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Hardy and Cowling-Price theorems for

a Cherednik type operator on the real line

Mohamed Ali Mourou

Abstract. This paper is aimed to establish Hardy and Cowling-Price type theo-
rems for the Fourier transform tied to a generalized Cherednik operator on the
real line.

Keywords: differential-difference operator; generalized Fourier transform; Hardy
and Cowling-Price theorems

Classification: 33C45, 43A15, 43A32, 44A15

1. Introduction

In his 1933 paper [8], Hardy obtained the following famous theorem:

Theorem 1.1. Let 1 ≤ p, q ≤ ∞ with at least one of them finite. Let f be
a measurable function on R such that

(1) eax2

f ∈ Lp(R) and ebλ2

Fu(f) ∈ Lq(R),

for some positive constants a and b. Then

• if ab ≥ 1/4, we have f = 0 almost everywhere;
• if ab < 1/4, there are infinitely many nonzero functions satisfying (1).

Above mentioned Fu stands for the ordinary Fourier transform on R given by

Fu(f)(λ) =

∫

R

f(x)e−iλx dx.

Later, Cowling and Price [4] obtained the following Lp version of Theorem 1.1:

Theorem 1.2. Let f be a measurable function on R such that

(2) eax2

f ∈ L∞(R) and ebλ2

Fu(f) ∈ L∞(R),

for some positive constants a and b. Then

• if ab > 1/4, we have f = 0 almost everywhere;

• if ab = 1/4, the function f is of the form f(x) = c0 e−ax2

, c0 ∈ C;
• if ab < 1/4, there are infinitely many nonzero functions satisfying (2).
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Many generalizations of Theorems 1.1 and 1.2 to new contexts have been dis-
covered. For instance, these theorems have been obtained in [2] for semi-simple Lie
groups, in [5] for the motion group and in [15] for Chébli-Trimèche hypergroups.

The intention of this paper is to establish analogues of Theorems 1.1 and 1.2
when in (1) and (2) the usual Fourier transform Fu is substituted by a generalized
Fourier transform FΛ on R associated with the first-order singular differential-
difference operator:

Λf(x) =
df

dx
+

A′(x)

A(x)

(

f(x) − f(−x)

2

)

− ρf(−x),

where

A(x) = |x|2α+1 B(x), α > −
1

2
,

B being a positive C∞ even function on R, and ρ > 0. In addition we suppose
that

(i) A is increasing on [0,∞[ and limx→∞ A(x) = ∞;
(ii) A′/A is decreasing on ]0,∞[ and limx→∞ A′(x)/A(x) = 2ρ;
(iii) there exists a constant δ > 0 such that the function eδx(A′(x)/A(x)− 2ρ)

is bounded for large x > 0 together with its derivatives.

Notice that the differential-difference operator

Dα,βf(x) =
df

dx
+

[

(2α + 1) coth x + (2β + 1) tanhx)
]

(

f(x) − f(−x)

2

)

− (α + β + 1)f(−x),

which is referred to as the Jacobi-Cherednik operator (see [7]) is of the same type
as Λ with

{

A(x) = (sinh |x|)2α+1 (coshx)2β+1; α ≥ β > −1/2;

ρ = α + β + 1; δ = 2.

The one-dimensional Cherednik operator (see [3]) is a particular case of Dα,β.
Such operators have been used by Heckmann and Opdam to develop a theory
generalizing harmonic analysis on symmetric spaces (see [9], [12]). For recent
important results in this direction we refer to [13], [16], [17].

In [11] the author has initiated a quite new commutative harmonic analysis
on the real line related to the differential-difference operator Λ in which several
analytic structures on R were generalized. The tools actually required for the
discussion in the present paper, are essentially the Fourier transform and the
Gaussian kernel tied to Λ.
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2. Preliminaries

In [11] we have shown that for each λ ∈ C, the differential-difference equation

Λu = iλu, u(0) = 1,

admits a unique C∞ solution on R, denoted Φλ and given by

(3) Φλ(x) =

{

ϕλ(x) + 1
iλ−ρ

d
dxϕλ(x) if λ 6= −iρ,

1 + 2ρ
A(x)

∫ x

0
A(t) dt if λ = −iρ,

where ϕλ denotes the solution of the differential equation

(4) ∆u = −
(

λ2 + ρ2
)

u, u(0) = 1, u′(0) = 1,

∆ being the second-order singular differential operator defined by

(5) ∆ =
1

A(x)

d

dx

(

A(x)
d

dx

)

.

