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Abstract. We study the N-dimensional Boussinesq system with dissipation and diffusion
generalized in terms of fractional Laplacians. In particular, we show that given the critical
dissipation, a solution pair remains smooth for all time even with zero diffusivity. In the
supercritical case, we obtain component reduction results of regularity criteria and smallness
conditions for the global regularity in dimensions two and three.
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1. INTRODUCTION AND STATEMENT OF RESULTS

We study the following Boussinesq system (B, g):

% + (u-V)u+ Vr + vA%*y = ey,

(1) % + (u- V)0 +nA%P6 =0,

(u,@)(m,O) = (UO,Q())(Q:), Vou=0, ze€ RN; N >2,

where u: RY x RT +— RY represents the velocity vector field, #: RY x RT
R the temperature scalar field and 7: RY x Rt — R the pressure scalar field in
the context of thermal convection and density in the models of geophysical fluids
(cf. [22]). The parameters v,n > 0 represent the kinematic viscosity and molecular
diffusion coefficients, respectively, ey = (0,...,1) and A = (—A)"/? with parameters
a, 8 > 0. Hereafter we shall denote the derivative with respect to time by 0; while
the partial derivative with respect to the x;-direction by 0;.
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System (1) has caught much attention recently. The case N = 2 and v = n = 0 was
investigated in [9], where the authors obtained local existence and blow-up criteria.
Subsequently, in the case N =2, v > 0, « = 1 and n = 0, the authors in [19] proved
the global regularity of the unique solution pair; simultaneously the author in [8]
obtained the same result in this case and additionally in the case v = 0, n > 0 and
B = 1. The author in [33] also showed that v,n > 0, a € [1/2,1) and 8 € (0,1/2]
such that a+ 8 = 1 suffice for the unique solution pair to remain smooth for all time.
Finally, in [11] the authors obtained a global regularity result in the case v, > 0
and 3 > (2(1 4+ «))~!. For more recent interesting works on B, 3, we refer readers
to [1], [2], [7], [13], [15], [16], [17], [18], [24] and references found therein.

We note that the work of [8] in particular solved the problem three in [25]. How-
ever, the global regularity issue in the case N = 2 is significantly different due to
the fact that upon taking a curl of the first equation in (1), the vorticity formulation

produces only one nonlinear term
ow + (u - V)w 4+ vA**w = —9,0, w = curl u,

whereas in dimension three, it produces two terms which makes the global regularity
issue of the Navier-Stokes equation (NSE) extremely difficult. In [8], the author took
an LP-estimate, p > 2; however, this approach is not favourable without taking a curl
as we must estimate the pressure term and that is not possible in the case N > 3.

For the generalized magnetohydrodynamics (MHD) system, we know from the
work of [29], if &« > 1/2 + N/4, then the diffusion from the magnetic vector field
must also have the power of the fractional Laplacian § > 1/2+ N/4 for the solution
pair to remain smooth for all time.

In this paper we show that if « > 1/2+ N/4, then diffusion is not necessary at all,
extending the result of [8] and [19] to higher dimensions. Because the dissipation has
the same power as what is sufficient for the hyper-dissipative NSE to remain smooth
for all time, one may initiate the proof following the work on the hyper-dissipative
NSE as we do in Proposition 3.1. The main difficulty arises thereafter in using the
regularity of u to prove the regularity of §. Simply applying a commutator estimate
(see Lemma 2.3) on the #-equation upon the H*'-estimate, one must face

]- s 51— S1 S1
FOIAT Ol < c(IVull L= |A" VO] L2 + [A™ull o[ VO] o) [A™ 6] 2,

where 1/p+1/q = 1/2, p € (2,00), due to the complete lack of diffusion. First,
one must carefully apply Brezis-Wainger type argument on ||Vu| - as HY/? is not
embedded in L>°. This implies that one must also take the H*2-estimate on v for
s9 > 0 sufficiently large. Second, to handle

A% w22 [ VO] 2o,
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it seems ideal to take p = 2, ¢ = oo, s1 = 1 + N/2 to make best use of the Propo-
sition 3.1. However, again, the ||V0| L~ term becomes problematic, because the
Sobolev embedding H/? < L>° does not hold in general.

The difficulty here is that there is too much gap between the two powers of o =
1/2+ N/4 and 8 = 0. Similar difficulty was seen in the work of [30] in which the
author obtained the global regularity result of the N-dimensional logarithmically
supercritical MHD system in the case
N
1

N
>0, a+B8=>21+—.

- 2

oz 1

~ 2
Indeed, the endpoint case « = 1+ N/2, = 0 was omitted for a technical reason.
A favourable remedy to this situation is to take the H®!-estimate of 6 and the H*2-
estimate of v simultaneously with each parameter in an appropriate range as we do
in Proposition 3.2 (see inequality (9)). Let us present our results.

Theorem 1.1. Let N > 3, v > 0,7 =0, and « > 1/2+ N/4. Suppose that
(ug,00) € H*(RN) x H*(RYN), s > 2+ N/2. Then there exists a unique solution pair
(u,0) to (1); in particular,

u € L°([0,00); H*) N L2([0,00); H*T*), 6 € L>=([0,00); H).

In the supercritical case, we obtain component reduction results for regularity
criteria and smallness conditions that extend some previous results.

