a finite sum, we can assume X = (él Xj>€1, ie.,
if (z1,...,2n) € X, then [|z|x = >, [[z;||;. Denote by P;: X — X; the standard
projection on the j-th coordinate. Let £ C X be an infinite dimensional subspace.

Claim: Pj,: E — Xj, is not strictly singular, for some jo € {1,...,n}.

Once the claim is proved, the result trivially follows. Assume P; is strictly singular
for all j € {1,...,n}. By a classical property of strictly singular operators (see [12],
Proposition B.5), we know that for every £ > 0 there exists an infinite dimensional
subspace A C E such that ||Pj4ll <, for all j € {1,...,n}. Pick z € A of norm
one. Then, as © = (Py(x),..., P,(x)), we have |z||x < ne. By choosing € < 1/n we
get a contradiction. ([

Proof of Lemma5. If 6 € IF, clearly ¢g »(f) contains Span{&’}. Indeed, let S
be a branch of 0, then span{&’} = ¢ »(5) — e p(0), where by pe ,(5) we mean
¢& p applied to the tree {s € N<V; s < g}.

Say 8 € WF. Let us proceed by transfinite induction on the order of 6. If
o(f) = 1 the result is clear. Indeed, if o(8) = 1, pg ,(0) is finite dimensional, so it
has no infinite dimensional subspaces. Assume pg ,(0) is £p-saturated for all basic
sequences &, and all # € WF with o(f) < « for some o < w;. Fix § € WF with
o(f) = a.

Let A = {\ € N; (\) € 6}, and enumerate A, say A = {)\;; ¢ € N}. For each
A€ A let 0y ={s€8; (A <s}. As 6 € WF, Proposition 3 gives us

o(0(X;)) <o(f) =ca, VjeN.
Consider now the projections

Pyt psp(0) — ‘Péip(U 9>\j)’

j=1

(as)SEG - (as)sE i1 9>\j'
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As go&p(_ul 9,\j) is the direct sum of G}l e+ p(6(A;)) with a finite dimensional
= j=

space, our inductive hypothesis holds for it as well. Indeed, it is clear that
ver( Ut ) 2 R0 (Ders000).
j=1 j=1

Hence, the inductive hypothesis and Lemma 6, give us that gog,p( U 9)\1) is £,-
j=1
saturated as well.

Say E C @& p(6) is an infinite dimensional subspace.

J
Case 1: There exists j € N such that Py,: F — gag,p(U 9&) is not strictly
i=1

singular.

Then there exists an infinite dimensional subspace E C E such that P)\j‘ 5 is

J

an isomorphism onto its image. By our inductive hypothesis, gog,p( U 0)\1.) is £p-
i=1

saturated, so we are done.

J
Case 2: Py,: E — gagm( U 9&:) is strictly singular for all j € N.
i=1

Claim: There exists (2, )nen @ normalized sequence in E such that Py, (z,) — 0
as n — oo, for all j € N.

Indeed, by a well-known consequence of the definition of strictly singular operators
for all j € N there exists a normalized sequence (4,)nen such that ||Py, (22)[| < 1/n
for all n € N. Let (x,,)nen be the diagonal sequence of the sequences (7, )nen, i.e.,
x, = ), for all n € N. As i < j implies || Py, (2)| < [Py, (z)|| for all z € E, (25 )nen
has the required property.

Say (e;)ien is a sequence of positive numbers converging to zero. Using the claim
above and the fact that Py, (z) — z as n — N, for all © € g ,(0), we can pick
increasing sequences of natural numbers (ng)ren and (Ig)ren such that

i) | Py, (zny) — @n,llo < e for all k € N, and

ii) ||P)\lk (anl)Hg < ¢y for all £k € N.

For all k € N, let yx, = Py, (25,) — P, (¥n,). Choosing ¢j small enough we
can assume ||yx|[) € (1/2,2). It is easy to see that (yx)ren is equivalent to (€x)ren,

where (€ )ren is the standard £,-basis. Indeed, picking ai,...,an € R, then
| N N N p N N
2 S ailP < llawillh = ail| =Y llawilly <2 lail?,
i=1 i=1 i=1 0 =1 i=1

where the equalities above only hold because the supports of (yx)ren are completely
incomparable. Therefore, by choosing (ex)ren converging to zero fast enough, the
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principle of small perturbations (see [1], Theorem 1.3.9) gives us that (2, )ren is
equivalent to (yi)ren ~ (€r)ken- So E contains a copy of £,.
The proof that ¢g () is co-saturated of § € WF is analogous. |

By letting & be a basis for the universal space C(A) we get the following corollary.