Moreover, Φλ(x) is entire in λ.

Remark 2.1. For A(x) = (sinh |x|)2α+1(coshx)2β+1, α ≥ β > −1/2, the differ-
ential operator ∆ reduces to the so-called Jacobi operator. The eigenfunction ϕλ

is given by

ϕλ(x) = 2F1

(

α + β + 1 + iλ

2
,
α + β + 1 − iλ

2
; α + 1;−(sinhx)2

)

where 2F1 is the Gauss hypergeometric function [10].

Lemma 2.1. (i) For every x ∈ R,

(6) e−ρ|x| ≤ ϕ0(x) ≤ 1.

(ii) There is a constant C > 0 such that

(7)

∣

∣

∣

∣

dn

dλn
ϕλ(x)

∣

∣

∣

∣

≤ C(1 + |x|) |x|n e(|Imλ|−ρ)|x|

for all x ∈ R, λ ∈ C and n = 0, 1, . . . .

Proof: Assertion (i) may be found in [14, p. 99]. Let us prove (ii). By [14,
Equation (I.2)] we know that for x 6= 0,

ϕλ(x) =

∫ |x|

0

K(x, y) cos λy dy,
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where K(x, ·) : R → R is an even positive C∞ function on ]−|x|, |x|[, with support
in [−|x|, |x|]. So using the derivation theorem under the integral sign we find

∣

∣

∣

∣

dn

dλn
ϕλ(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ |x|

0

K(x, y) yn cos(λy + nπ/2) dy

∣

∣

∣

∣

∣

≤

∫ |x|

0

K(x, y) yn e|Imλ||y| dy

≤ |x|n e|Imλ||x|

∫ |x|

0

K(x, y) dy

= |x|n e|Imλ||x| ϕ0(x).

To conclude, recall from [14, p. 99] that there is a constant C > 0 such that

ϕ0(x) ≤ C(1 + |x|) e−ρ|x|

for all x ∈ R. �

Analogous estimates for Φλ(x) are provided by the next statement.

Proposition 2.1. There is a constant C > 0 such that

(8)

∣

∣

∣

∣

dn

dλn
Φλ(x)

∣

∣

∣

∣

≤ C(1 + |λ|)(1 + |x|)2 |x|n e(|Imλ|−ρ)|x|,

for all x ∈ R, λ ∈ C and n = 0, 1, . . . .

Proof: By (3),

dn

dλn
Φλ(x) =

dn

dλn
ϕλ(x) +

dn

dλn

(

1

iλ − ρ

d

dx
ϕλ(x)

)

.

As by (4),

(9)
d

dx
ϕλ(x) = −sgn(x)

λ2 + ρ2

A(x)

∫ |x|

0

ϕλ(t)A(t) dt,

we obtain

dn

dλn

(

1

iλ − ρ

d

dx
ϕλ(x)

)

=
sgn(x)

A(x)

∫ |x|

0

dn

dλn

[

(iλ + ρ)ϕλ(t)
]

A(t) dt.

The result follows now from (7) and Leibniz formula. �

Note 2.1. For a function f on R, write fe(x) = (f(x) + f(−x))/2 and fo(x) =
(f(x) − f(−x))/2 respectively for its even and odd parts. We denote by
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• S(R) the space of C∞ functions f on R which are rapidly decreasing
together with their derivatives, i.e., such that for all m, n = 0, 1, . . . ,

Pm,n(f) = sup
x∈R

(

1 + x2
)m

∣

∣

∣

∣

dn

dxn
f(x)

∣

∣

∣

∣

< ∞.