Theorem 1.2. Let N =2, v,n > 0, and «, 8 € (0,1/2). Suppose that (ug,0y) €
H4(R?) x H*(R?), s > 2. If (u,0) solves (1) in [0,T] and

2(1 - )(1 = f)
of

T
(2) / 18:6]] 2 dr < oo, <p< oo,
0

then there is no singularity up to time T'. Moreover, if

3) sup [ Vu(t)|| g1/
te[0,T]

is sufficiently small, then there is no singularity up to time T .
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Theorem 1.3. Let N =2, v,n > 0, and o, 8 € (0,1/2). Suppose that (ug,8y) €
H*(R?) x H*(R?), s > 2. If (u, ) solves (1) in [0,T] and

@ f l Gl

Lpr

dr < oo

for some p,r such that

2 2 2(1—a)(1—-p)% 2
—+—6<2/5, max{ ( ) 6),—}<10<oo7
p o af? 5
then there is no singularity up to time T. Moreover, if
81u
5 sup div(—)‘ < 00,
(5) te[0,T] 010/ llLv/s

then there exists a constant ¢ = ¢(3) such that ||0y||r~ < ¢ implies that there is no
singularity up to time T'.

Theorem 1.4. Let N = 3, v,n > 0, and « € [1,5/4), f € (1/4,1/2] satisty
a+ B = 3/2. Suppose that (ug,0) € H*(R?) x H*(R3), s > 1 + 2a. Suppose that
(u, 0) solves (1) in [0,T] and for some p,r such that 2 < p < oo,

r . 3 (2a) 3  /p—2\a(5+4a)
(6) /0 |9sus][ dr < 00, = 425 <5+( ; )4(5_2a)
or
T
() | Tl 206 dr < o
0

Then there is no singularity up to time T'.

Remark 1.1. 1) Because B, g at 8 = 0 is the NSE, any improvement on the
power of the fractional Laplacian beyond our claim in Theorem 1.1 seems very chal-
lenging.

2) In the case N = 3, the regularity criteria results have been obtained in [26],
[27], [31], and [32] in the whole space and [14] in a bounded domain. Recently,
extensions of regularity criteria results by reducing the number of vector components
or directions of derivatives have been obtained for various fluid dynamics partial
differential equations: [4], [5], and [21] in the case of the NSE, [6], [35] in the case of
the MHD system and [34] in the case of active scalars.

3) Theorem 1.3 was inspired by the work of [28], in which the author obtained
a regularity criterion of a solution to the NSE in terms of the direction of the velocity
vector field. The proof of Theorem 1.4 follows the approach of [5]. In contrast to
Theorem 1.4, for the MHD system it remains unknown if the regularity criteria may
be reduced to one entry of the Jacobian matrix of the velocity vector field (cf. [35]).
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A local existence result was obtained in [9] for the case N = 2 using the mollifier
method (cf. [23]) and it is standard to modify it for the N-dimensional case with
fractional Laplacians. In Section 2, we state the key lemmas and thereafter we prove
our theorems.

2. PRELIMINARIES

Apart from situations when the dependence of a constant becomes of significance,
we denote by A < B the fact that there exists a non-negative constant ¢ of no
significance such that A < ¢B.

Lemma 2.1 (cf. [10]). Let f be a divergence-free vector field such that V f € LP,
p € (1,00). Then there exists a constant ¢ > 0 such that

2
IVf]r < =2
p—1

lcurl £l Le.

Lemma 2.2 (cf. [12]). Let f, A>*f € LP, p > 2, a € [0,1]. Then

2 / A (P2)P < p / FP2pA%e

Lemma 2.3 (cf. [20]). Let f, g be smooth such that Vf € LP1, AS~1g € LP2,

Asf € Lps’ g S L;D4’ p € (1,00), ]-/p = 1/P1 + 1/P2 = 1/P3 + 1/]74, D2,DP3 S (1700)’
s > 0. Then there exists a constant ¢ > 0 such that

1A*(Fg) — FA°glle < IV FllLor A gllLo + [|A°fllLrs gl es)-

Lemma 2.4 (cf. [21]). Let f € H*(R3) be smooth and divergence-free. Then

2 2
Z /[RB [i0i[iAnf; = Z %/u;es 0ifi0i f;03 f3

ij=1 ij=1

| 0ufr02f20sf5 + / 01 f202.1105 f.
R3 R3

We will use the following inequality from [5], simplified for our presentation.
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Lemma 2.5 (cf. [5]). Let f,g,h € C°(R3). Then there exists a constant ¢ > 0
such that for 2 < v < 3 and V}, = (01, 02,0), a horizontal gradient vector,

-1 1 —2 2
\Agmkﬂﬂ%>ﬂ%mgmmw$”Wwwﬁmm.

Lemma 2.6. For 0 < p < oo and a,b > 0,

(a +b)P < 2P(aP + bP).

Lemma 2.7 (cf. [3]). Let f € L*(RN) N W*P(RY), where s € R such that
p € [2,00), N/p < s. Then there exists a constant ¢ = ¢(s, N,p) > 0 such that

[fllze < el fllez + 1 F sz loga (2 + ([ fllwer) +1).

Remark 2.1. For convenience of readers, let us give a simple proof of Lemma 2.7
in Appendix. In fact, our proof gives a slightly sharper estimate in Besov space
norms. We stated Lemma 2.7 so for simplicity in direct application to our proofs.

Finally, we recall a well-known fact that for all n > 0, 8 € [0, 1] if (u, 6) solves (1),
then (cf. [12])

160G, O)llzr < [[60()llze, P € [1,00].