Corollary 7. The set of universal spaces cannot be separated by a Borel set from
the set of {y-saturated spaces, for all p € [1,00), i.e., there is no Borel subset U C SB
such that all the universal spaces (of SB) are in U and all the {,-saturated spaces
(of SB) are not in U.

4. COMPLEMENTABILITY OF IDEALS OF .Z(X), PART I

4.1. Unconditionally converging operators. We say that an operator T':
X — Y is unconditionally converging (see [25]) if it maps weakly unconditionally
Cauchy series into unconditionally converging series. Let X and Y be Banach spaces.
We let 7 (X) be the set of unconditionally converging operators from X to itself.

1
We write Y —— X if Y is isomorphic to a complemented subspace of X.

Theorem 8. Let = {X € SB; % (X) L Z(X)}. Then % is complete
coanalytic.

Proof. In order to show this we only need to use that % (X) is complemented
in Z(X) if and only if ¢y does not embed in X (see [4], page 452). Therefore,
% = NC,, (where NCx ={Y € SB; X & Y} for X € SB). Applying Lemma 5 to
p =2, and letting & be the standard basis of ¢y, we obtain that %E,lp(%) = WF. As
NCyx is well known to be coanalytic for all X € SB, we are done. We would like to
point out that NCx was shown to be complete coanalytic, for all infinite dimensional
X € SB, in [6], so this result is actually just a corollary of [6] and [4]. O

4.2. Weakly compact operators. We say that an operator T: X — Y is weakly
compact if it maps bounded sets into relatively weakly compact sets. For X € SB
we let #'(X) be the set of weakly compact operators on X to itself.

Theorem 9. Let # = {X € SB; #(X) — Z(X)}. Then # is I}-hard. In
particular, # is non Borel.

This result is a simple consequence of the following lemma (whose statement and
part of its proof can be found in [29], Proposition 2.2, page 78).
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Lemma 10. Let & = (en)nen be a basic sequence, and p € (1,00). Then pg ,(6)
is reflexive for all § € WF.

Proof of Theorem 9. In order to show this we will use another result of [4],
page 450. In that paper it is shown that if ¢g — X, then #(X) is not comple-
mented in .Z(X). Let pg2: Tr — SB, where & is the standard basis of ¢y. Let us
observe that ' (#) = WF. Indeed, if 6 € IF we saw that ¢y < g 2(6), hence
ve2(0) ¢ V. If # € WF, then Lemma 10 implies that e 2(0) is reflexive, which
implies @ 2(0) € #'. Indeed, a Banach space is reflexive if and only if its unit ball
is weakly compact, therefore #(X) = Z(X). O

Problem 11. Is # coanalytic? If yes, we had shown that #  is complete coana-
lytic.

5. GEOMETRY OF BANACH SPACES

5.1. Banach-Saks property. A Banach space X is said to have the Banach-Saks
property if every bounded sequence (z,)nen in X has a subsequence (2, )ken such
n

that its Cesaro mean n~! > z,, is norm convergent. We denote the subset of SB

coding the separable Bana]éfllspaces with the Banach-Saks property by BS.

In [5], page 373, B.Beauzamy characterized not having the Banach-Saks prop-
erty in terms of the existence of a sequence satisfying some geometrical inequality.
Precisely:

Theorem 12. An X € SB does not have the Banach-Saks property if and only
if there exist € > 0 and a sequence (x,)nen in Bx such that, for all subsequences
(n,, )ken for allm € N, and for alll € {1,...,m}, the following holds:

1 l m
e )
k=1

k=I1+1
Theorem 13. BS is coanalytic in SB.
Proof. Thisis just a matter of applying Theorem 12 and counting quantifiers.
Indeed,

XEBS@V(nk)kEN ENN, Ve € Q4,
IJmeN, I e{l,...,m}, Fky <...<kneN,

’% (: Sy, (Bx) =

m

S Su, (BX>)H <

j=l+1

such that
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where {S,}nen is the sequence of Borel functions in Lemma 1. As X — By is
a Borel function from SB into . (C(A)), we are done. O

The previous theorem shows that BS is at least coanalytic in SB, but it does not
say anything about BS being Borel or not. The next theorem takes care of this by
showing that coanalyticity is the most we can get of BS in relation to its complexity.

Theorem 14. BS is I1}-hard. Moreover, BS is complete analytic.

Proof. Let & bethe standard ¢; basis, and p = 2. Let us verify that @(;a}p(BS) =
WF.

