
Mathematica Bohemica

Augusta Raţiu; Nicuşor Minculete
Several refinements and counterparts of Radon’s inequality

Mathematica Bohemica, Vol. 140 (2015), No. 1, 71–80

Persistent URL: http://dml.cz/dmlcz/144180

Terms of use:
© Institute of Mathematics AS CR, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/144180
http://dml.cz


140 (2015) MATHEMATICA BOHEMICA No. 1, 71–80

SEVERAL REFINEMENTS AND COUNTERPARTS

OF RADON’S INEQUALITY

Augusta Raţiu, Cluj-Napoca, Nicuşor Minculete, Braşov

(Received December 17, 2012)

Abstract. We establish that the inequality of Radon is a particular case of Jensen’s
inequality. Starting from several refinements and counterparts of Jensen’s inequality by
Dragomir and Ionescu, we obtain a counterpart of Radon’s inequality. In this way, using
a result of Simić we find another counterpart of Radon’s inequality. We obtain several appli-
cations using Mortici’s inequality to improve Hölder’s inequality and Liapunov’s inequality.
To determine the best bounds for some inequalities, we used Matlab program for different
cases.

Keywords: Radon’s inequality; Jensen’s inequality; Hölder’s inequality; Liapunov’s in-
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1. Introduction

Most recent theoretical results related to inequalities include: generalized vector

variational-type inequalities [9], Jensen type inequalities [1], Hölder’s inequality [17]

or weighted norm inequalities [13]. The reader can find in the literature many ap-

plications of these inequalities. In the sequel, we focus on inequalities that employ

Jensen’s inequality.

Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be n-tuples, where ab =

(a1b1, a2b2, . . . , anbn) and am = (am1 , am2 , . . . , amn ) for any real number m. We

write a > 0 and b > 0, if ai > 0 and bi > 0 for every 1 6 i 6 n.

The author, Augusta Raţiu, wishes to thank for the financial support of the Sectoral
Operational Programme for Human Resources Development 2007–2013, co-financed by
the European Social Fund, under the project number POSDRU/107/1.5/S/76841 with
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We consider the expression

(1.1) ∆[p]
n (a;b) :=

n
∑

i=1

api
bp−1
i

−

(
∑n

i=1 ai
)p

(
∑n

i=1 bi
)p−1

for a real number p > 1 and for n-tuples a > 0 and b > 0.

Radon proved in [18] the inequality

(1.2) ∆[p]
n (a;b) > 0,

known in the literature as Radon’s inequality. Other solutions of this inequality can

be found in [8], [10]. A particular case of this inequality is the well known inequality

of Bergström (see [2]) which is equivalent to Cauchy-Buniakovski-Schwarz’s inequal-

ity. Refinements of Bergström’s inequality were established by many authors, in

particular, by Mărghidanu-Barrero-Rădulescu (see [11]) and Pop (see [16]). In [4] we

can find interesting applications of these inequalities developed by Ciurdariu. In [12],

Mortici studies another refinement of Radon’s inequality, namely

(1.3) ∆[p]
n (a;b) > T [p]

n (a;b) := (p− 1) max
16i<j6n

(ai + aj)
p−2(aibj − ajbi)

2

bibj(bi + bj)p−1

for every n > 2, p > 1, ai > 0, bi > 0, 1 6 i 6 n. We remark that Radon’s inequality

implies Hölder’s inequality (see [3], [14]), by a simple change of variables ai = xiyi
and bi = y

p/(p−1)
i , where p > 1, xi > 0, yi > 0 and 1 6 i 6 n, so that we have

(1.4)

( n
∑

i=1

xp
i

)1/p( n
∑

i=1

yqi

)1/q

>

n
∑

i=1

xiyi,

where 1/p + 1/q = 1. If we replace in Radon’s inequality ai = xs
i , bi = xr

i , and

p = (r − t)/(r − s) for the real numbers r > s > t > 0, 1 6 i 6 n, we obtain

Liapunov’s inequality (see [3], [14]):

(1.5)

( n
∑

i=1

xt
i

)r−s( n
∑

i=1

xr
i

)s−t

>

( n
∑

i=1

xs
i

)r−t

,

where xi > 0 for all 1 6 i 6 n.
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2. Main results

In [6], Dragomir and Ionescu proved a reverse of Jensen’s inequality:

Theorem 2.1. Let f : I ⊆ R → R be a differentiable convex mapping on I̊ (I̊ is

the interior of I), xi ∈ I̊, pi > 0 (i = 1, . . . , n) and
∑n

i=1 pi = 1. Then we have the

inequality

(2.1) 0 6

n
∑

i=1

pif(xi)− f

( n
∑

i=1

pixi

)

6

n
∑

i=1

pixif
′(xi)−

n
∑

i=1

pixi

n
∑

i=1

pif
′(xi),

where f ′ is the derivative of f on I̊.