3. PROOFS

When v or 7 is positive, we shall always assume it to be one for simplicity.

3.1. Proof of Theorem 1.1. We consider the case a = 1/2 + N/4, as the case
a > 1/2+ N/4 may be done by a simple modification. We first prove a proposition:

Proposition 3.1. Let N >3, v >0,n=0, a =1/2+ N/4. If (u,8) solves (1) in
[0,T], then

T
sup AV N u(e)[Fa [ Al dr < oc
t€[0,T 0
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Proof. We take an L%-inner product of the first equation of (1) with u and the
second with 6 to obtain

1
SO lulfs + 10]72) + 1A . = /96N “u < |0]] 2 ]2
1
< S(I611Z: + llullZ2)

by Holder’s and Young’s inequalities. Thus,

T
(8) S lu®)lZ= + 16172 +/0 I 2Ny Ta dr S 1.

Now we apply AY2tN/4 on the first equation, take an L2-inner product with
AVZEN/Ay 4o estimate, using Lemma 2.3,

1
SOUAYZEN 2, g AT/,
- _ /A1/2+N/4((U'V)’U,) -A1/2+N/4u

_u.VA1/2+N/4,U.A1/2+N/4u+/A1/2+N/496N AV/2EN/4,

A

(||VUHL4N/(N+2) HAN/4_1/QVU||L2
+ ||A1/2+N/4UHL2 ||VUHL4N/(N+2))||A1/2+N/4UHL4N/(N—2)
110 L2 AT 2| .
With the Sobolev embeddings of HN/4-1/2 «y [AN/(N+2) and ffl/2+N/4 o,
LAN/(N=2) and Young’s inequality, we further bound the last line by
c| AN 2 AT 2 4 (1G] 2 | AT 2| e
1
< §||A1+N/2u”%2 +o(L+ AN ),

Thus, absorbing the dissipative term, (8) and Gronwall’s inequality complete the
proof of Proposition 3.1. O

Now we consider the case s := 2+ N/2. We fix k € (1+ N/2,3/2+3N/4) so that

1 N 3 3N
(9) k‘+5+z>5+7>8.

Let us denote
X(t) = [[AFu(t)[|7 + A 2N0@))[7., V() = |ASu(t)]F: + [[A0(1)]|7 -

The next proposition is the core of the proof of Theorem 1.1:
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Proposition 3.2. Let N >3, v >0,n=0, a =1/2+ N/4. If (u,8) solves (1) in
[0,T1], then

T
ltsE(l)pT](HA’fu(?f)||%2 F[|AR/2=N A 412, +/0 [ARH/2EN Ay 12 e o oo
€10,

Proof. We apply A* on the first equation of (1), take an L2-inner product with
A*u to estimate, by Lemma 2.3,

1
SOA Ul Lo + AR
= — /Ak((u V)u) - AFu — /VAkTF ARy /AkeeN -AFy

IVl pansov e [|AR Va2 + (|8 ]| 2 | Vul| paws v ) AP ul panov-2
+ ||Ak—1/2—N/49||L2||Ak-',-1/2—|-N/4u||L2

A

S NANEE 20| o | ARl o | AN Sy o AR o | AR Ay 2
1
< AR T, (AN 2 Lo | AR s + (AR

1
< sz, ox )

due to HN/4=1/2 <y [AN/(N+2) gnd F1/2+N/4 <y [AN/(N=2) Young’s inequality and
Proposition 3.1. Next, we apply A¥~1/2=N/% on the second equation of (1), take an
L?-inner product with A*=1/2-N/49 to estimate, by Lemma 2.3,

1 ;
SOUARTZENAGIT, < ([ Vul| o AF2 N0

+ ||Ak71/27N/4’u||L4N/(4k—6—N) ||V0||L4N/(3N—4k+6))||Ak71/27N/49||L2,

justified due to the careful selection of the range of k. Now by the Sobolev embeddings
of H3/2+3N/4~k ., [AN/(4k=N=6) anq Ffk—3/2-N/4 <, [AN/BN-4k+6) T,emma 2.7

and Gagliardo-Nirenberg inequality we estimate

1 —1/2—

SOAE YN g,

S IVl + [ Vullvre oga (2 + [Vulsr) + DA/ g,
+ NI 2 AR 1/2N g

< (IVullze + AN 20 22 logy (2 + X (£) + 1) X (¢)
N=-2)/@+N 1—(N—=2)/(2+N
< ([Jull Y2/ N A L/24N 4y LS (V=D (2+N)

+ AN 24| 12 Togy (2 + X (1)) + 1) X (8).
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Therefore, by Proposition 3.1,
1
§8t||Ak*1/2*N/49||%2 S (14 AN 20 12 logy (2 + X () X (8).
In sum, absorbing the dissipative term,
QX (t) + | AFF2EN Ay 70 < (1 4+ AN 2u| 12 logy (2 4+ X () X (1)

Integrating in time, Proposition 3.1 completes the proof of Proposition 3.2. U

We now complete the proof of Theorem 1.1. We apply A® on both equations, take
L2-inner products with Ay and A6, respectively, to estimate by Lemma, 2.7