If § € IF we clearly have {1 — g ,(0). Indeed, if 5§ is a branch of § we have
vep(B8) Zl1. As b1 — pg p(0) and ¢, is clearly not in BS (taking its standard basis
for example, it clearly does not have a subsequence with norm converging Cesaro
mean) we conclude that ¢ ,(0) ¢ BS.

Let us show that if § € WF, then ¢g ,(0) € BS. We proceed by transfinite
induction on the order of § € WF. Say o(6) = 1. Then, for all basic sequences g,
¢z ,(0) is 1-dimensional and we are clearly done. Assume ¢z (0) € BS for all basic
sequences g, and all # € WF with o() < « for some o < wy. Pick § € WF with
0(0) = a, a basic sequence &, and let us show that vz ,(0) € BS.

Let A={X € N;(\) € 0}. As § € WF, Proposition 3 gives us

o(0(N\) <o(f) =a, VA€A.

Our induction hypothesis implies that ¢z, ’p(e(/\)) € BS for all A € A. Now, notice
that
05,0 =R @z, 60) |
AeA Lo
where we get the R above because of the coordinate related to s = ) € 4. By
J.R. Partington’s result in [23], page 370, we have that the ¢2-sum of spaces in BS is
also in BS. Hence, ()\GEBA gag*!p(H()\)))b is in BS and we conclude that ¢z () € BS.

The transfinite induction is now over, and so is our proof. O

5.2. Alternating Banach-Saks property. A Banach space X is said to have
the alternating Banach-Saks property if every bounded sequence (z,)nen in X has

n
a subsequence (z,, )ken such that its alternating-signs Cesaro mean n=! > (=1)*z,,
k=1
is norm convergent. We denote the set coding the separable Banach spaces with the

alternating Banach-Saks property by ABS.
In [5], page 369, B. Beauzamy proves the following:
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Theorem 15. A X € SB does not have the alternating Banach-Saks property if
and only if there exist ¢ > 0 and a sequence (z,,)nen in Bx such that for alll € N,
if 1< n(l) <...<n(2), where n(i) € N for alli € {1,...,2'}, then

2! 2!
E CiTn()|| 2 € E |cil
i=1 i=1

for all ¢1,...,cq € R.

Theorem 16. ABS is coanalytic in SB.

Proof. This is just a matter of applying Theorem 15 and counting quantifiers.
Indeed,

X € ABS < V(np)nen € NV, Ve € Q,,
JeN, A<k(1) <... <k eN,

21 21,
> kS (Bx)| <€ X el
j=1 j=1

such that Jeq,...,cq € Q,

O

Now we show that coanalyticity is the most we can get of ABS in relation to its
complexity.

Theorem 17. ABS is II}-hard. Moreover, ABS is complete coanalytic.

Proof. Let & be the standard ¢; basis, and p = 2. We will show that
¢z (ABS) = WF.

If 6 € IF, we have {1 — @g p(6). As ¢; is not in ABS (we can take its standard
basis again, it clearly does not have a subsequence with norm converging alternating-
signs Cesaro mean) we conclude that s ,(0) ¢ ABS.

Let us show that if § € WF, then ¢g ,(0) € ABS. We proceed by transfinite
induction on the order of § € WF. Say o(f) = 1. Then, for any basic sequence é”N,
¢z ,(0) is 1-dimensional and we are clearly done. Assume ¢z (¢) € ABS for all
basic sequences é”N, and all # € WF with o(f) < « for some o < w;. Pick § € WF
with o(f) = a.

Using the same notation as in the proof of Theorem 14, we have

vz,0) =R (EB %”’(G(A)))z;

AEA
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By Lemma 5, {1 gpgm(f)). B. Beauzamy showed in [5], page 368, that a Banach
space not containing ¢; has the alternating Banach-Saks property if and only if it
has the weak Banach-Saks property. So, we only need to show that ¢ gp(@) is in
WBS. As ¢z (0(X)) € ABS for all A € A, we have ¢z (0())) € WBS for all A € A.

By a corollary of J. R. Partington (see [23], page 373), (@ Oz p(@(/\)))e is also in
AEA ’ 2
WBS. Thus, we conclude that @gp(@) € WBS, and we are done. O

5.3. Weak Banach-Saks property. A Banach space is said to have the weak
Banach-Saks property if every weakly null sequence has a subsequence such that its
Cesaro mean is norm convergent to zero. We denote the set coding the separable
Banach spaces with the weak Banach-Saks property by WBS. The weak Banach-Saks
property is often called the Banach-Saks-Rosenthal property.

Theorem 18. WBS is IIi-hard. In particular, WBS is non Borel.

