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Abstract. We first investigate factorizations of elements of the semigroup S of upper
triangular matrices with nonnegative entries and nonzero determinant, provide a formula
for ̺(S), and, given A ∈ S, also provide formulas for l(A), L(A) and ̺(A). As a consequence,
open problem 2 and problem 4 presented in N.Baeth et al. (2011), are partly answered.
Secondly, we study the semigroup of upper triangular matrices with only positive integral
entries, compute some invariants of such semigroup, and also partly answer open Problem 1
and Problem 3 in N.Baeth et al. (2011).
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1. Introduction

Upper triangular matrices are an important class of matrices. This is a well-studied

class in part because determinants of upper triangular matrices are easy to compute,

and in part because any integer-valued matrix can be put in Hermite Normal Form.

Their study leads to a broader study of all integer-valued matrices. There are many

papers in the literature considering these matrices and similar topics. Note that all

of the results about upper triangular matrices go through for the semigroup of lower

triangular matrices.

Factoring such matrices plays an important role in the study of upper triangular

matrices (see [6]). The problem of factoring matrices was studied by Cohn ([5]) as

early as 1963. Later, Jacobson and Wisner ([7], [8]), Chuan and Chuan ([3], [4])

This paper was supported by National Natural Science Foundation of China (11401246,
11426112); Natural Science Foundation of Guangdong Province (2014A030310087,
2014A030310119); Natural Science Foundation of Fujian Province (2014J01019); Out-
standing Young Innovative Talent Training Project in Guangdong Universities
(2013LYM0086); Science Technology Plan Project of Huizhou City.
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investigated these factorization problems in the context of semigroups of matrices.

Motivated by these results, Baeth et al. [2] applied the concepts of contemporary

factorization theory to semigroups of integral-valued matrices, and calculated certain

important invariants to give an idea of how unique or non unique factorization is in

each of these semigroups. In [2], Baeth et al. presented six open problems.

In particular, we will investigate factorizations of elements of the semigroup of

upper triangular matrices with nonnegative entries and study the semigroup of upper

triangular matrices with only positive integral entries. Also, we will consider open

Problems 1–4 presented in [2].

Throughout this paper, N will denote the set of all positive integers and N0 =

N∪{0}. Also, Tn(N0) and Tn(N) will denote the semigroup of n×n upper triangular

matrices with nonnegative and positive integral-valued entries, respectively.

In the following, analogously to [2] or [1], we recall some concepts and prelimi-

naries.

A semigroup is a pairing (S, ·) where S is a set and · is an associative binary

operation on S. When the binary operation is clear from the context and A,B ∈ S,

we will simply write AB instead of A · B. If S contains an element I such that

AI = IA = A for all A ∈ S, then I is the identity of S.

Let S be a semigroup with identity I. An element A ∈ S is a unit of S if there

exists an element B ∈ S such that AB = BA = I. A non unit A ∈ S is called an

atom of S if whenever A = BC for some elements B,C ∈ S, either B or C is a unit

of S. The semigroup S is said to be atomic provided each non unit element in S can

be written as a product of atoms of S.

Let S denote an atomic semigroup and let A be a non unit element of S. The set

L(A) = {t : A = A1A2 . . . At with each Ai an atom of S}

is called the set of lengths of A.

We denote by L(A) = supL(A) the longest (if finite) factorization length of A

and by l(A) = minL(A) the minimum factorization length of A. The elasticity of A,

denoted by

̺(A) =
L(A)

l(A)
,

gives a coarse measure of how far away A is from having a unique factorization. It is

not hard to see that if A has a unique factorization A = A1A2 . . . At, then L(A) = {t}

and so

l(A) = L(A) = t and ̺(A) =
t

t
= 1.

The elasticity of the semigroup S, denoted by ̺(S), is given by

̺(S) = sup{̺(A) : A ∈ S}.
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If L(A) = {t1, t2, . . .} with ti < ti+1 for each i, then the Delta set of A is given by

∆(A) = {ti+1 − ti : ti, ti+1 ∈ L(A)}

and ∆(S) =
⋃

A∈S

∆(A).

An atomic semigroup is called bifurcus provided l(A) = 2 for every non unit non

atom A of S. By [3], we know that if S is bifurcus, then ̺(S) = ∞ and ∆(S) = {1}.

This paper will be divided into five sections. In Section 2, we will consider the

semigroup S of upper triangular n × n (n > 2) matrices with nonnegative entries

and nonzero determinant. In particular, we investigate the atoms of S, provide

a formula for ̺(S), and, given A ∈ S, provide formulas for l(A), L(A) and ̺(A). As

a consequence, open problem 4 in [2] is partly answered. In Section 3 we study the

semigroup

S =

{(

1 c

0 b

)

: b ∈ N, c ∈ N0

}

.