In [5], Dragomir obtained another counterpart of Jensen’s inequality:

Theorem 2.2. With the above assumptions for f and if m, M ∈ I̊, m 6 xi 6 M

(i = 1, . . . , n) we have

(2.2) 0 6

n
∑

i=1

pif(xi)− f

( n
∑

i=1

pixi

)

6
1

4
(M −m)(f ′(M)− f ′(m)).

For bi > 0, i = 1, . . . , n, if we take pi = bi/
∑n

i=1 bi, then we have the condition
∑n

i=1 pi = 1. Therefore, inequalities (2.1) and (2.2) can be written in the following

form:

(2.3) 0 6

n
∑

i=1

bif(xi)−

( n
∑

i=1

bi

)

f

(∑n
i=1 bixi
∑n

i=1 bi

)

6

n
∑

i=1

bixif
′(xi)−

(
∑n

i=1 bixi

)(
∑n

i=1 bif
′(xi)

)

∑n
i=1 bi

,

and

(2.4) 0 6

n
∑

i=1

bif(xi)−

( n
∑

i=1

bi

)

f

(∑n
i=1 bixi
∑n

i=1 bi

)

6
1

4
(M −m)(f ′(M)− f ′(m))

n
∑

i=1

bi,
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Theorem 2.3. For every n > 2, p > 1, ak > 0, bk > 0, 1 6 k 6 n, the following

inequalities hold:

(2.5) 0 6 ∆[p]
n (a;b) 6 p

(

∆[p]
n (a;b) −

∑n
i=1 ai

∑n
i=1 bi

∆[p−1]
n (a;b)

)

,

and

(2.6) 0 6 ∆[p]
n (a;b) 6

p

4
(M −m)(Mp−1 −mp−1)

n
∑

i=1

bi,

where m 6 ai/bi 6 M , for i = 1, . . . , n.

P r o o f. First, we consider the function f : I → R, defined by f(x) = xp, where

p > 1. Since f ′′(x) = p(p− 1)xp−2 > 0, we conclude that the function f is convex.

By (2.3), (2.4) and taking xi = ai/bi, i = 1, . . . , n, we have

(2.7) 0 6

n
∑

i=1

api
bp−1
i

−

(
∑n

i=1 ai
)p

(
∑n

i=1 bi
)p−1 6 p

( n
∑

i=1

api
bp−1
i

−

∑n
i=1 ai

∑n
i=1 bi

n
∑

i=1

ap−1
i

bp−2
i

)

,

and

(2.8) 0 6

n
∑

i=1

api
bp−1
i

−

(
∑n

i=1 ai
)p

(
∑n

i=1 bi
)p−1 6

p

4
(M −m)(Mp−1 −mp−1)

n
∑

i=1

bi.

Using the notation (1.1), i.e.,

∆[p]
n (a;b) =

n
∑

i=1

api
bp−1
i

−

(
∑n

i=1 ai
)p

(
∑n

i=1 bi
)p−1 ,

in relations (2.7) and (2.8), we deduce the required inequalities. �

R em a r k 2.1. We observe that Radon’s inequality is a particular case of Jensen’s

inequality. Therefore, we obtained another proof for Radon’s inequality.

R em a r k 2.2. Inequality (2.5) can be written in the following form:

(2.9) p

( n
∑

i=1

ai

)

∆[p−1]
n (a;b) 6 (p− 1)

( n
∑

i=1

bi

)

∆[p]
n (a;b).

Writing relation (2.9) for p = 2, 3, . . . , and multiplying the relations obtained, we

have

(2.10) 0 6
p

2

(∑n
i=1 ai

∑n
i=1 bi

)p−2

∆[2]
n (a;b) 6 ∆[p]

n (a;b),

which is another refinement of Radon’s inequality.
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In [11], we have

∆[2]
n (a;b) > max

16i<j6n

(aibj − ajbi)
2

bibj(bi + bj)
,

so, according to inequality (2.10), we deduce

(2.11) ∆[p]
n (a;b) >

p

2

(∑n
i=1 ai

∑n
i=1 bi

)p−2

max
16i<j6n

(aibj − ajbi)
2

bibj(bi + bj)
> 0,

where p is an integer number, p > 2.