Proof. First wenotice that we cannot use the same & as in Theorem 14 because,
as f1 has the Schur property, ¢; is clearly in WBS. Let & be a basis for C(A), and
p = 2. It is shown in [14] that C'(A) is not in WBS. If we proceed exactly as in the
proof of Theorem 17, and use the stability of the weak Banach-Saks property under
ly-sums (see [23], page 373), we will be done. O

Remark. It is worth noticing that the same ¢¢ ;, as constructed above could be
used to prove Theorem 14, and Theorem 17.

With that being said, let us try to obtain more information about the complexity
of WBS. For this we use the following lemma.

Lemma 19. Let (z,)nen be a bounded sequence in a Banach space X . A sequence
(Zn )nen is weakly null if and only if every subsequence of (z,,)nen has a convex block
subsequence converging to zero in norm. In particular, if (z)nen Is a weakly null
sequence in a Banach space X, and if X embeds into another Banach space Y, then
(Tn)nen is weakly null in Y.

Proof. Say every subsequence of (z,)n,en has a convex block subsequence con-
verging to zero in norm. First we show that (x,),en has a weakly null subsequence.
As (zp)nen is bounded, Rosenthal’s ¢1-theorem (see [27]) says that we can find a sub-
sequence that is either weak-Cauchy or equivalent to the usual £;-basis. As #;’s usual
basis has no subsequence with a convex block sequence converging to zero in norm,
we conclude that (x,)nen must have a weak-Cauchy subsequence. By hypothesis,
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this sequence must have a convex block subsequence converging to zero in norm, say

Ipg1
(yk = > aixm) , for some subsequence (ny) of natural numbers.
i=lp+1 keN

Say (@n, )ken is not weakly null. Then pick f € X* such that f(x,,) 4 0. As

(n, ) ken is weak-Cauchy, there exists  # 0 such that f(x,, ) — 0. Hence, f(yx) — 9,
absurd, because (yx)ren 1S norm convergent to zero.

Now assume (2, )nen is not weakly null. Then we can pick f € X*, a subsequence
(nk)ken, and & # 0, such that f(z,,) — J. As the subsequence (x,, )ren has the
same property as (z,)nen, we can pick a weakly null subsequence, say (xnkl)leN'
Hence f(zn,,) — 0, absurd.

For the converse we only need to apply Mazur’s theorem. O

For every X € SB, let

E(X)= {((xk)keN, (nk)ren) € XNV x [N]; 3reN, Vj €N, lz]| < Ve € Qyf,

<e},

where [N] stands for the subset of NV consisting of all increasing sequences of natural
numbers. As [N] is easily seen to be Borel, we have that E(X) is Borel in X" x [N].
Define F(X) by

n-+l

E aian‘,
i=n

n+l
VnEN, Han,...,an_,_l E@+<Zai:1>,
i=n

F(X)* = n(E(X)%),

where 7 denotes the projection into the first coordinate. Notice that F'(X) is coan-
alytic and that F(X) consists of all the bounded sequences in X" with the property
that all of its subsequences have a convex block subsequence converging to zero in
norm. By Lemma 19, F(X) is the set of all weakly null sequences of X.

Theorem 20. The set of weakly null sequences F(X) C XV of X is coanalytic,
for all X € SB.

Say F'= F(C(A)). Let A= {(X, (zn)nen) € SBx F; VneN, z, € X}, and

G= w({(X, (Tn)nen) €EA; e €Qy, Vg < ... <npy, VI€{L,...,m},
1 l m
)
k=1 k=1+1

where 7 denotes the projection into SB. B.Beauzamy’s paper (see [5]) implies that
WBS = G¢. We have just shown that WBS is the complement of a Borel image of
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a coanalytic set. If a subset of a standard Borel space X has this property we say
that it belongs to IT3(X), see [21] or [29] for more details on the projective hierarchy
(E H )nEN

Theorem 21. WBS € II3(SB).

Problem 22. Is WBS coanalytic? If yes, we have shown that WBS is complete
coanalytic.

Remark. We have just seen that the set of weakly null subsequences F/(X) ¢ XV
of a separable Banach space X is coanalytic in X". It is easy to see that F(X) is
actually Borel if X* is separable. Indeed, if {f,}nen is dense in X*, we have

= ﬂ ﬂ U ﬂ {(z;)jen € XN |fulzm)] < €}

neENee€Qy keNm>k

Also, as ¢; is a Schur space, F'(¢1) consists of the set of norm null sequences in /7,
and it is easily seen to be Borel. Which means, X* does not need to be separable in
order to F(X) to be Borel.

On the other hand, if & is the ¢;-basis and p = 2, we have that the standard basis
of v () is weakly null if and only if & € WF. Therefore, F'(ps ,(N<V)) is complete
coanalytic. For the same reason, F(C(A)) is complete coanalytic.