For any A ∈ S, we give a method of calculating l(A), ̺(A) and ∆(A). Also, some

special cases of open problem 2 in [2] are discussed and answered. In Section 4 and 5,

we study the upper triangular matrices with positive entries. Section 4 investigates

some special subsemigroups of Tn(N) for n > 2 which are bifurcus, and we compute

invariants of such semigroups. Consequently, some special cases of open Problem 3

in [2] are partly answered. In Section 5 we study a special class of matrices in T2(N)

and also partly answer open Problem 1 in [2].

2. Subsemigroups of Tn(N0)

In this section we consider the semigroup S of upper triangular n × n (n > 2)

matrices with nonnegative entries and nonzero determinant. In this case, In is the

only unit of S.

For each pair i, j ∈ {1, 2, . . . , n}, let Eij denote the matrix whose only nonzero

entry is eij = 1.

In the following theorem we characterize the atoms of S.

Theorem 2.1. Let S denote the subsemigroup of the matrices in Tn(N0) with

nonzero determinant. The set of atoms of S consists of the matrices Xij = I + Eij

for each pair i and j with 1 < i < j < n and, for each prime p, the matrices

Yii = I + (p− 1)Eii for 1 6 i 6 n.
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P r o o f. Suppose that Xij = X1X2 for some X1, X2 ∈ S. Since det(Xij) = 1,

det(X1) = det(X2) = 1 and we can write

Xij = X1X2 =











1 b12 . . . b1n
0 1 . . . b2n
...
...
. . .

...

0 0 . . . 1





















1 c12 . . . c1n
0 1 . . . c2n
...
...
. . .

...

0 0 . . . 1











where
n
∑

k=1

bikckj = 1 and
n
∑

k=1

bhkckl = 0 if h 6= i and l 6= j. As a result, either X1 or

X2 is the identity and hence Xij is an atom.

Suppose now that p is prime and Yii = Y1Y2 for some i ∈ {1, 2, . . . , n}, Y1, Y2 ∈ S.

Since p is prime, either

Y1Y2 =

















1 b12 ... ... ... b1 n−1 b1n

0 1 ... ... ... b2 n−1 b2n

...
...
. ..
...
...
...

...
0 0 ... p ... bi n−1 bin

...
...
...
...
. ..

...
...

0 0 ... ... ... 1 bn−1n

0 0 ... ... ... 0 1

































1 c12 ... ... ... c1n−1 c1n

0 1 ... ... ... c2n−1 c2n

...
...
.. .
...
...
...

...
0 0 ... 1 ... ci n−1 cin

...
...
...
...
. ..

...
...

0 0 ... ... ... 1 cn−1n

0 0 ... ... ... 0 1

















or

Y1Y2 =

















1 b12 ... ... ... b1n−1 b1n

0 1 ... ... ... b2n−1 b2n

...
...
.. .
...
...
...

...
0 0 ... 1 ... bi n−1 bin

...
...
...
...
.. .

...
...

0 0 ... ... ... 1 bn−1 n

0 0 ... ... ... 0 1

































1 c12 ... ... ... c1n−1 c1n
0 1 ... ... ... c2n−1 c2n

...
...
. . .
...
...
...

...
0 0 ... p ... ci n−1 cin

...
...
...
...
.. .

...
...

0 0 ... ... ... 1 cn−1n

0 0 ... ... ... 0 1

















.

In either case, bij = cij = 0 for 1 6 i < j 6 n. Consequently, either Y1 or Y2 is the

identity and hence Yii is an atom of S.

Finally, we will show that these are the only atoms of S.

For any

A =















a11 a12 a13 . . . a1n−1 a1n
0 a22 a23 . . . a2n−1 a2n
...

...
...
. . .

...
...

0 0 0 . . . an−1n−1 an−1n

0 0 0 . . . 0 ann















∈ S
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we can write

A =
n
∏

j=1

n−j
∏

i=1

[I + (an+1−j,n+1−j − 1)En+1−j,n+1−j ]

× [I + (an+1−j−i,n+1−j − 1)En+1−j−i,n+1−j ]

= [I + (ann − 1)Enn][I + an−1,nEn−1,n] . . . [I + a1nE1n]

× [I + (an−1,n−1 − 1)En−1,n−1][I + an−2,n−1En−2,n−1]

× . . . [I + a1,n−1E1,n−1] . . . [I + (a22 − 1)E22][I + a12E12][I + (a11 − 1)E11].

Thus A is an atom if and only if A = I+Eij for each pair i and j with 1 < i < j < n,

or A = I + (p− 1)Eii for some prime p and 1 6 i 6 n. �

Recall that a unit triangular matrix is a matrix in Tn(N0) whose all diagonal

elements are 1’s. Denote Σ(A) =
∑

16i,j6n

aij . By the proof of Theorem 2.1, we can

immediately obtain the following corollary which is Corollary 4.5 in [2].

Corollary 2.2. Let S denote the set of unit triangular matrices in Tn(N0) and

let A ∈ S. Then A is an atom if and only if Σ(A) = 1.