The topology of S(R) is defined by the semi-norms Pm,n, m, n = 0, 1, . . . .
• Se(R) (resp. So(R)) the subspace of S(R) consisting of even (resp. odd)

functions.
• S2(R) the space of C∞ functions f on R such that for all m, n = 0, 1, . . . ,

Qm,n(f) = sup
x∈R

(

1 + x2
)m

ϕ0(x)−1

∣

∣

∣

∣

dn

dxn
f(x)

∣

∣

∣

∣

< ∞.

The topology of S2(R) is defined by the semi-norms Qm,n, m, n = 0, 1, . . . .
• S2

e (R) (resp. S2
o (R)) the subspace of S2(R) consisting of even (resp. odd)

functions.
• J the map defined by J h(x) =

∫ x

−∞
h(t) dt, x ∈ R.

Remark 2.2. (i) By (6) we see that S2(R) ⊂ S(R).
(ii) It is easily checked that S2(R) is invariant under the differential-difference

operator Λ.
(iii) Due to our assumptions on the function A there is a positive constant k

such that

(10) A(x) ∼ k e2ρ|x| as |x| → ∞.

The following technical lemma will be useful.

Lemma 2.2. The map J is a topological isomorphism from S2
o (R) onto S2

e (R).

Proof: It is sufficient to show that J maps continuously S2
o (R) into S2

e (R).
Let f ∈ S2

o (R). Clearly J f is a C∞ even function on R. For n = 1, 2, . . . ,
Qm,n(J f) = Qm,n−1(f). Moreover, as by (9), ϕ0 is decreasing on [0,∞[, we get

(1 + x2)mϕ0(x)−1|J f(x)| ≤ (1 + x2)m ϕ0(x)−1

∫ ∞

|x|

|f(t)| dt

≤

∫ ∞

|x|

(1 + t2)m ϕ0(t)
−1|f(t)| dt

≤ Qm+1,0(f)

∫ ∞

|x|

dt

(1 + t2)
.

Hence Qm,0(J f) ≤ π
2 Qm+1,0(f). This ends the proof. �

The generalized Fourier transform of a suitable function f on R is defined by

FΛ(f)(λ) =

∫

R

f(x)Φ−λ(x)A(x) dx, λ ∈ R.
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Remark 2.3. According to (7), (8) and (10), the generalized Fourier transform
FΛ is well defined on S2(R).

Proposition 2.2. For all f ∈ S2(R),

(11) FΛ(f)(λ) = F∆(fe)(λ) + (iλ − ρ)F∆J (fo)(λ),

where F∆ stands for the Fourier transform related to the differential operator ∆,
defined on S2

e (R) by

F∆(h)(λ) =

∫

R

h(x)ϕλ(x)A(x) dx, λ ∈ R.

Proof: If f ∈ S2
e (R), identity (11) is obvious. Assume f ∈ S2

o (R). By using (3),
(4), (5) and by integrating by parts we obtain

FΛ(f)(λ) =
−1

iλ + ρ

∫

R

f(x)ϕ′
λ(x)A(x) dx

=
1

iλ + ρ

∫

R

J f(x)(A(x)ϕ′
λ(x))′ dx

=
1

iλ + ρ

∫

R

J f(x)∆ϕλ(x)A(x) dx

= (iλ − ρ)

∫

R

J f(x)ϕλ(x)A(x) dx

= (iλ − ρ)F∆(J f)(λ),

which completes the proof. �

Remark 2.4. For A(x) = (sinh |x|)2α+1(coshx)2β+1, α ≥ β > −1/2, the trans-
form F∆ coincides with the Jacobi transform of order (α, β) (see [10]).

Theorem 2.1. The generalized Fourier transform FΛ is a topological isomor-
phism between S2(R) and S(R). Moreover,

F−1
Λ (g)(x) = F−1

∆ (ge)(x) +

(

ρ I +
d

dx

)

F−1
∆

(go

iλ

)

(x)

for all g ∈ S(R).

Proof: By [14] we know that the transform F∆ is a topological isomorphism
from S2

e (R) onto Se(R). Then the result follows from (11), Lemma 2.2 and the
fact that the map f → λf is a topological isomorphism from Se(R) onto So(R).
The identity above follows easily from (11). �

Note 2.2. We denote by

• Da(R), a > 0, the space of C∞ functions on R supported in [−a, a],
provided with the topology of compact convergence for all derivatives.