Problem 23. Under what conditions is F'(X) (coanalytic) non Borel?

6. COMPLEMENTABILITY OF IDEALS OF .Z(X), PART II

6.1. Banach-Saks operators. In the same spirit as Sections 3 and 4, we now
take a look at operator ideals of .Z(X). Let X be a Banach space, we say T € .Z(X)
is a emphBanach-Saks operator if for each bounded sequence (n)nen there is a sub-

sequence (T, )ken such that the Cesaro mean n~! Z T(xy, ) is norm convergent.
k=
We denote the space of Banach-Saks operators from X to itself by .7 (X).

Theorem 24. The set B = {X € SB; B5(X) = Z(X)} is l}-hard. In
particular, 8. is non Borel.

Proof. Let & be a basis for C(A), and p = 2. If § € WF, then ¢ ,() € BS.
Hence, 8.7 (pe p(0)) = L (pep(0)), and we have pg ,(0) € B for all § € WF.
Let us show that the same cannot be true if 8 € TF.

Say 0 € IF. Then ¢ ,(0) = C(A) @Y for some Y € SB. Let Pi: C(A) @
Y — C(A) be the standard projection. Suppose there exists a bounded projection
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P: Z(CA)@Y)— BS(C(A)@Y). Define Py: L(C(A)) = BS(C(A)) as, for
all T € Z(C(A)),

Po(T) = Pi(P(T))ca)

where T: C(A)®Y — C(A)@Y is the natural extension, i.e., T(z,y) = (T(z),0) for
all (z,y) € C(A) @Y. Notice that Py(T') € B (C(A)), so Py is well defined. Also,
if T € 25 (C(A)), then T € B.5(C(A) & Y), which implies P(T) = T (because P
is a projection). Therefore, P, is a projection from .Z(C(A)) onto B.7(C(A)). Let
us observe that this gives us a contradiction.

It is known that T: C'(A) — C(A) has the Banach-Saks property if and only if
T is weakly compact (see [11], page 112). Hence, .7 (C(A)) = #(C(A)) and, as
cp <= C(A), we have that B.7(C(A)) is not complemented in .Z(C(A)) [4]. Absurd.

U

Problem 25. Is . coanalytic? If yes, our previous proof would show that 9.
is complete coanalytic.

We have studied three classes of ideals of Z(X) (% (X), # (X), and A.¥(X)) and
whether those ideals are complemented in .Z(X) or not. Another natural question
would be to study the complexity of pairs (X,Y) € SB? such that their respective
ideals (Z (X,Y), #(X,Y), and A.(X,Y)) are complemented in Z(X,Y). As
mentioned in the introduction, this problem had been solved for the ideal of compact
operators % (X,Y) by D.Puglisi in [26].

Let g p: Tr — SB be as defined above and define ¢(6) = (pgp(0), pe p(0)) €

SB? for all # € Tr. Clearly, we have that o' ({(X,Y) € SB?; 4.7(X,Y) =

Z(X,Y)}) = WF. Conclusion:

Theorem 26. The following sets are I1i-hard (hence, non Borel) in the product
SB2: {(X,Y) € SB?; B.7(X,Y) — Z(X,Y)}, {(X,Y) € SB?;, #(X,Y) <
Z(X,Y)}, and {(X,Y) € SB2; #/(X,Y) < Z(X,Y)}.

7. GEOMETRY OF BANACH SPACES, PART II

7.1. Schur property. We say that a Banach space X has the Schur property if
every weakly convergent sequence of X is norm convergent.

1138



Theorem 27. Let S = {X € SB; X has the Schur property}, then S is I1}-hard.
In particular, S is non Borel.

Proof. Let & be the standard basis for ¢, and p = 1. As ¢g — pg,(0) if
6 € IF, we have pg ,(0) ¢ S for all § € IF. Mimicking the proof of Theorem 14 we
have that
¢er®) =R (@, 60) |
AEA 121
where A = {A € N;(\) € 0}. Proceeding by transfinite induction and using
B. Tanbay’s result about the stability of the Schur property under ¢;-sums (see [30],
page 350), we conclude that ¢g ,(0) € S for all § € WF. O

Let us try to obtain more information about the complexity of S. For this, notice
that a Banach space X does not have the Schur property if and only if it has a weakly
null sequence (2, )nen in Sx.