Also, if we take either n = 2 or n = 3 in Theorem 2.1, then we have the following

corollaries, where Corollary 2.3 is Lemma 4.10 in [2].

Corollary 2.3. Let S denote the subsemigroup of the matrices in T2(N0) with

nonzero determinant. The set of atoms of S consists of the matrix X =

(

1 1

0 1

)

and, for each prime p, the matrices Yp =

(

p 0

0 1

)

and Zp =

(

1 0

0 p

)

.

Corollary 2.4. Let S denote the subsemigroup of the matrices in T3(N0) with

nonzero determinant. The set of atoms of S consists of the matrices

X12 =





1 1 0

0 1 0

0 0 1



 , X13 =





1 0 1

0 1 0

0 0 1



 or X23 =





1 0 0

0 1 1

0 0 1





and, for each prime p, the matrices

Y11 =





p 0 0

0 1 0

0 0 1



 , Y22 =





1 0 0

0 p 0

0 0 1



 or Y33 =





1 0 0

0 1 0

0 0 p



 .
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Hereafter, for any given A ∈ Tn(N0) with nonzero determinant, we let r(A) denote

the number of (not necessarily distinct) prime factors of det(A).

Proposition 2.5. Let S denote the subsemigroup of the matrices in Tn(N0) with

nonzero determinant. If A can be factored as A = A1A2 . . . At with each Ai an atom

of S, then t = r(A) + k, where

k = |{i : Ai ∈ {I + E12, . . . , I + E1n, I + E23, . . . , I + E2n, . . . , I + En−1,n}}|.

P r o o f. For each i, Ai is an atom and thus det(Ai) is either 1 or is prime. Since

det(A) = det(A1) det(A2) . . . det(At),

we have

|{i : det(Ai) is prime}| = r(A).

If k = |{i : det(Ai) = 1}|, then the length of this factorization of A is

t = |{i : det(Ai) is prime}|+ |{i : det(Ai) = 1}| = r(A) + k.

�

Taking either n = 2 or n = 3 in Proposition 2.5, we have the following corollaries,

where Corollary 2.6 is Lemma 4.11 in [2].

Corollary 2.6. Let S denote the subsemigroup of the matrices in T2(N0) with

nonzero determinant. If A can be factored as A = A1A2 . . . At with each Ai an atom

of S, then t = r(A) + k, where

k =

∣

∣

∣

∣

{

i : Ai =

(

1 1

0 1

)}∣

∣

∣

∣

.

Corollary 2.7. Let S denote the subsemigroup of the matrices in T3(N0) with

nonzero determinant. If A can be factored as A = A1A2 . . . At with each Ai an atom

of S, then t = r(A) + k, where

k =

∣

∣

∣

∣

∣

∣







i : Ai ∈











1 1 0

0 1 0

0 0 1



 ,





1 0 1

0 1 0

0 0 1



 ,





1 0 0

0 1 1

0 0 1

















∣

∣

∣

∣

∣

∣

.

Lemma 2.8 ([2], Theorem 4.4). Let S denote the subsemigroup of Tn(N0) of unit

triangular matrices and let A ∈ S. Then L(A) = Σ(A).
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Theorem 2.9. Let S denote the subsemigroup of the matrices in Tn(N0) with

nonzero determinant and let

A =











a11 a12 . . . a1n−1 a1n

0 a22 . . . a2n−1 a2n
...

...
. . .

...
...

0 0 . . . 0 ann











∈ S.

(1) L(A) = r(A) + Σ(A).

(2) If A is a diagonal matrix, then l(A) = r(A) = L(A) and ̺(A) = 1.

(3) If aij > 0, aij | aiiajj for some i, j ∈ {1, 2, . . . , n} with i < j, and each of the

other superdiagonal entries of A is 0, then

l(A) = r(A) + 1, ̺(A) =
r(A) + aij
r(A) + 1

and ̺(S) = ∞.

P r o o f. (1) Suppose that A = A1A2 . . . At with each Ai an atom of S. By

Proposition 2.5, t = r(A) + k where

k = |{i : Ai ∈ {I + E12, . . . , I + E1n, I + E23, . . . , I + E2n, . . . , I + En−1,n}}|.

It is not hard to see that

k 6 a12 + a13 + . . .+ a1n + a23 + . . .+ a2n + . . .+ an−1n = Σ(A)

and thus

(2.1) L(A) 6 r(A) + Σ(A).

Also, by the proof of Theorem 2.1, we know that

A =

n
∏

j=1

n−j
∏

i=1

[I + (an+1−j,n+1−j − 1)En+1−j,n+1−j ]

× [I + (an+1−j−i,n+1−j − 1)En+1−j−i,n+1−j ]

= [I + (ann − 1)Enn][I + an−1,nEn−1,n] . . . [I + a1nE1n]

× [I + (an−1,n−1 − 1)En−1,n−1][I + an−2,n−1En−2,n−1] . . . [I + a1,n−1E1,n−1]

× . . . [I + (a22 − 1)E22][I + a12E12][I + (a11 − 1)E11],

and by Lemma 2.8,

(2.2) L(A) > L(A1) + L(A2) + . . .+ L(At) = r(A) +
∑

16i<j6n

aij = r(A) + Σ(A).