• D(R) =
⋃

a>0 Da(R) endowed with the inductive limit topology.
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• De(R) (resp. Do(R)) the subspace of D(R) consisting of even (resp. odd)
functions.

• Ha, a > 0, the space of entire, rapidly decreasing functions of exponential
type a; that is, f ∈ Ha if and only if f is entire on C and for all m =
0, 1, . . . ,

pm(f) = sup
λ∈C

∣

∣

∣
(1 + λ)mf(λ)e−a|Imλ|

∣

∣

∣
< ∞.

Ha is equipped with the topology defined by the semi-norms pm, m =
0, 1, . . . .

• H =
⋃

a>0 Ha, equipped with the inductive limit topology.
• Ha, a > 0, the space of entire, slowly increasing functions of exponential

type a; that is, f ∈ Ha if and only if f is entire on C and there is
m = 0, 1, . . . such that

sup
λ∈C

∣

∣

∣
(1 + |λ|)−mf(λ)e−a|Imλ|

∣

∣

∣
< ∞.

• H =
⋃

a>0 Ha.

Another standard result for the generalized Fourier transform FΛ is as follows.

Theorem 2.2 (Paley-Wiener). (i) The generalized Fourier transform FΛ is
a bijection from E ′(R) onto H. More precisely, T has its support in [−a, a]
if and only if FΛ(T ) ∈ Ha.

(ii) The generalized Fourier transform FΛ is a topological isomorphism from
D(R) onto H. More precisely, f ∈ Da(R) if and only if FΛ(f) ∈ Ha.

According to [11] the inverse generalized Fourier transform F−1
Λ may also be

expressed as follows.

Theorem 2.3. For all g ∈ S(R),

F−1
Λ (g)(x) =

∫

R

g(λ)Φ−λ(−x) dσ(λ),

with

(12) dσ(λ) =

(

λ − iρ

λ

)

dλ

2π|c(|λ|)|2
,

where c(s) is a continuous function on ]0,∞[ such that

(13)
c(s)−1 ∼ k1 sα+ 1

2 as s → ∞,

c(s)−1 ∼ k2 s, as s → 0,

for some k1, k2 ∈ C.
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Remark 2.5. (i) The tempered measure σ is called the spectral measure
associated with the differential-difference operator Λ.

(ii) Let g ∈ Se(R). By (3) and (12),

∫

R

g(λ)Φ−λ(−x) dσ(λ) =

∫

R

g(λ)ϕλ(x)

(

1 −
iρ

λ

)

dλ

2π|c(|λ|)|2

− i

∫

R

g(λ)
ϕ′

λ(x)

λ

dλ

2π|c(|λ|)|2

=

∫

R

g(λ)ϕλ(x)
dλ

2π|c(|λ|)|2

By comparing Theorems 2.1 and 2.3 we deduce that

F−1
Λ (g)(x) =

∫

R

g(λ)ϕλ(x)
dλ

2π|c(|λ|)|2
= F−1

∆ (g)(x).

This further shows that dλ
2π|c(|λ|)|2 is the spectral measure tied to the dif-

ferential operator ∆.

(iii) For A(x) = (sinh |x|)
2α+1

(cosh x)2β+1, α ≥ β > −1/2, we have

c(s) =
2α+β+2−is Γ(is) Γ(α + 1)

Γ
[

(α + β + 1 + is)/2
]

Γ
[

(α − β + 1 + is)/2
] , s > 0.

The next statement provides a Parseval type formula for the generalized Fourier
transform FΛ.

Theorem 2.4. For all f, g ∈ D(R),
∫

R

f(x)g(−x)A(x) dx =

∫

R

FΛ(f)(λ)FΛ(g)(λ) dσ(λ).

To prove Theorem 2.4 we need some facts about the transform F∆.

Lemma 2.3. (i) For all f ∈ De(R),

F∆(∆f)(λ) = −
(

λ2 + ρ2
)

F∆(f)(λ).