Another refinement of Radon’s inequality can be found in [10].

In [7], we find the following results:

Theorem 2.4. Let f : I → R be a twice differentiable function such that there

exist real constants α and β, 0 6 α 6 f ′′(x) 6 β, for any x ∈ I. Then we have

(2.12)
α

2

∑

16i<j6n

pipj(xj − xi)
2 6

n
∑

i=1

pif(xi)− f

( n
∑

i=1

pixi

)

6
β

2

∑

16i<j6n

pipj(xj − xi)
2,

where pi > 0 with
∑n

i=1 pi = 1, and xi ∈ I for all i = 1, . . . , n.

Theorem 2.5. If a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) are n-tuples, then

we have the inequality

(2.13)
p(p− 1)mp−2

∑n
i=1 bi

∑

16i<j6n

(aibj − ajbi)
2

bibj
6 ∆[p]

n (a;b)

6
p(p− 1)Mp−2

∑n
i=1 bi

∑

16i<j6n

(aibj − ajbi)
2

bibj
,

where m 6 ai/bi 6 M , p > 1, ai > 0, bi > 0, for i = 1, . . . , n.

P r o o f. If we take pi = bi/
∑n

i=1 bi, xi = ai/bi for 1 6 i 6 n, and f(x) = xp in

relation (2.12), then we obtain the inequality of the statement. �

R em a r k 2.3. Relation (2.13) of Theorem 2.5 is a new refinement of Radon’s

inequality.

In [19], Simić proved:
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Theorem 2.6. If f is convex on I and
∑n

i=1 pi = 1, then

(2.14) max
16i<j6n

[

pif(xi) + pjf(xj)− (pi + pj)f
(pixi + pjxj

pi + pj

)

]

6

n
∑

i=1

pif(xi)− f

( n
∑

i=1

pixi

)

,

and

(2.15)
n
∑

i=1

pif(xi)− f

( n
∑

i=1

pixi

)

6 f(a) + f(b)− 2f
(a+ b

2

)

for any a 6 xi 6 b, i = 1, . . . , n.

We apply this theorem and we will obtain another characterization of Radon’s

inequality.

Theorem 2.7. For n > 2, p > 1 we have the following inequalities:

(2.16) ∆[p]
n (a;b) > max

16i<j6n

[

api
bp−1
i

+
apj

bp−1
j

−
(ai + aj)

p

(bi + bj)p−1

]

,

and

(2.17) 0 6 ∆[p]
n (a;b) 6

[

Mp +mp −
(M +m)p

2p−1

]( n
∑

i=1

bi

)

,

where m 6 ai/bi 6 M , ai > 0, bi > 0, 1 6 i 6 n.

P r o o f. We take in Theorem 2.6 pi = bi/
∑n

i=1 bi, xi = ai/bi for 1 6 i 6 n, and

f(x) = xp, which is convex for p > 1.

Therefore, by simple calculations, we obtain the required inequalities. �

R em a r k 2.4. Inequality (2.16) can be found in [10], but with another proof.

In [15], Pečarić and Perić refined the relation (2.15) as follows:

Theorem 2.8. If f : [a, b] → R is a convex function, xi ∈ [a, b], i = 1, . . . , n and

pi > 0 with
∑n

i=1 pi = 1, then

(2.18)

n
∑

i=1

pif(xi)− f

( n
∑

i=1

pixi

)

6 f

(

a+ b−

n
∑

i=1

pixi

)

− 2f
(a+ b

2

)

+

n
∑

i=1

pif(xi) 6 f(a) + f(b)− 2f
(a+ b

2

)

.

Therefore, we will obtain an improvement of inequality (2.17):
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Theorem 2.9. We have the inequality

(2.19) 0 6 ∆[p]
n (a;b) 6

[

(M +m)
∑n

i=1 bi −
∑n

i=1 ai
]p

(
∑n

i=1 bi
)p−1

−
(M +m)p

2p−1

( n
∑

i=1

bi

)

+

( n
∑

i=1

api
bp−1
i

)

,

where m 6 ai/bi 6 M , ai > 0, bi > 0, 1 6 i 6 n, p > 1, n > 2.

P r o o f. Similarly to the proof of Theorem 2.7, we deduce the statement. �

The inequalities (2.5), (2.6), (2.13) and (2.17) give us upper bounds for the term

∆
[p]
n (a;b). We want to study which of these bounds is closer to ∆

[p]
n (a;b).