1
O (8) + [ ANy
S IVl pansoven [ A%l g2 [ A%l pansov—2 + [A%0]|72 + [|A*ul|7-
+ (IVull o< [A*0]| 2 + [[A%ul| £2[| VO] L ) [ A°0] >
SNAN 20 || A% 2 | AT 2N ]| o 4 Y (1)
+ ([full 22 + [|A%ull 22) [ A°0]1 22 + | A%ull g2 (101 22 + [ A°6]| 12 )[|A%6]| 2
S IA g2 | A2V Y () + [ A%0] T2 + ([ A% 2 [ A°6]| 2| A% 2
1
< §||As+1/2+N/4u||2L2
+e([A%u]|Ze + Y (1) + |A%0)|72 + [|A%ul 2 (|A®O]|72 + [[A%6]|72),

due to HN/4=1/2 <y [AN/(N+2) gng FI1/24N/4 y [AN/(N=2) Propositions 3.1 and

3.2, and Young’s inequality. Absorbing the dissipative term, we have
QY (b) + | ATVEN A Ta S (14 [ A% £2)Y ().
By the Gagliardo-Nirenberg inequality and Proposition 3.2, we have

T
/ IASul|gedr < sup [juf) EHY/2HN/ D=0/ 1/24N/4)
0 ]

)

y / AR L 2N ) 2N gy

justified by the careful selection of the range of k and s in (9). Thus, Gronwall’s
inequality implies

T
A" u()l|72 + A0 +/ [ASH2EN 20 dr S 1.
0
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Any higher regularity than 2 + N/2 follows from the Sobolev embedding; this is
because for any r € RT, similarly as above, by Lemma 2.3

(A ul| 22 + [ A76]|72) + ATF/2HN 4 2,
< (IA%ullzz + A0 2 + D([Au][Z + [IA70]Z2).

This completes the proof of Theorem 1.1. O

3.2. Proof of Theorem 1.2. We first prove a proposition:

Proposition 3.3. Let N = 2, v, > 0, and o, 5 € (0,1/2). If (u,0) solves (1)
in [0, T] and satisfies (2), then

T
sup [|w(t)|%, + / )2,y d7 < 0.
te[0,7] 0

Proof. We fix p that satisfies (2) and take a curl of the first equation in (1) to
obtain the vorticity equation

ow + (u- V)w + A**w = —0,6.
By Lemma 2.2 and the Sobolev embedding of H® < L2 (1= we obtain
c(p, a)|[wllf o < 2[[[w??|1%. <p/(/\2“w)lw|”_2w,
so that multiplying the vorticity equation by p|w[P~2w, integrating in space,
OllwlLs + clp, )wllf a0y < —p/319|’tU|p’2w < pllonf] o |[wll7
by Hoélder’s inequality. Thus, in particular we have
Ollwl|Lr < 1010] e,

so that by (2) the proof of Proposition 3.3 is complete. O
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Proposition 3.4. Let N =2, v, > 0, and o, 5 € (0,1/2). If (u,0) solves (1)
in [0, T] and satisfies (2), then

T
1 1—
sup VOO + [ IVOEL D0 dr < .
t€[0,T) 0

Proof. We fix p that satisfies (2) and define ¢ := p3/(1 — o). We apply V on
the second equation of (1), multiply by ¢|V6#|?~2V#, integrate in space and estimate
using Lemma 2.2 and the Sobolev embedding H” < L2/ (1=5) as before

0IVO %0 + c(a. BIIVONY sy S IVl Lars | VO] Lora-n [ VO] T3

C(Qvﬂ) —1
< =5 IVOI s + ellwll 2 IV,

by Holder’s and Young’s inequalities and Lemma 2.1. Thus, absorbing the diffusive
term, Gronwall’s and Holder’s inequalities and Proposition 3.3 imply by definition

of g
T
B/(1 B/(1—
sup VOIS + [ 190D ar
te[0,T] 0
pB/(pB—1+a)

S IVBol el e

N ||V90||€%/1<1 i) Jelo 1l 47 S L
This completes the proof of Proposition 3.4. 0

We are now ready to obtain a higher regularity. On the first equation of (1), we
apply A°® and take an L?-inner product with A*u to estimate, using Lemma 2.3,

1
§3t|\ASU||2L2 + A ul|7,
S (IVull pora-o 1A Vul 2 4 A%l 2| Val| osa-a ) | A% L2p/ -2
+ |A%0)|72 + | A% 7.

By the Gagliardo-Nirenberg and Young’s inequalities and Lemma 2.1, we bound the
last line by

2 21 2(1—
el Vul| o/ u>|\A9u||L2 /o) | pstay 20/ ) L yAsg)2, 4[| A%u)2,

< 1Al + el E VA% + 1A + A%l
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Next, we apply A® on the second equation of (1), take an L2-inner product with
A®0 to estimate, using Lemma 2.3,

1
53t||/\39||2L2 +[1A400)1 22 S (I Vull prra-o [ A1 VO] 2p/r-201-00)

+ AUl p2ps/ws-20-0)01-8)) VO] o5/ a-cra-p) ) | A®O]| L2
Now by the Gagliardo-Nirenberg inequality we bound the last line by

s 1-2(1— s 21—
(V] oo [ A0 15 2070/ (B)| g8 20 =)/ (BP)
: a—2(1-a)(1- o ) 1— a—2(1—a)(1— o
+ ||Agu||(LpQﬂ ( )(1-8))/(p 5)”As+au”L2(pﬁ ( Y(1—8))/(paB)

X || V0| Lrssa-ara-s ) |A0]| L2
S (IVull pora-o (I18°0]] L2 + |A°776]| 2)
+ (A% 2 + 1A ]| 2) [ VO] Lossa-ara-s) ) [| A0 2

1 S ST«
< §(||A 0|72 + AT u)32) + (I Vull 7 a-o
+IVO3 po/-myas) + 1) (||ASU||2L2 + ”AS€||2L2)7

due to Young’s inequality. Absorbing the dissipative and diffusive terms, in sum we
have by Lemma 2.1

O(IA% T + [A%O)1Z2) + AT ul . + AP0 2,
S (lwll7esa-a) + VO T 0s/a-mra-s) + DA Ul|Z2 + [A%0]Z2).