Thus, combining (2.1) and (2.2), we have L(A) = r(A) + Σ(A).
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(2) Suppose that A is a diagonal matrix, i.e., aij = 0 for all i, j ∈ {1, 2, . . . , n}

with i < j, and write t = r(A)+k as in Proposition 2.5. If k > 1, then A contains at

least one factor of I +E12, . . . , I +E1n, I +E23, . . . , I +E2n, . . ., or I +En−1,n, and

then there is at least one superdiagonal entry of A that is not 0. This contradicts

the fact that A is a diagonal matrix. Thus, t = r(A) = l(A) = L(A) and, in this

case,

̺(A) =
L(A)

l(A)
= 1.

(3) Suppose that aij > 0, aij | aiiajj for some i, j ∈ {1, 2, . . . , n} with i < j, and

each of the other superdiagonal entries of A is 0. We write l(A) = r(A) + k as in

Proposition 2.5. Notice that r(A) is the number of (not necessarily distinct) prime

factors of det(A) and aij > 0. Then k > 1, and so l(A) > r(A) + 1. Since aij > 0,

aij | aiiajj , aij can be factored as a product of one factor of aii and one factor of

ajj , say aij = a′iia
′

jj where aii = miia
′

ii and ajj = njja
′

jj for some positive integers

mii and njj . Factor A as

A = [I + (a′ii − 1)Eii][I + (njj − 1)Ejj ][I + Eij ][I + (ann − 1)Enn]

× [I + (an−1,n−1 − 1)En−1,n−1] . . . [I + (aj+1,j+1 − 1)Ej+1,j+1]

× [I + (aj−1,j−1 − 1)Ej−1,j−1] . . . [I + (ai+1,i+1 − 1)Ei+1,i+1]

× [I + (ai−1,i−1 − 1)Ei−1,i−1] . . . [I + (a22 − 1)E22]

× [I + (a11 − 1)E11][I + (mii − 1)Eii][I + (a′jj − 1)Ejj ].

From the above factorization of A and (2), it is not hard to see that

l(A) 6 l(A1) + l(A2) + . . .+ l(At) = r(A) + 1.

Thus, l(A) = r(A) + 1.

In this case we immediately get

̺(A) =
r(A) + Σ(A)

r(A) + 1
=

r(A) + aij
r(A) + 1

,

and hence ̺(S) = ∞. �

Specifically, if n = 2 or n = 3 in Theorem 2.9, then we have the following corol-

laries, where Corollary 2.10 is Theorem 4.12 in [2].
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Corollary 2.10. Let S denote the subsemigroup of the matrices in T2(N0) with

nonzero determinant and let

A =

(

a11 a12
0 a22

)

∈ S.

(1) L(A) = r(A) + a12.

(2) If a12 = 0, then l(A) = r(A) = L(A) and ̺(A) = 1.

(3) If a12 | a11a22, then

l(A) = r(A) + 1, ̺(A) =
r(A) + a12
r(A) + 1

and ̺(S) = ∞.

Corollary 2.11. Let S denote the subsemigroup of the matrices in T3(N0) with

nonzero determinant and let

A =





a11 a12 a13
0 a22 a23

0 0 a33



 ∈ S.

(1) L(A) = r(A) + a12 + a13 + a23.

(2) If a12 = a13 = a23 = 0, then l(A) = r(A) = L(A) and ̺(A) = 1.

(3) If a12 | a11a22, a13 = a23 = 0, then

l(A) = r(A) + 1, ̺(A) =
r(A) + a12
r(A) + 1

and ̺(S) = ∞.

(4) If a13 | a11a33, a12 = a23 = 0, then

l(A) = r(A) + 1, ̺(A) =
r(A) + a13
r(A) + 1

and ̺(S) = ∞.

(5) If a23 | a22a33, a12 = a13 = 0, then

l(A) = r(A) + 1, ̺(A) =
r(A) + a23
r(A) + 1

and ̺(S) = ∞.

Remark 2.12. Theorem 2.9 not only generalizes Theorem 4.4 in [2], but also

gives a formula for ̺(S), and given A ∈ S, provides formulas for l(A), L(A) and

̺(A). Further, open problem 4 in [2] is partly answered.
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3. Subsemigroups of T2(N0)

In this section we consider the subsemigroup

S =

{(

1 c

0 b

)

: b ∈ N, c ∈ N0

}

of T2(N0).

We will discuss factorizations of the matrices in S in the following three cases.

Case I: A =

(

1 c

0 1

)

.

By Theorem 4.6 in [2], every factorization of A is unique up to units.

Case II: A =

(

1 c

0 p

)

, where p is prime.