(ii) For all f, g ∈ De(R),
∫

R

f(x)g(x)A(x) dx =

∫

R

F∆(f)(λ)F∆(g)(λ)
dλ

2π|c(|λ|)|2
.

Proof: (i) Using (4), (5) together with an integration by parts we have

F∆(∆f)(λ) =

∫

R

∆f(x)ϕλ(x)A(x) dx

=

∫

R

(A(x)f ′(x))′ϕλ(x) dx
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= −

∫

R

f ′(x)ϕ′
λ(x)A(x) dx

=

∫

R

f(x)(A(x)ϕ′
λ(x))′ dx

=

∫

R

f(x)∆ϕλ(x)A(x) dx

= −
(

λ2 + ρ2
)

F∆(f)(λ).

(ii) Notice that ϕλ is real whenever λ is real. So F∆(g)(λ) = F∆(g)(λ) for all
λ ∈ R. This when combined with a Parseval formula for the transform F∆ (see
[14, Theorem II.4]) yields

∫

R

F∆(f)(λ)F∆(g)(λ)
dλ

2π|c(|λ|)|2
=

∫

R

F∆(f)(λ)F∆(g)(λ)
dλ

2π|c(|λ|)|2

=

∫

R

f(x)g(x)A(x) dx,

which achieves the proof. �

Proof of Theorem 2.4: By (11),

∫

R

FΛ(f)(λ)FΛ(g)(λ)dσ(λ) =

∫

R

F∆(fe)(λ)F∆(ge)(λ) dσ(λ)

+

∫

R

(iλ − ρ)F∆(fe)(λ)F∆J (go)(λ) dσ(λ)

+

∫

R

(iλ − ρ)F∆J (fo)(λ)F∆(ge)(λ) dσ(λ)

+

∫

R

(iλ − ρ)2 F∆J (fo)(λ)F∆J (go)(λ) dσ(λ)

= κ1 + κ2 + κ3 + κ4.

By (12), we have

κ2 = i

∫

R

λ2 + ρ2

λ
F∆(fe)(λ)F∆J (go)(λ)

dλ

2π|c(|λ|)|2
= 0;

κ3 = i

∫

R

λ2 + ρ2

λ
F∆J (fo)(λ)F∆(ge)(λ)

dλ

2π|c(|λ|)|2
= 0.

Again by (12) and Lemma 2.3,

κ1 =

∫

R

(

1 −
iρ

λ

)

F∆(fe)(λ)F∆(ge)(λ)
dλ

2π|c(|λ|)|2

=

∫

R

F∆(fe)(λ)F∆(ge)(λ)
dλ

2π|c(|λ|)|2
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=

∫

R

fe(x)ge(x)A(x) dx;

κ4 = −

∫

R

(

1 +
iρ

λ

)

(

λ2 + ρ2
)

F∆J (fo)(λ)F∆J (go)(λ)
dλ

2π|c(|λ|)|2

= −

∫

R

(

λ2 + ρ2
)

F∆J (fo)(λ)F∆J (go)(λ)
dλ

2π|c(|λ|)|2

=

∫

R

F∆(∆J fo)(λ)F∆(J go)(λ)
dλ

2π|c(|λ|)|2

=

∫

R

∆J (fo)(x)J (go)(x)A(x) dx

=

∫

R

(Afo)
′(x)J (go)(x) dx

= −

∫

R

fo(x)go(x)A(x) dx.

Hence

κ1 + κ4 =

∫

R

[

fe(x)ge(x) − fo(x)go(x)
]

A(x) dx =

∫

R

f(x)g(−x)A(x) dx.

This concludes the proof. �

Note 2.3. We denote by

• Lp(R, A(x)dx), 1 ≤ p ≤ ∞, the class of measurable functions f on R for
which ‖f‖p,A < ∞, where

‖f‖p,A =

(
∫

R

|f(x)|pA(x) dx

)1/p

, if p < ∞,

and ‖f‖∞,A = ‖f‖∞.
• Lp(R, |σ|), 1 ≤ p ≤ ∞, be the class of measurable functions f on R for

which ‖f‖p,|σ| < ∞, where

‖f‖p,|σ| =

(
∫

R

|f(λ)|p d|σ|(λ)

)1/p

, if p < ∞,

and ‖f‖∞,|σ| = ‖f‖∞.