Let ' = F(C(A)) be defined as in Section 5, i.e., I is the set of all weakly null
subsequences of C(A). Let E = F'N S(NJ(A), so FE is coanalytic in S(NJ(A), and define

G = n({(X, (@n)nen) €SB x E; Vn €N, z, € X}),

where 7 denotes the projection into SB. We can easily see that S = G°. We have
just shown that S is the complement of a Borel image of a coanalytic set.

Theorem 28. S € II}(SB).

Remark. Notice that, if F' = F(C(A)) is Borel, then we have actually shown
that S is coanalytic.

Problem 29. Is S coanalytic? If yes, our previous proof would show that S is
complete coanalytic.

7.2. Dunford-Pettis property. A Banach space X is said to have the Dunford-
Pettis property if every weakly compact operator T: X — Y from X into another
Banach space Y takes weakly compact sets into norm-compact sets. In other words,
X has the Dunford-Pettis property if every weakly compact operator from X into
another Banach space Y is completely continuous. We have the following (see [28],
and [13]):

Theorem 30. X* has the Schur property if and only if X has the Dunford-Pettis
property and X does not contain {;.
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Theorem 31. Let DP = {X € SB; X has the Dunford-Pettis property}. DP is
[I3-hard. In particular, DP is non Borel.

Proof. Let & be the standard basis for /3, and p = 0. We show that @29}0 (DP) =
WEF.

If @ € IF we have g () = o @Y for some Banach space Y. Hence, as {s is
reflexive, it is clear that T'(z,y) = (z,0) is a weakly compact operator from ¢2 &Y
to itself which is not completely continuous. Therefore, pg () ¢ DP for all 6 € IF.

Say § € WFE. By Theorem 30, in order to show that ¢s o(6) € DP it is enough to
show that pg,0(0)* has the Schur property. With the same notation as in the proofs
of the previous theorems, we have

ps0(0) = R & (@ %»*,ow(x))) ,

AEA

where A = {A € N; () € 6}. Hence, we have

eeal® *Ro (D 305*,0(9(/\))*)61.

AEA

Therefore, if we proceed by transfinite induction and use the stability of the Schur
property under ¢1-sums (exactly as we did in the proof of Theorem 27), we will be
done. O

Problem 32. Is DP coanalytic? If yes, our previous proof would show that DP
is complete coanalytic.

An operator T: X — Y is said to be completely continuous if T" maps weakly
compact sets into norm-compact sets. For a given X € SB, let €€ (X) be the set of
completely continuous operators from X to itself.

Problem 33. Let ¥4 = {X € SB; €% (X) = Z(X)}. Is €€ non Borel? If
yes, is it coanalytic?

7.3. Complete continuous property. A Banach space X is said to have the
complete continuous property (or just to have the CCP) if every operator from
L1]0,1] to X is completely continuous (i.e., if it carries weakly compact sets into
norm-compact sets). It is well known that L1[0, 1] does not have this property.
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Theorem 34. Let CCP = {X € SB; X has the CCP}. CCP is IIj-hard. In
particular, CCP is non Borel.

Proof. Let & be a basis of L1[0,1], and p = 2.

By Lemma 10, if # € WF, then ¢(0) is reflexive, which implies ©(0) = ¢(0)** is
a separable dual. As separable duals have the Radon-Nikodym property (Dunford-
Pettis theorem, see [10]) and RNP implies CCP (see [15], page 61), we conclude that
©(f) € CCP, for all § € WF.

On the other hand, if 8 € IF we have that L1[0,1] — g ,(0). As L1]0,1] does
not have CCP, this clearly implies ¢ ,(0) ¢ CCP for all 6 € IF. O

M. Girardi had shown (see [15], page 70) that a Banach space X has the CCP if
and only if X has no bounded J-Rademacher bush on it (the original terminology
used by M. Girardi was §-Rademacher tree, but in order to be coherent with our
terminology we chose to call it a bush). A §-Rademacher bush on X is a set of the
form {2} € X; ke N, [ € {1,...,2"}} satisfying

(i) 2t _, = %(milfl +a3) forall k €N, and [ € {1,...,2F 1}

2]&:71
(i) H S (it - xil)H > 2k§ for all k € N.
=1

Theorem 35. A Banach space X has the CCP if and only if there exists no
bounded §-Rademacher bush on X.

Theorem 36. CCP is coanalytic. Moreover, CCP is complete coanalytic.

Proof. We use M. Girardi’s characterization of the complete continuous prop-
erty to show that CCP is coanalytic. To simplify the notation below we denote by
(nfg)keNJE{17___72k} € NV the sequence n},n?,nd, ... n3 ni ... etc.