Write c = kp+ i where i ∈ {0, 1, 2, . . . , p− 1}. By Corollary 2.3, A can be written

as

(3.1) A =

(

1 c

0 p

)

=

(

1 kp+ i

0 p

)

=

(

1 a

0 1

)(

1 0

0 p

)(

1 b

0 1

)

for some a, b ∈ N0, where the matrices

(

1 a

0 1

)

and

(

1 b

0 1

)

need not be atoms.

It follows that

(3.2) c = kp+ i = ap+ b.

Now write A as A = A1A2 . . . At, where each Ai is an atom. Note that for any given

matrix

(

1 m

0 1

)

∈ S, the only factorization is

(

1 1

0 1

)m

. Then, we have

t = a+ b+ r(A) = a+ b+ 1.

Hence, to calculate l(A), we only need to calculate the minimum of a + b. By

equation (3.2), we have kp + i = ap + b, where i ∈ {0, 1, 2, . . . , p − 1}. Thus, if we

take a = j ∈ [0, k], then b = (k − j)p+ i, and then

(3.3) a+ b = j + (k − j)p+ i = (1− p)j + kp+ i.

From equation (3.3) we can see that a + b has the minimum k + i when a = j = k,

b = (k − j)p+ i = (k − k)p+ i = i. Thus

l(A) = k + i+ r(A) = k + i+ 1.

10



Also, one of the factorizations of A with the minimum length k + i+ 1 is

A =

(

1 kp+ i

0 p

)

=

(

1 k

0 1

)(

1 0

0 p

)(

1 i

0 1

)

=

(

1 1

0 1

)k (
1 0

0 p

)(

1 1

0 1

)i

.

Similarly, we can show that a + b has the maximum kp + i = c when a = j = 0

and b = c.

From the above work, together with Theorem 4.12 in [2], we have the following

theorem.

Theorem 3.1. Let A =

(

1 c

0 p

)

∈ T2(N0) where p is prime and c = kp + i for

0 6 i < p. Then

L(A) = c+ 1, l(A) = k + i+ 1 and ̺(A) =
c+ 1

k + i+ 1
.

Also,

A =

(

1 kp+ i

0 p

)

=

(

1 1

0 1

)k (
1 0

0 p

)(

1 1

0 1

)i

is a factorization of A with minimal length l(A) = k + i+ 1.

Moreover, by equation (3.3), it is also easy to calculate that

L(A) = {k + i+ 1, k + p+ i, k + i+ 2p− 1, . . . , (k − 1)p+ i+ 2, kp+ i+ 1}

and thus

∆(A) = {p− 1}.

Therefore, we immediately have the following theorem.

Theorem 3.2. Let A =

(

1 c

0 p

)

∈ T2(N0) where p is prime. Then ∆(A) =

{p− 1}.

Example 3.3. Let A =

(

1 11

0 3

)

∈ T2(N0). Since 11 = c = kp+ i = 3 · 3 + 2,

by Theorem 3.1 we have

L(A) = 11 + 1 = 12 and l(A) = k + i+ 1 = 3 + 2 + 1 = 6.

Also,

A =

(

1 11

0 3

)

=

(

1 3

0 1

)(

1 0

0 3

)(

1 2

0 1

)

=

(

1 1

0 1

)3 (

1 0

0 3

)(

1 1

0 1

)2

is a factorization of A with minimal length l(A).

11



Remark 3.4. Theorem 3.1 and Theorem 3.2 give formulas for L(A), l(A), ̺(A)

and ∆(A) for any A =

(

1 c

0 p

)

∈ T2(N0) where p is prime. Consequently, a special

case of open problem 2 in [2] is answered.

Case III: A =

(

1 c

0 b

)

, with b not prime.

Write b = p1p2 . . . pt where {p1, p2, . . . , pt} is a set of primes with t > 1. It is not

hard to see that A can be written as

A =

(

1 a1
0 1

)(

1 0

0 pi1

)(

1 a2
0 1

)(

1 0

0 pi2

)

. . .

(

1 at
0 1

)(

1 0

0 pit

)(

1 at+1

0 1

)

,

where none of these terms has to be an atom of S, and {i1, i2, . . . , it} is a permutation

of {1, 2, . . . , t}. Assume that c = kb+ j for 0 6 j < b. Then we have

(3.4) c = kb+ j = ba1 + pit . . . pi2a2 + . . .+ pitat + at+1.

Clearly, there exist (t + 1)-tuples of integers (a1, a2, . . . , at+1) which satisfy equa-

tion (3.4). Further, the set of such (t + 1)-tuples of integers (a1, a2, . . . , at+1) is

finite. Thus the set

T =

{t+1
∑

i=1

ai : c = ba1 + pit . . . pi2a2 + . . .+ pitat + at+1

}

is a finite subset of N0. Write A as A = A1A2 . . . Aq, where each Ai is an atom.

Then we have

q =

t+1
∑

i=1

ai + r(A).