Thus, Gronwall’s inequality and Lemma 2.1 complete the first claim of Theorem 1.2.
Next, we take p that satisfies (2), apply 01 to the second equation of (1), multi-
ply by p|016|P~20,0, integrate in space, estimate using Lemma 2.2 and the Sobolev
embedding H? < L2/(1=F) ag before,

010 + c(p, BN, 1 p) < —P/al((u -V)0)[016]P 20,6
< p(l|O1uall L1 101017, sy + 1012l L1/6 1020 Los e 1010112 s
by Holder’s inequality. Similarly

8t||82‘9||11;p + ¢(p, 5)||829||1£p/<1—ﬁ>

< P10zl /5 10100 Lo 102017 sy + 10212 /5 10281171 )-
With Young’s inequality, in sum we have

O (101017 + 11020117,)
< (||019||’£p/<1-ﬁ> + ||829||’£p/(1_m)(cts[1(1)1}] [Vu()| s — c(p, B)).
o,
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This implies that for sup ||Vu(t)||p1/s sufficiently small,
t€[0,T]

T
/||819|\Lpdr 10400)| o T

By the first claim of Theorem 1.2 already proven, because we chose p to satisfy (2),
this completes the proof of the second claim of Theorem 1.2. O

3.3. Proof of Theorem 1.3. We fix (p,r) that satisfies (4) and define ¢ := pg.
We apply 91 on the second equation of (1), multiply by ¢|016]9728,60 and integrate in
space to obtain by Lemma 2.2 and the Sobolev embedding HP — [2/(1=5) a5 before

2
UL+ g NN < —43 / 01;0:0]0,0]"~20,0

81’LL
— _ q—2 — _ _ q
= q(qg—1) /981u1|819| 910 = —q(q — 1) /9|ale| dlv(alg>
c(q, ) 1 dru |19/ (a—1)
ST 1016174~ o +clBoll9XT 210]1 4, dlv(&‘l ) La/s

due to Holder’s and Young’s inequalities. Hence, after absorbing the diffusive term,
Gronwall’s inequality implies by (4)

T
/0 ||819||%q/(1—m dr S 1.
By the condition on p, because

¢ 20-a)1-p)
1-87 af ’
by Theorem 1.2 this completes the proof of the first claim of Theorem 1.3. O

Next, going back, with p satisfying (2), by the same estimate as above, we obtain

O1u
OO + e )OOy < Pl = D0l 101, 0 |iv (55|

/8’

due to Holder’s inequality. Hence,

01, < (oo = Dldoll~ sup. Ja(Z2)

—c(q, 5)) ||‘919||I£p/<1—13>'

L1/B
Therefore, there exists a constant ¢ = ¢(3) such that ||0p|| L~ < ¢ implies
T
/ 1046]|.r AT < [0160]1 T < 1.
0
By Theorem 1.2, this completes the proof of Theorem 1.3. O
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3.4. Proof of Theorem 1.4. First, let us consider the case a > 1 and leave the
case a = 1 in the Appendix. To start, we have the following bound as before

T
sup [u(t)[|72 + [10()]172 +/ [A%ul|Z2 + |A°0]|7 dT S 1.
te[0,T] 0

We prove a proposition:

Proposition 3.5. Let N =3, v > 0,7 > 0, and a € [1,5/4), B > 0. Suppose
(u, 0) solves (1) in [0, T] and satisfies (6) or (7). Then

T
sup [[Vult)ls + [ 14°Tulfs dr < .
t€[0,T 0

The proof is divided into two parts:

3.5. The |V,ul|3. estimate. We first take an L?-inner product of the first equa-
tion with —Apu to estimate by Hoélder’s inequality

1
SO Vhul7z + [A*Vihul7z < ‘/(u-V)u-Ahu + [ VVhu| 2.

We apply the Gagliardo-Nirenberg and Young’s inequalities to obtain
< 1—-1/ay ra a1, 1a 2 2
IVVrullre S IVaullpe 1A Vaul " < ZIA*Vaullzo + (1 + [[Vaulz.).
By Lemma 2.4, we have

‘/u Vu-Apu| <

Now we use Lemma 2.5 to estimate using the Gagliardo-Nirenberg inequality

/|u3||Vu||Vth|

—2 1+2
/ lus||Vul [V hu| S [185us| Lol V)| 52 [ 527

-2 1-1/a) (142 1/« 1+2
S 105t o) s [Vl S5 27 [V SO A (D2,
We then use Young’s inequality to obtain
1 @ 2 -2
(10) / fus [Vl [V Vnul < ZIAViulFa + e(0zua] 7007 [ Vullza + [ VaulF.).
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Combined with the previous estimate, absorbing the dissipation term, integrating
in time [0, T], we obtain