X € CCP & V(ny) e NVEM €N, Vk eN, Wi e {1,...,2%}, |[S, (X)|| < M)

_ S”iFl (X) + Snil (X)
2

2k—1

57 (8,000 - 5,00)| <23

=1

A(sl (X)

M—1

. Yk eN, We{l,...,Qk_l})

= <V(56@+, Jk e N,

The statement above holds because we assume {5y, }»en to be closed under rational
linear combinations. Il

7.4. Analytic Radon-Nikodym property. It was shown in [6] that RNP =
{X € SB; X has the Radon Nikodym property} is complete coanalytic. Here we
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deal with the analytic Radon Nikodym property and find a lower bound for its
complexity.

A complex Banach space X has the analytic Radon-Nikodym property if every
X-valued measure of bounded variation, defined on the Borel subsets of T = {z € C;
|z| = 1} whose negative Fourier coefficients vanish, has a Radon-Nikodym derivative
with respect to the Lebesgue measure on T.

So far, we have only been working with real Banach spaces. But, as Cc(A) (the
space of the complexed valued continuous functions endowed with the supremum
norm) is universal for the class of serapable complex Banach spaces, we can code
the class of separable complex Banach spaces in an analogous way. Precisely, we
let SBe = {X C Cc(A); X is a closed linear subspace}. Analogously as before,
SB¢ endowed with the Effros-Borel structure is a Polish space and it makes sense to
wonder whether classes of separable complex Banach spaces with specific properties
are Borel or not in this coding. With this in mind we, have:

Theorem 37. Let a-RNP = {X € SB¢; X has the analytic Radon-Nikodym
property}. Then a-RNP is I1}-hard. In particular, a-RNP is non Borel.

For the proof of this result two well known theorems will do the work (see [16]).

Theorem 38. If X has the Radon-Nikodym property, then X has the analytic
Radon-Nikodym property.

Theorem 39. If X has the analytic Radon-Nikodym property, then X does not

contain cg.

Proof of Theorem 37. Let ¢: Tr — SB¢ be defined as in the proof of Theo-
rem 8. Say § € WF. Then () is reflexive, hence ¢(6) = ¢(0)** is a separable dual,
therefore it has the RNP. By Theorem 38, ¢(f) € a-RNP for all 6 € WF.

On the other hand, if 8 € IF, then ¢y — ¢(0), hence, by Theorem 39, p(6) ¢
a-RNP. O

8. LOCAL STRUCTURE OF BANACH SPACES

8.1. Local unconditional structure. A Banach space X is said to have local
unconditional structure (or lu.st.) if there exists A > 0 such that for each finite
dimensional Banach space E C X there exists a finite dimensional space F' with an
unconditional basis and operators u: E — F and w: F — X such that wou = Id|g,
and ub(F)||ul|||w] < A, where ub(F') is an unconditional constant for F.
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Theorem 40. Let LUST = {X € SB; X has Lu.st.}. LUST is Borel.

Proof. In order to make the idea behind the notation below clear, let us
remember some simple facts about linear algebra. Let X be a Banach space and
z1,...,2p € X\{0}. Then span{z1,...,z;} has dimension [ if and only if there exists

k 1
K € Q4 such that || > a;x; > CWUZH for all £k < I, and all aq,...,a; € Q.
i=1 i=1
Also, if z1,...,2; € X are linear independent, then z1,...,x; are M-unconditional
l l
STax|| < M| bjxg|| for all ai,...,a;,b1,...,b; € Q such that
i=1 i=1

lai| < |bs] for all i € {1,...,1}.
Remember the functions {Sy,}nen were chosen to be linearly closed under ra-

<K

if and only if

tional linear combinations. Say X,Y € SB, ni,...,n, € N, and nf,...,n}, € N.
If (S,,(X))E_, is linearly independent, we denote by P(X,Y,(n;),(n!)) the linear

function from span{Sy, (X),...,Sn, (X)} to span{Sy;(Y),...,Su (Y)} such that
Spi(X) = Sy (Y) for all i € {1,...,k}. Now notice that

Lost= U (] U n U n

AeQy keN n/l,...,n;ceN a,...,a; €04 61,...,€z€@w11---7wl€@+
n1, k€N > MeQy  biy...,bi€Qp A,BEQ
it mers (il <loil, i) MAB<A

nll”,...,nf//EN di,...,dreQ

{X € SB; (HK € N such that Vm < k, Veq,..., ¢ € Q,
k

s

i=1

k l
= (Z ;S (C(A)) = €S (C(A))
i=1 i=1

=1

<M

gbisn;,(C(A))H
e

Zwisn;«cm»H

l
& Zaisng(cwﬁ
=1

k
& | wiSy (C(A))H <A
=1

l
& || wiS (X)H <B
i=1

i

& P(C(A), X, (1), (n"))(Su (C(A))) = S, (X)) }

There are a couple of comments about the equality above that should be
l

k
made. First, notice that the restrictions »_ d;S,/(C(A)) = >~ €;Sn(C(A)) and
i=1

i=1
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il @Sy (C<A>>H <M

tions should actually be incorporated in the unions and intersections preceding the