Thus, to calculate l(A), by Theorem 2.9 we only need to calculate the minimum of

the set T . Now, if we denote the minimum by m = minT, then we immediately get

l(A) = r(A) +m = t+m.

On the other hand, by Theorem 4.12 in [2], for any A =

(

1 c

0 b

)

∈ T2(N0), where

b = p1p2 . . . pt, p1, p2, . . . , pt are prime, we have L(A) = t+ c.

Thus, from the above work, we have the following theorem.

Theorem 3.5. Let A =

(

1 c

0 b

)

∈ T2(N0), where c = kb + i for 0 6 i < b,

b = p1p2 . . . pt and {p1, p2, . . . , pt} is a set of primes with t > 1. Denote

m = min

{t+1
∑

i=1

ai : c = ba1 + pit . . . pi2a2 + . . .+ pitat + at+1

}

,

12



where {i1, i2, . . . , it} is a permutation of {1, 2, . . . , t}. Then

L(A) = t+ c, l(A) = t+m, and ̺(A) =
t+ c

t+m
.

Remark 3.6. Theorem 3.5 gives formulas for L(A), l(A) and ̺(A) for any A =
(

1 c

0 b

)

∈ T2(N0). Consequently, another special case of open problem 2 in [2] is

answered. Further, Theorem 3.5 shows us a method how to calculate l(A).

In general, we can calculate l(A) by the following three steps:

Step 1: Factor b = p1p2 . . . pt as a product of primes and write c = kb + i, where

0 6 i < p.

Step 2: Find nonnegative integers a1, a2, . . . , at, at+1 such that

kb+ i = ba1 + pit . . . pi2a2 + . . .+ pitat + at+1,

where {i1, i2, . . . , it} is a permutation of {1, 2, . . . , t}.

Step 3: Calculate the minimum m of the set

{t+1
∑

i=1

ai : c = ba1 + pit . . . pi2a2 + . . .+ pitat + at+1

}

,

where {i1, i2, . . . , it} is a permutation of {1, 2, . . . , t}.

We have l(A) = r(A) +m.

Example 3.7. Let A =

(

1 231

0 20

)

∈ S. Clearly, b = 20 = 2 · 2 · 5 and c = 231 =

11 · 20 + 11. Suppose that

A =

(

1 a1

0 1

)(

1 0

0 pi1

)(

1 a2

0 1

)(

1 0

0 pi2

)(

1 a3

0 1

)(

1 0

0 pi3

)(

1 a4

0 1

)

.

Then we have c = 20a1 + pi2pi3a2 + pi3a3 + a4 = 11 · 20 + 11.

Case 1: If pi1 = 5 and pi2 = pi3 = 2, then c = 20a1+4a2+2a3+a4 = 11 ·20+11,

and m1 = min
{ 4
∑

i=1

ai : c = 20a1 + 4a2 + 2a3 + a4

}

= 11 + 2 + 1 + 1 = 15.

Case 2: If pi2 = 5 and pi1 = pi3 = 2, then c = 20a1+10a2+2a3+a4 = 11 ·20+11,

and m2 = min
{ 4
∑

i=1

ai : c = 20a1 + 10a2 + 2a3 + a4

}

= 11 + 1 + 0 + 1 = 13.

Case 3: If pi3 = 5 and pi1 = pi2 = 2, then c = 20a1+10a2+5a3+a4 = 11 ·20+11,

and m3 = min
{ 4
∑

i=1

ai : c = 20a1 + 10a2 + 5a3 + a4

}

= 11 + 1 + 0 + 1 = 13.

13



Hence we have

m = min

{ 4
∑

i=1

ai : c = ba1 + pit . . . pi2a2 + pi3a3 + a4

}

= 13,

and

l(A) = r(A) +m = 3 + 13 = 16.

Further, the factorizations of the minimum length of A are

A =

(

1 231

0 20

)

=

(

1 11

0 1

)(

1 0

0 2

)(

1 1

0 1

)(

1 0

0 5

)(

1 0

0 2

)(

1 1

0 1

)

and

A =

(

1 231

0 20

)

=

(

1 11

0 1

)(

1 0

0 2

)(

1 1

0 1

)(

1 0

0 2

)(

1 0

0 5

)(

1 1

0 1

)

.

Also, note that

L(A) = r(A) + c = 3 + 231 = 234

and thus

̺(A) =
t+ c

t+m
=

234

16
=

117

8
.

Remark 3.8. The above example also shows that the factorizations of the matrix

A ∈ T2(N0) with the minimum length are not unique in general.

Analogously to the discussions of Theorem 3.5, we obtain the following theorem.

Theorem 3.9. Let A =

(

a c

0 1

)

∈ T2(N0) where c = ka + i for 0 6 i < a,

a = p1p2 . . . pt and {p1, p2, . . . , pt} is a set of primes with t > 1. Denote

m = min

{t+1
∑

i=1

ai : c = aat+1 + pi1 . . . pi2at + . . .+ pi1a2 + a1

}

where {i1, i2, . . . , it} is a permutation of {1, 2, . . . , t}. Then we have

L(A) = t+ c, l(A) = t+m and ̺(A) =
t+ c

t+m
.
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4. Subsemigroups of Tn(N)

In this section we will study the subsemigroup of upper triangular matrices with

only positive integral entries.