T T
(1) sup [Vault)Es + / 1AV a2 dr < 1+ / 185051257572, [ V2, dr.
€10,

Let us obtain another estimate: as before
1 2 « 2
(12) 50| Vhullzz + [|A*Vaulz.
_ 1
< sl IVl 2 [ Fnall 2/ AVl 1 4 1+ [ ValEa) + 1AVl
1
< c(lus||Fe< IVullZe + [ Vhull72 + 1) + §|\A“th||%2

by Holder’s, Gagliardo-Nirenberg and Young’s inequalities. Absorbing the dissipative
term and integrating in time, we have

T
(13) sup [|Vau(t)]|7. S 1+/ [ua]|F o [ V|72 dr.
te[0,T] 0

Going back to (12), this also implies

T T
(14) / AT |2, d751+/ ]| [ V][22 dr-
0 0

3.6. The ||Vu||3. estimate. Next, we estimate ||Vul||%,; taking an L*-inner prod-
uct of the first equation of (1) with —Aw, we have

%atHVMFL? +[|AVulZ: < /(IU:sIIVUIIVVhUI +[Vhulldsul® + 10| Aul)
=Ji+J +c/|9||Au|.
First,
[ 1618l < [9ul 2 ac vl
S IVl + [A*Vaul| L2 < iI\A“VUIliz +cl|VullZs +c,
by Holder’s, Gagliardo-Nirenberg and Young’s inequalities. Second,

Iy = / IV allOsul? < [[Vnull 2|Vl 2.

4a—3)/4)2 o T—4 4)2
< IV null g2 | Vul| (a2 02 A G4/
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by Hoélder’s and the Gagliardo-Nirenberg inequalities. Now the Sobolev embedding
of H*=1 <y L6/(5-22) gllows us to continue the estimate by

(15)  Jo S [ Vull gz [|A%ul| G022 A0w |72 T4 | Ao | T/,
where we used (cf. [6])
(16) 1Flzs S IVRf 1252105 f 11342

Therefore, combined with the previous estimate on J; from (10), we absorb the
dissipative term, integrate in time and obtain by the Gagliardo-Nirenberg inequality

T
IVu®l: + [ [A*Vuledr
0
T
< [ il DIVl a1
0
' 40—3)/4)2(4/(4—3 (4a—3)/4
+ sup [[Vpu(t)| 22 (/ ||Aozu||(L(2a7 )/4)2(4/ (4a— ))d7->
t€[0,T 0

r 4((7T—40)/4)(6/(T—40))/3 (740 /6
" (/ AT [ 2(7—400/06/ (=100 dT>
0

T (7—4a)/12
" ( / AT 274/ 02/ (= t0)/3 dT>
0

due to Holder’s inequality. By (11), we have the second term bounded by

T (4a—3) /4
sup [Vl 2 ( / ||Aau||%zdf)
0

te[0,T)

T (7—4a) /6 T (7—4a)/12
X (/ AV 2, dT) (/ |A“Vul|2. dT)
0 0

T o 4(5—2a)/(5+4a)
c<1 " < | 1osus 02wl dT> )
0

1 T « 2
+ - ||A V'U:HL2 dr
4\ Jo

where we used Young’s inequality. Absorbing the dissipative term, we have
! g 2/(v-2)
IV + [ 1ATulfadr s [ 10wl 0 Il dr

r 2 /(v 4(5-2a)/(5+4a)
1+ ( / 1053|2072 [ V2 dT) |
0
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We now estimate the last term by
T
2/(y—2 2(5+4a)/(4(5—2 2(15—120) /(4(5—2
( / sl 75752 |l 54 T2 gy T2 (=200 g

’ (8/(y—2)) (5—20)/(5+4a) ’ (15-120) (o)
- —2a @
< < | o7 IVl dT) < | 1z dT>

due to Holder’s inequality and thus we now have

) 4(5—2a)/(5+4a)

T T
IVu(t)]|22 + / |AVul|22 d7 < / 185us 355752 1V 22 dr
0 0
T
+1+ / |Bgus|| /272 CHO |y 3, dr,

Therefore, the proof is complete in case of (6). Next, in case of (7) we estimate
Jp as done in (12) and Js as in (15)

1
OlIVulzz + [A*Vul72

1
<c(uslz<IVullZz + [ VaullZz) + SIAVaulZz +

+ el Va2 AUl ACT | LT | Ao 22T )2,

Absorbing the dissipative term, we integrate in [0, ¢] to obtain
T T
IVa(@ls + [ IATValtadr S [ fualfi [ Vel dr 41
0 0

T (5—2a)/3 T (7T—4a)/12
([ tivazar) ([ evelger)
0 0

' r 4(5—2a)/(5+40)
<c(/0 |ugl%OCIIVuIIizolTJrH(/0 |u3||iw||vu||§2d7> >

1 T « 2
+ - ||A VU||L2 dT
4 Jo

by Hoélder’s inequality, (13), (14) and Young’s inequality as before. Absorbing the
dissipative term, we obtain by Hélder’s inequality

T T
IVu(t)]2- + / 1AV a2, dr < / sl |Vl 22 dr

T 8(5—2a) /(544 T (15—12a)/ (5+4a)
+ (/0 [z |20 200/ (B H40) 7 12, dT) (/0 V2. dT) .

Gronwall’s inequality completes the proof of Proposition 3.5. O

125



We are now ready to complete the proof of Theorem 1.4.