Remark 2.6. By (8) there is a positive constant k > 0 such that

|FΛ(f)(λ)| ≤ k (1 + |λ|) ‖f‖1,A

for all f ∈ L1(R, A(x)dx).



Hardy and Cowling-Price theorems for a Cherednik type operator on the real line 17

Lemma 2.4. For all f ∈ L1(R, A(x)dx) and g ∈ D(R),

∫

R

f(x)g(−x)A(x) dx =

∫

R

FΛ(f)(λ)FΛ(g)(λ) dσ(λ).

Proof: Fix g ∈ D(R). For f ∈ L1(R, A(x)dx) put

l1(f) =

∫

R

f(x)g(−x)A(x) dx

and

l2(f) =

∫

R

FΛ(f)(λ)FΛ(g)(λ) dσ(λ).

In view of Theorem 2.4, l1(f) = l2(f) for each f ∈ D(R). Moreover,

|l1(f)| ≤ ‖g‖∞ ‖f‖1,A

and

|l2(f)| ≤ k ‖f‖1,A

∫

R

|FΛ(g)(λ)| (1 + |λ|) d|σ|(λ)

by virtue of Remark 2.6. This shows that the linear functionals l1 and l2 are
bounded on L1(R, A(x)dx). Therefore l1 = l2, and the lemma is proved. �

An immediate consequence of the lemma above is

Corollary 2.1. The generalized Fourier transform FΛ is injective on
L1(R, A(x)dx).

For t > 0, the Gaussian kernel Et associated with the differential-difference
operator Λ is defined by

(14) Et(x) =

∫

R

e−t(λ2+ρ2)Φ−λ(−x) dσ(λ), x ∈ R.

This kernel enjoys the following properties.

Proposition 2.3. (i) Et ∈ S2(R) and

(15) FΛ(Et)(λ) = e−t(λ2+ρ2), for all λ ∈ R.

(ii) Et is even, positive and
∫

R
Et(x)A(x) dx = 1.

(iii) The function u(x, t) = Et(x) is C∞ on R× ]0,∞[ and solves the partial
differential equation

∆xu(x, t) =
∂

∂t
u(x, t),

where ∆ is given by (5).



18 M.A. Mourou

(iv) There are two positive constants C1(t) and C2(t) such that

(16) C1(t)
e−

x2

4t

√

B(x)
≤ Et(x) ≤ C2(t)

e−
x2

4t

√

B(x)
.

(v) Let p ∈ [0,∞[. Then there exists a positive constant M(p, t) such that

(17) (Et(x))p ≤ M(p, t)Et/p(x).

Proof: Assertion (i) follows directly from Theorems 2.1 and 2.3. A combination
of (14) and Remark 2.5(ii) yields

(18) Et(x) =

∫ ∞

0

e−t(λ2+ρ2) ϕλ(x)
dλ

π|c(λ)|2
.

But according to [6], the right hand side of (18) satisfies (ii), (iii) and (iv). Ac-
cording to our assumptions on the function A, there is a constant k > 0 such
that B(x) ≥ k for all x ∈ R. The majorization (17) is then an easy consequence
of (16). �

3. Hardy and Cowling-Price theorems

The following technical lemmas will greatly simplify the proofs of our main
theorems.

Lemma 3.1 ([1]). Let g be an entire function on C. Suppose that

|g(z)| ≤ M(1 + |z|)m ea(Rez)2 for all z ∈ C

and

|g(x)| ≤ M for all x ∈ R,

for some a, M > 0 and m ∈ N. Then g is constant on C.

Lemma 3.2 ([1]). Let q ∈ [1,∞[ and g be an entire function on C. Suppose
that

∫

R

|g(x)|q dx < ∞

and

|g(z)| ≤ M(1 + |z|)m ea(Rez)2 for all z ∈ C,

for some a, M > 0 and m ∈ N. Then g = 0 on C.