Let n > 3 and consider

S =











a11 a12 ... a1n−1 a1n

0 a22 ... a2n−1 a2n

...
...
. . .

...
...

0 0 ... 0 ann



∈ Tn(N) : aii < ai i+1 < . . . < ain for 2 6 i 6 n− 1







.

It is not hard to check that S is a subsemigroup of Tn(N).

Theorem 4.1. Let n > 3 and

S =











a11 a12 ... a1n−1 a1n

0 a22 ... a2n−1 a2n

...
...
. . .

...
...

0 0 ... 0 ann



∈ Tn(N) : aii < ai i+1 < . . . < ain for 2 6 i 6 n− 1







.

Then A ∈ S is an atom if and only if one of the following conditions holds:

(Ci i+1) ai i+1 = 1 for 1 6 i 6 n− 1;

(Ci i+2) 1 6 ai i+2 6 2 for 1 6 i 6 n− 2;

...

(C1n) 1 6 a1n 6 n− 1.

P r o o f. Note that the form of the superdiagonal entries of the product A of two

elements of S must satisfy ai,i+1 > 2 for 1 6 i 6 n−1, ai,i+2 > 3 for 1 6 i 6 n−2,. . .,

a1n > n. Thus, if A ∈ S satisfies any of the above conditions, then it cannot be

factored as two elements of S, and A is an atom.

Conversely, suppose that

A =















a11 a12 . . . a1n−1 a1n
0 a22 . . . a2n−1 a2n
...

...
. . .

...
...

0 0 . . . an−1n−1 an−1n

0 0 . . . 0 ann















∈ S
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satisfies ai,i+1 > 2 for 1 6 i 6 n− 1, ai,i+2 > 3 for 1 6 i 6 n− 2, . . ., a1n > n. Then

we can factor A as A = BC, where

B =





















1 1 1 . . . 1 1

0 a22 a23 − a22 . . . a2n−1 − a2n−2 a2n − a2n−1

0 0 a33 . . . a3n−1 − a3n−2 a3n − a3n−1

...
...

...
. . .

...
...

0 0 0 . . . an−1n−1 an−1n − an−1n−1

0 0 0 . . . 0 ann





















and

C =



















a11 a12 − 1 a13 − 2 . . . a1n−1 − (n− 2) a1n − (n− 1)

0 1 1 . . . 1 1

0 1 1 . . . 1 1
...

...
...

. . .
...

...

0 0 0 . . . 1 1

0 0 0 . . . 0 1



















.

By the previous proof of sufficiency condition of the theorem, we can see that B and

C are atoms of S. Thus, A is not an atom of S. �

From the proof of Theorem 4.1, for any A ∈ S which is not an atom, the su-

perdiagonal entries of A must satisfy the conditions ai,i+1 > 2 for 1 6 i 6 n − 1,

ai,i+2 > 3 for 1 6 i 6 n− 2,. . ., a1n > n. And then A can be written as a product of

two atoms of S. Thus, we obtain the following theorem.

Theorem 4.2. Let n > 3 and

S =











a11 a12 ... a1 n−1 a1n

0 a22 ... a2 n−1 a2n

...
...
. . .

...
...

0 0 ... 0 ann



∈ Tn(N) : aii < ai,i+1 < . . . < ain for 2 6 i 6 n− 1







.

Then S is bifurcus.

In particular, if n = 3 in Theorem 4.2, then we have

Corollary 4.3. Let

S =











a11 a12 a13
0 a22 a23

0 0 a33



 ∈ T3(N) : a22 < a23







.

Then S is bifurcus.
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Remark 4.4. The above theorem gives some invariants of two classes of sub-

semigroups of Tn(N). Note that if S is bifurcus, then ̺(S) = ∞, and ∆(S) = {1}.

Consequently, some special cases of open problem 3 in [2] are partly answered.

5. T2(N)

In this section we investigate factorizations of matrices in T2(N) of the form
(

1 c

0 p

)

where p is prime.

First, it is not hard to see that A can be written as

(5.1) A =

(

1 c

0 p

)

=

(

1 kp+ i

0 p

)

=

(

1 a

0 1

)(

1 1

0 p

)(

1 b

0 1

)

for a, b > 0,

where the matrices

(

1 a

0 1

)

and

(

1 b

0 1

)

need not be atoms.

(1) Assume that c = kp for k > 0. Then by equation (5.1), we have

(5.2) c = kp = ap+ b+ 1.

Now write A as A = A1A2 . . . At where each Ai is an atom. Note that for any given

matrix

(

1 m

0 1

)

∈ T2(N), its only factorization is

(

1 1

0 1

)m

. Then, together with

equation (5.1), we have

t = a+ b+ r(A) = a+ b+ 1.