3.7. The H'-estimate. We apply V on the second equation of (1), multiply by
V0 and integrate in space to obtain

1
(17) §8tllve||2p + |APVO)2. = —/V((u-V)e) VO = —/vu-ve - V0.
First, let us consider the case o + 8 = 3/2. Then, we further bound (17) by
Los 2 o 2 2
IVullgos @20 [VOl L2V Ol Lo/ 5200 < SIATVOI T2 + ¢ A*Vul[Z: [ V|7

due to Holder’s inequality, the Sobolev embeddings H® «» L6/3-20) [f
L5/3=28) and Young’s inequality. Absorbing the diffusive term and then making use
of Proposition 3.5, we see that

T
sup [VO(0)2 + / IAPY6I2. dr < [[Vho|2acl 147 Fuliadr < 1
t€[0,T 0

Next, if « + § > 3/2, then we use Holder’s inequality, the Sobolev embedding of
HY « L6/B3=22) " the Gagliardo-Nirenberg and Young’s inequalities to bound (17
by

IV Lo/ -2 [[ VO] 2 | V6] 37 S A" V]| 2| V8] 5 24209/ @6) 7By (5-200/(26)
1 -
S A P T i

Absorbing the diffusive term, Gronwall’s inequality and Proposition 3.5 give

T o, |48/ (A46+2a—3)
sup HVH(t)H%z +/ ||A6V9||2L2 dr < CHVHQH%QQ‘[OT A%Vl 5 dr <1
t€[0,T 0

3.8. The H’-estimate. Next, we apply A on the first equation of (1), take an
L?-inner product with Au to obtain

1 (07
(18) Ol AullT: + [A*Aul
= —/A((u V)u) - Au— (u-V)Au - Au+ A Ples - AP A,
Again, let us consider the case a + § = 3/2 first. We bound (18) by

(19)  [JA((w- V)u) = (u- V) - Aullg2]|Aullg2 + |A6]| L2 A3 u]| 12
S (HV’U,HL3/u HAvu||L6/(372L¥) + HAQ’U,HLG/(sfza) VU”Ls/a)
+ ||A1+59HL2 |‘A2+au|‘([/12+2a)/(2+2a)Hvu||2/2(2+2a)

Aul|p2
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due to the Holder’s inequality, Lemma 2.3 and the Gagliardo-Nirenberg inequality.
Furthermore, we bound (19) by

(20) cl| AT 5520 20 ||y D GO AZ by || | A 2

« « 1
+CHA1+/69”2L(22+2 )/ (3+2 )+ ZHAQ-HXU'H%?

due to Sobolev embedding of H* « L%/(3-2%) the Gagliardo-Nirenberg and Young’s
inequalities. Proposition 3.5, Young’s and Gronwall’s inequalities give

T
sup [[Au(b)fa+ [ 1A AulFadr S 1.
te[0,T) 0

Next, we consider the case o+ 3 > 3/2. We continue from (18) and obtain
1A - Vyu) = (u- V) Aul| 2| Aul| 2 + A0 2 [ AP Al 2.
The estimate on the first term is the same as in (19)—(20). For the second term,
HAlJrﬁg”H HAlfﬁAu”L2 < ||A1+59HL2 HA2+au”(L?2—ﬁ)/(1+a)”AUH(LO;+B—1)/(1+04)
by the Gagliardo-Nirenberg inequality. Young’s inequality further leads to
[AY50]| 2| AP Al 12 < iIIAQMUIIQLz +e((|APO) 22 + || Au|Z2).

Combined, after absorbing the dissipative term, using Proposition 3.5 and the
H'-estimate we obtain

T
sup [ Au(t)]2: + / A Aul2, dr < 1.
te[0,T] 0

Next, we apply A on the second equation of (1), take an L?-inner product with
A0 to estimate by Lemma 2.3

1
(21) SOIAO]Tz + A0 7
S (IVull /s AV pos-20 + A%l po/-200 [|VO]| /0 ) | AD 2.
We bound (21) by a constant multiple of

(HA2+auH(LlQ—2/3)/(20()HAUH(LQ;(—l-i-Qﬁ)/(QO()HA2+ﬁ9”L2
+ HA2+au”L2HV9||(LQz(a+1+6)—3)/(2(1+/3))HA2+ﬁ9”1L;(2(04+1+6)—3)/(2(1+ﬁ)))HA9”L2
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due to the Gagliardo-Nirenberg inequality and the Sobolev embeddings of H? —»
L6/(3=26) and H® —y [6/(3-2a) Using the H'-estimate and Young’s inequality lead
to

1
SOIAOT: + [[AZFP0]|7

1
< 5IIA2+ﬁ9II%2 +e((IA% ] g2 + 1)[|AG)|72 + (|A*Ful|F2 + 1)([|A0]|72 + 1))
Hence, Gronwall’s inequality completes the H?2-estimate.

3.9. The H3-estimate. Now we apply A® on the first equation of (1), take an
L2%-inner product with A3u and estimate by Lemma 2.3 and Holder’s inequality

(22) Al A%ulTe + AT ul T S (IVullo/a [A*Vul| 2

~

+ A% 2|Vl pora) |A ] poss-2ar + AP0 L2 A%l | 2.

Using the Sobolev embedding of H® < L6/(3-29)  the Gagliardo-Nirenberg and
Young’s inequalities we further bound (22) by

CHVUHLWQ ||A3uHL2||A3+au||L2 + CHA2+ﬁ9”(LQz—Oz)/(1+5)HVQH(LO;-i-ﬁ—l)/(l-i-ﬁ)||A3+auHL2

1
< SIAT Ul + el VullZsa [A%ul7z + c([A*POIIZ + VO] 72).