!
> biSuy (C’(A))H do not depend on X, i.e., these restric-
i=1

set. We believe this would only make the notation harder, so we take the liberty of
writing it as above. Also, the only thing in the equality above that is not clearly
Borel is X — P(C(A), X, (n), (n]"))(Sn; (C(A))). But P(C(A), X, (n]),(n")) is

nothing more than a matrix with coordinates depending on the Borel functions
X+ Sy (X). So we are done. O

9. NON-UNIVERSALITY RESULTS

In this section we use ideas that can be found in [29] (Chapter 6) to show the non
existence of universal spaces for some specific classes of Banach spaces. Precisely,
say & is a property of separable Banach spaces, i.e., & C SBand Y & X € &
implies Y € &, can we find a Banach space X with property &2 such that all Banach
spaces with property & can be isomorphically embedded in X7 If yes, we say X is
a P-universal element of &2. Analogously, we say that X € &2 is a complementedly
P-universal element of & C SB if every element of & can be complementedly
isomorphically embedded in X. We say a property &2 is pure if Y — X € & implies
Y € & and complementedly pure if YV i) X € & implies Y € &. We have the
following easy lemma.

Lemma 41. Let & C SB be a pure property and assume & is non analytic.
Then &2 has no &2-universal element. If &2 is assumed to be complementedly pure
then we have that & has no complementedly &?-universal element.

Proof. Say X € & is H-universal. Let A = {Y € SB; Y — X}. It is well
known that A is analytic, for all X € SB (see [29], Theorem 3.5, page 80). Clearly
& = A, contradicting our hypothesis that &2 is not analytic. For the complement-
edly universal case we let A={Y € SB; Y <i> X} and, as A is also well known to
be analytic, we are done. (I

This lemma together with our previous results easily give us some interesting
corollaries.
Corollary 42. Let % and # be as in the previous sections. There is no comple-

mentedly universal space X € % for the class % . The same is true for ¥ .

Proof. First notice that we have actually shown that both these classes are
not only non Borel but non analytic. Now, we only need to notice that if X =
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X1 & X, and P: £(X) — % (X) is a projection then P(T) = P; o P(T)|x,, where
Py X1®X5 — X, is the standard projection, is a projection from Z(X;) to % (X1)
(the same works for the class #/). O

Corollary 43. There is no X € BS universal for the class BS. The same holds
for ABS and WBS.

Proof. One way of noticing WBS is pure is Lemma 19. 0
Corollary 44. There isno X € B.% complementedly universal for the class B.7 .
Corollary 45. There is no X € S universal for the class S.

Corollary 46. There is no X € DP complementedly universal for the class DP.

Corollary 47. There is no X € RNP universal for the class RNP. The same
holds for CCP and a-RNP.

The first claim of the corollary above can be obtained by results in [6] or by letting
e ,p be as in the proof of Theorem 37. After getting this corollary, we discovered that
its first claim had already been discovered by M. Talagrand by completely different
methods. Talagrand’s proof remains unpublished though.

Let us take a look at other easy (but profitable) lemma.

Lemma 48. Say &1, P> C SB. Assume there exists a Borel ¢: Tr — SB such
that o(WF) C &1 and ¢(IF) C &2. Let A C SB be an analytic subset contain-
ing #1. Then AN, # (). In particular, if 25 C {X € SB; X is universal for SB},
we have that if X is universal for 2?1, then X is universal for SB.

Proof. As WF C ¢~ !(A) and WF is non analytic we cannot have equality.
Hence, there exists 6 € IF such that () € A. As ¢(6) € &, we are done. For the
second claim, let X be universal for #?;, define A = {Y € SB; Y — X}, and apply
the first claim. 0

The proofs of the following corollaries are either contained in the previous sections
or are just slight modifications of them.

Corollary 49. If X € SB is universal for either % or # , then X is universal for
SB. In particular, these classes admit no element universal for themselves.

Corollary 50. If X € SB is universal for the class BS, then X is universal for
SB. The same holds for ABS and WBS.
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Corollary 51. If X € SB is universal for the class S, then X is universal for SB.

Corollary 52. If X € SB is universal for the class RNP, then X is universal for

SB. The same holds for CCP and a-RNP.
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