We say that inequality T 6 T1 is stronger than inequality T 6 T2 if T1 6 T2. To

verify the inequalities (2.5), (2.6), (2.13) and (2.17) that are stronger, we use Matlab

program for the cases: n = 4, a = (1, 1, 1, 2), b = (2, 2, 2, 1), p ∈ {3, 4, 5, 7, 10, 15}.

We observe that there are situations in which each of the inequalities (2.5), (2.6),

(2.13) and (2.17) are stronger.

Now, for the lower bound of the term∆
[p]
n (a;b), we will compare inequalities (2.11)

and (2.13). Using Matlab program and the cases presented above, we deduce that

there are situations in which any of the inequalities (2.11) and (2.13) are stronger.

3. Several applications

We will use Mortici’s inequality to improve Hölder’s inequality and Liapunov’s

inequality.

Lemma 3.1. For every real numbers a > 0, b > 0 and p > 1, the following

inequality holds:

(3.1) (ap + b)1/p > a+
b

p(ap + b)(p−1)/p
.

P r o o f. For b = 0, we obtain the equality in relation (3.1).

For b > 0, we consider the function f : [ap, ap + b] → R, defined by f(x) = x1/p.

It follows that

f ′(x) =
1

px(p−1)/p
.

Applying Lagrange’s Theorem, we have that there is c ∈ (ap, ap + b) such that

(ap + b)1/p − a =
b

pc(p−1)/p
>

b

p(ap + b)(p−1)/p
.

Thus, the inequality of the statement is true. �
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We note that

F (a, b, p) :=
b

p(ap + b)(p−1)/p
.

Theorem 3.1. We have the inequalities

(3.2)

( n
∑

k=1

xp
k

)1/p( n
∑

k=1

yqk

)1/q

>

n
∑

k=1

xkyk +

( n
∑

k=1

yqk

)1/q

F

(

∑n
k=1 xkyk

(
∑n

k=1 y
q
k

)1/q
, T [p]

n (xy;yq), p

)

,

where p > 1, xk > 0, yk > 0, 1 6 k 6 n, 1/p+ 1/q = 1, and

(3.3)

( n
∑

k=1

xt
k

)r−s( n
∑

k=1

xr
k

)s−t

>

( n
∑

k=1

xs
k

)r−t

+

( n
∑

k=1

xr
k

)s−t

F

(

(
∑n

k=1 x
s
k

)r−t

(
∑n

k=1 x
r
k

)s−t , T
[p]
n (xs;xr),

1

r − s

)

,

where s+ 1 > r > s > t > 0 are real numbers and xk > 0 for any 1 6 k 6 n.

P r o o f. Using inequality (1.3) for a = xy and b = yp/(p−1), where p > 1 and

x > 0, y > 0, we obtain

∆[p]
n

(

xy;yp/(p−1)
)

> T [p]
n

(

xy;yp/(p−1)
)

> 0,

which is equivalent to the inequality

n
∑

k=1

xp
k >

(

∑n
k=1 xkyk

(
∑n

k=1 y
q
k

)1/q

)p

+ T [p]
n (xy;yq),

where 1/p+ 1/q = 1.

We apply Lemma 3.1 for a =
∑n

k=1 xkyk/
(
∑n

k=1 y
q
k

)1/q
and b = T

[p]
n (xy;yq),

which implies the inequality
( n
∑

k=1

xp
k

)1/p

>

∑n
k=1 xkyk

(
∑n

k=1 y
q
k

)1/q
+ F

(

∑n
k=1 xkyk

(
∑n

k=1 y
q
k

)1/q
, T [p]

n (xy;yq), p

)

.

This proves the inequality of the statement. In inequality (1.3), if we take a = xs,

b = xr, and p = (r − t)/(r − s), then it follows that ∆
[p]
n (xs;xr) > T

[p]
n (xs;xr) > 0,

which implies the inequality

n
∑

k=1

xt
k >

(

(
∑n

k=1 x
s
k

)r−t

(
∑n

k=1 x
r
k

)s−t

)1/(r−s)

+ T [p]
n (xs;xr).

Now, by raising to the power r−s and by simple calculations, we deduce the required

inequality. �
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R em a r k 3.1. Inequality (3.2) is an improvement of Hölder’s inequality and

inequality (3.3) is an improvement of Liapunov’s inequality.
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nia, e-mail: augu2003@yahoo.com; Nicuşor Minculete, Transilvania University, Faculty of
Mathematics and Computer Science, No. 50 Street Iuliu Maniu, RO-500091 Braşov, Roma-
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