Lemma 3.3. Let q ∈ [1,∞[ and g be an entire function on C. Suppose that

‖g‖q,|σ| < ∞

and

|g(z)| ≤ M(1 + |z|)m ea(Rez)2 for all z ∈ C,

for some a, M > 0 and m ∈ N. Then g = 0 on C.
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Proof: By (12),

‖g‖q
q,|σ| ≥

∫

|λ|≥1

|g(λ)|q d|σ|(λ)

=

∫

|λ|≥1

|g(λ)|q
∣

∣

∣

∣

λ − iρ

λ

∣

∣

∣

∣

dλ

2π |c(|λ|)|2

≥

∫

|λ|≥1

|g(λ)|q
dλ

2π |c(|λ|)|2
.

According to (13), there is a constant k > 0 such that |c(|λ|)|−2 ≥ k|λ|2α+1 for
all λ ∈ R with |λ| ≥ 1. Therefore

‖g‖q
q,|σ| ≥

k

2π

∫

|λ|≥1

|g(λ)|q|λ|2α+1 dλ ≥
k

2π

∫

|λ|≥1

|g(λ)|q dλ,

which shows that ‖g‖q < ∞. The result is now a direct consequence of Lemma 3.2.
�

Lemma 3.4. Let a, b > 0, d ≥ 1, γ ∈ R and

g(y) =

∫ ∞

0

e−a(x−by)2(1 + x)deγx dx, y ≥ 0.

Then there is a positive constant C such that

g(y) ≤ C (1 + y)d eγby for all y ≥ 0.

Proof: By the convexity of xd we have

g(y) = eγby

∫ ∞

−by

e−az2+γz(1 + z + by)d dz

≤ eγby

∫ ∞

−by

e−az2+|γ||z|(1 + |z|+ by)d dz

≤ eγby

∫ ∞

−∞

e−az2+|γ||z|(1 + |z| + by)d dz

= 2eγby

∫ ∞

0

e−az2+|γ|z(1 + z + by)d dz

≤ const. eγby

∫ ∞

0

e−az2+|γ|z
(

1 + zd + (by)d
)

dz

= const. eγby

(
∫ ∞

0

e−az2+|γ|z
(

1 + zd
)

dz + (by)d

∫ ∞

0

e−az2+|γ|z dz

)

≤ const.
(

1 + yd
)

eγby

≤ const. (1 + y)d eγby

which ends the proof. �
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Lemma 3.5. Let 1 ≤ q ≤ ∞ and a > 0. Then there is a positive constant C
such that for all λ = ξ + iη ∈ R + i R:

(i) ‖E 1
4a

Φ−λ‖∞ ≤ C(1 + |λ|) e
η2

4a ;

(ii) ‖E 1
4a

Φ−λ‖q,A ≤ C(1 + |λ|)3 e
η2

4a
+ (2−q)ρ|η|

2aq , if q < ∞.

Proof: As the function 1/
√

B(x) is bounded, it follows from (8) and (16) that

∣

∣

∣
E 1

4a
(x)Φ−λ(x)

∣

∣

∣
≤ const. (1 + |λ|)(1 + |x|)2 e−ax2+(|η|−ρ)|x|

= const. (1 + |λ|)(1 + |x|)2 e
η2

4a e−a(|x|− |η|
2a )

2
−ρ|x|,

which proves (i). For q < ∞ we have

∥

∥

∥
E 1

4a
Φ−λ

∥

∥

∥

q,A
≤ const. (1 + |λ|) e

η2

4a

(
∫ ∞

0

e−aq(x− |η|
2a )

2

(1 + x)2qe(2−q)ρx dx

)1/q

≤ const. (1 + |λ|) (1 + |η|)2 e
η2

4a
+

(2−q)ρ|η|
2aq

≤ const. (1 + |λ|)3 e
η2

4a
+ (2−q)ρ|η|

2aq

by virtue of (10) and Lemma 3.4. �

Lemma 3.6. Let 1 ≤ p, p′ ≤ ∞ such that 1/p+1/p′ = 1. Let f be a measurable
function on R such that ‖E−1

1
4a

f‖p,A < ∞ for some a > 0. Then the generalized

Fourier transform of f is well defined and entire on C. Moreover, there is a positive
constant C such that for all λ = ξ + iη ∈ R + i R:

(i) |FΛ(f)(λ)| ≤ C(1 + |λ|) e
η2

4a , if p = 1;

(ii) |FΛ(f)(λ)| ≤ C(1 + |λ|)3 e
η2

4a
+ (2−p′)ρ|η|

2ap′ , if p > 1.