Hence, to calculate l(A), we only need to calculate the minimum of a + b. By

equation (5.2), we get

(5.3) a+ b = j + (k − j)p− 1 = (1− p)j + kp− 1

where j is any integral value in the interval [0, k]. By equation (5.3), we can see that

a+ b has the minimum k+ p− 1 when a = j = k− 1, b = (k− j)p− 1 = p− 1; a+ b

has the maximum kp− 1 = c− 1 when a = j = 0, b = kp− 1. Thus,

l(A) = k + p− 2 + r(A) = k + p− 1 and L(A) = kp = c.

Moreover, one of the factorizations of A with minimum length is as follows:

(i) If k = 1, then

A =

(

1 p

0 p

)

=

(

1 1

0 p

)(

1 p− 1

0 1

)

=

(

1 1

0 p

)(

1 1

0 1

)p−1

.
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(ii) If k > 1, then

A =

(

1 kp

0 p

)

=

(

1 k − 1

0 1

)(

1 1

0 p

)(

1 p− 1

0 1

)

=

(

1 1

0 1

)k−1 (

1 1

0 p

)(

1 1

0 1

)p−1

.

(2) Assume that 0 < c = kp+ i for 1 6 i < p. Then by equation (5.1), we have

(5.4) c = kp+ i = ap+ b+ 1.

Write A as A = A1A2 . . . At, where each Ai is an atom. Then, if A can be also

factored (not necessarily as a product of atoms) as (5.1), we have

t = a+ b+ r(A) = a+ b+ 1.

Hence, to calculate l(A), we only need to calculate the minimum of a + b. By

equation (5.4), we get

(5.5) a+ b = j + (k − j)p+ i− 1 = (1− p)j + kp+ i− 1,

where j is any integral value in the interval [0, k]. By equation (5.5), a+ b has the

minimum k+i−1 when a = j = k, b = (k−j)p+i−1 = i−1; a+b has the maximum

kp+ i− 1 = c− 1 when a = j = 0, b = (k− j)p+ i− 1 = (k− 0)p+ i− 1 = kp+ i− 1.

Thus,

l(A) = k + i− 1 and L(A) = kp+ i = c.

Further, one of the factorizations of A with minimum length is as follows:

A =

(

1 kp+ i

0 p

)

=

(

1 k

0 1

)(

1 1

0 p

)(

1 i − 1

0 1

)

=

(

1 1

0 1

)k (
1 1

0 p

)(

1 1

0 1

)i−1

.

In particular, when k = 0, i > 1, then

A =

(

1 i

0 p

)

=

(

1 1

0 p

)(

1 i− 1

0 1

)

=

(

1 1

0 p

)(

1 1

0 1

)i−1

;

when k > 0, i = 1, then

A =

(

1 kp+ 1

0 p

)

=

(

1 k

0 1

)(

1 1

0 p

)

=

(

1 1

0 1

)k (
1 1

0 p

)

.
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From the above work, we have the following theorem.

Theorem 5.1. Let A =

(

1 c

0 p

)

∈ T2(N) where p is prime.

(i) If c = kp for k > 0, then L(A) = c, l(A) = k + p− 1 and ̺(A) = c/(k + p− 1).

(ii) If c = kp+ i for 1 6 i < p, then L(A) = c, l(A) = k + i and ̺(A) = c/(k + i).

Example 5.2. Let A =

(

1 11

0 3

)

∈ T2(N). Since 11 = c = kp+ i = 3 · 3+ 2, by

Theorem 5.1

L(A) = c = 11 and l(A) = k + i = 3 + 2 = 5.

Also,

A =

(

1 11

0 3

)

=

(

1 3

0 1

)(

1 1

0 3

)(

1 1

0 1

)

=

(

1 1

0 1

)3 (

1 1

0 3

)(

1 1

0 1

)

is a factorization of A with minimum length l(A) = 5.

Moreover, for any A =

(

1 c

0 p

)

∈ T2(N) where p is prime we have:

(i) If c = kp for k > 0, then

L(A) = {k + p− 1, k + 2p− 2, k + 3p− 3, . . . , (k − 1)p+ 1, kp}

and

∆(A) = {p− 1}.

(ii) If c = kp+ i for 1 6 i < p, then

L(A) = {k + i, k + i+ p− 1, k + i+ 2p− 1, . . . , (k − 1)p+ i+ 1, kp+ i}

and

∆(A) = {p− 1}.

Hence, the following theorem is obtained.

Theorem 5.3. Let A =

(

1 c

0 p

)

∈ T2(N) where p is prime. Then∆(A) = {p−1}.

Remark 5.4. Theorem 5.1 and Theorem 5.3 give formulas for l(A), ̺(A) and

∆(A) for any A =

(

1 c

0 p

)

∈ T2(N), where p is prime. As a consequence, a special

case of open Problem 1 in [2] is answered.
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