Absorbing the dissipative term, by Gronwall’s inequality we obtain

T
sup [|A%u(t)]2 + / AR w2, dr < 1.
te[0,T] 0

Finally, we apply A3 on the second equation of (1), take an L-inner product with
A30 to estimate

(23) DelIA®0]72 + [A*H70)12
< c([IVull orsl|A*VO]| 2 + A%l Lo/ VO £2) [A%0]] poso-20)

We consider the case a + 8 = 3/2 first. Then, we bound (23) by

c(|| A2 o) (2 G| Ay B TR RO A3G)| Lo g (AR || 12| V)| 12) | AP 2
< (1A% ]| g2 + [|Aul| 12) [ A%6] 12 + || AP ul| 2| V0| 12 ) | A0 2

<

DN | =

IAZH20)1 22 + eI A% ul| 2o + 1) IA%O] 72 + ]| AT ullZ
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due to Holder’s, the Gagliardo-Nirenberg and Young’s inequalities. Absorbing the
diffusive term, Gronwall’s inequality implies the desired result. On the other hand,
if  + B > 3/2, then we estimate (23) by

c(|AVul| 2P | ) G20 CO g
3—-2 2a 2a428-3)/(2a
+ HAB—HXU'Héz 8)/( )HASU,HéZ +28-3)/( ))HA3+59HL2

1
< SIATPOIL: + c(IAVull e + DIA] Tz + A ul Tz + [|A%u] 72
due to the Gagliardo-Nirenberg inequality, the Sobolev embedding of H? <
L5/(3=28) and Young’s inequality. Absorbing the diffusive term, Gronwall’s in-

equality implies the desired result.
In dimension three, by the Sobolev embedding this implies any higher regularity.

4. APPENDIX

Now we sketch the proof of Theorem 1.4 in the case & = 1,8 = 1/2 because it is
similar. First we can prove an analogous version of Proposition 3.5:

Proposition 4.1. Let N =3, v > 0,7 >0, and « = 1, 8 > 0. Suppose (u,0)
solves (1) in [0,T] and satisfies (6) or (7). Then

T
swp [Vu(®)fs+ [ JAulidr < .
t€[0,T 0

4.0.1. The |V,ul|?,-estimate. Taking an L?-inner product of the first equation
with —Apu and using Lemma 2.5, one can estimate
(24) s [Vl [V nte] < S [V null2s + el Osus]| 2052, | Vul2
slIVul[VVrul < 2IVVhullza + el Osusll 2 o) [Vl e
This leads to

T T
(%)£$ﬂmmm@+éIVWM$M§AH%M@%ﬁWm%M+L

This completes the first || V,ul|,-estimate. The second estimate is similar:
1 1
(26)  SOIVaulL: + IVVRulls < cllus||Zoe [ VulZ + S IVVAUlT2 +c.
2 2
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Absorbing the dissipative term, integrating over [0,¢|, we obtain

T T
@) sup [[Vau(t)|Zs + / IV hull22 dr < / sl |Vl 22 dr + 1.
te[0,T] 0 0

4.0.2. The | Vu||?,-estimate. Next, taking an L?-inner product of the first equa-
tion of (1) with —Auw, using (16), (24), and (25), we can obtain

T T
2 —2
IVu(t)2: + / |Aul2 dr < / 105us] 20 |Vl 2, dr
T
+/O 105us] 02 Va2 dr + 1.

The case of (7) may be done similarly using (26) and (27). Thus, Gronwall’s
inequality completes the proof of Proposition 4.1. Extension to higher regularity
may be done similarly as before, taking the H', H? and H3-estimates.

4.1. Proof of Lemma 2.7. We recall the notion of Besov spaces (cf. [10]). We
denote by S(R?Y) the Schwartz class functions and by &'(R”) its dual. We define

So—{gaeS,/ p(z)x” dz =0, |’y|—0,1,2,...}.
RN

Its dual S} is given by S) = S/Si- = S'/P, where P is the space of polynomials.
For j € Z we define A; = {£ € RN: 2771 < |¢| < 2771} {®;} € S(RY) such that
supp @; C Aj, (&) = Bo(277€) or ®j(x) = 29N Dy(272) and ¥ € C3°(RYN) is even
such that

(28) 1=U() +> 0p(), Uxf+) Ppxf=f

k=0 k=0

for any f € &’. With that, we set A;jf =0 if j < —2 and otherwise
A f=0xf, Ajf=0;xf ifj=0,1,2,...,

and define for s € R, 1 < p, ¢ < oo, the inhomogeneous Besov space By, = {f €

S 7

B3, < 0o}, where

I1f]

S 1/q
Big = < Z (2]5||Ajf|Lp)q> . if g < oo,

j=—1
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with standard modification if ¢ = co. The following embeddings hold if 1 < p < oc:

(29) , CW*P C B}

oL
p,max{p,2}> Bp,min{p@

| CWP C By

s
p,min{p,2 p,max{p,2}"

We estimate with n € N large to be determined afterwards: writing f as in (28),

n—1 [e%s}
I £llzoe < NAZ1fllze + > 18 f e + D 145 fll

7=0 j=n
S HfHL2 + n”f”BéVéj —+ ||f||B§Y002n(N/p*S)

by Young’s and Bernstein’s inequalities (cf. [10]). Setting n := (s — N/p)~!logy(2 +
[ fllB; ) and using the embedding from (29) imply the desired result.
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