Proof: The result follows easily by using Lemma 3.5, Hölder’s inequality and
the derivation theorem under the integral sign. �

We can now state our main results.

Theorem 3.1. Let 1 ≤ p, q ≤ ∞. Let f be a measurable function on R such
that

(19) E−1
1
4a

f ∈ Lp(R, A(x)dx)

and

(20) ebλ2

FΛ(f) ∈ Lq(R, |σ|),

for some positive constants a and b. Then

• if ab > 1/4, we have f = 0 almost everywhere;
• if ab < 1/4, for all t ∈]b, 1/(4a)[, Et satisfies (19)–(20).
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Proof: We divide the proof in two steps.

Step 1. ab > 1/4.

Let t ∈]1/(4a), b[ and

g(λ) = etλ2

FΛ(f)(λ), λ ∈ C.

By Lemma 3.6, g is entire in C, and there is C > 0 such that

|g(λ)| ≤ C(1 + |λ|)3 et(Reλ)2

for all λ ∈ C. Furthermore,

‖g‖q,|σ| =
∥

∥

∥
ebλ2

FΛ(f) e(t−b)λ2
∥

∥

∥

q,|σ|
≤

∥

∥

∥
ebλ2

FΛ(f)
∥

∥

∥

q,|σ|
< ∞.

(i) If q < ∞, it follows from Lemma 3.3 that g(λ) = 0 for all λ ∈ C. That is,
FΛ(f)(λ) = 0 for all λ ∈ R. Therefore, f = 0 a.e. on R, by virtue of Corollary 2.1.

(ii) If q = ∞, then by Lemma 3.1 there is a constant K ∈ C such that g(λ) = K

for all λ ∈ C. That is, FΛ(f)(λ) = Ke−tλ2

for all λ ∈ R. Hence, f = Ketρ2

Et a.e.
on R. But due to assumption (19), this is impossible unless K = 0. Thus f = 0
a.e. on R.

Step 2. ab < 1/4.

Let t ∈]b, 1/(4a)[. By (16), there are two positive constants C1(a, t) and C2(a, t)
such that

C1(a, t)e−( 1
4t

−a)x2

≤ E−1
1
4a

(x)Et(x) ≤ C2(a, t)e−( 1
4t

−a)x2

,

for all x ∈ R. This shows that E−1
1
4a

Et ∈ Lp(R, A(x)dx). Moreover,

∥

∥

∥
ebλ2

FΛ(Et)
∥

∥

∥

q,|σ|
= e−tρ2

∥

∥

∥
e−(t−b)λ2

∥

∥

∥

q,|σ|
< ∞,

by virtue of (15) and the fact that σ is tempered. This completes the proof of
Theorem 3.1. �

Theorem 3.2. Let 1 ≤ p ≤ 2 and 1 ≤ q ≤ ∞. Let f be a measurable function
on R satisfying (19) and (20) for some positive constants a and b. If ab = 1/4
then f = 0 almost everywhere.

Proof: Let

g(λ) = ebλ2

FΛ(f)(λ), λ ∈ C.

Let p′ be the conjugate exponent of p. As by hypothesis p′ ≥ 2, we deduce from
Lemma 3.6 that g is entire on C, and there is C > 0 such that

|g(λ)| ≤ C(1 + |λ|)3 eb(Reλ)2
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for all λ ∈ C. The rest of the proof is now analogous to Step 1 in the proof of
Theorem 3.1. �

Acknowledgments. The author is grateful to the referee for careful reading and
useful comments.

References

[1] Ben Farah S., Mokni K., Uncertainty principle and Lp
−Lq sufficient pairs on noncompact

real symmetric spaces, C.R. Acad. Sci. Paris 336 (2003), 889–892.
[2] Ben Farah S., Mokni K., Trimèche K., An Lp
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