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Abstract. Y.Euh, J. Park and K. Sekigawa were the first authors who defined the con-
cept of a weakly Einstein Riemannian manifold as a modification of that of an Einstein
Riemannian manifold. The defining formula is expressed in terms of the Riemannian scalar
invariants of degree two. This concept was inspired by that of a super-Einstein manifold
introduced earlier by A.Gray and T. J.Willmore in the context of mean-value theorems in
Riemannian geometry. The dimension 4 is the most interesting case, where each Einstein
space is weakly Einstein. The original authors gave two examples of homogeneous weakly
Einstein manifolds (depending on one, or two parameters, respectively) which are not Ein-
stein. The goal of this paper is to prove that these examples are the only existing examples.
We use, for this purpose, the classification of 4-dimensional homogeneous Riemannian man-
ifolds given by L.Bérard Bergery and, also, the basic method and many explicit formulas
from our previous article with different topic published in Czechoslovak Math. J. in 2008.
We also use Mathematica 7.0 to organize better the tedious routine calculations. The prob-
lem of existence of non-homogeneous weakly Einstein spaces in dimension 4 which are not
Einstein remains still unsolved.

Keywords: Riemannian homogeneous manifold; Einstein manifold; weakly Einstein mani-
fold

MSC 2010 : 53C21, 53C30, 53B21, 53C25

1. Introduction and preliminaries

The first definition of a weakly Einstein manifold in general dimension appeared in

[5] and a more detailed study for dimension 4 continued in [6] and [7]. This definition

was inspired by that of a super-Einstein manifold as defined in [8]. An n-dimensional

The first author has been partially supported by D.G. I. (Spain) and FEDER Project
MTM2013-46961-P, by Junta de Extremadura and FEDER funds and by DFG Sonder-
forschungsbereich 647. The second author was partially supported by the grant GAČR
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Einstein manifold M = (M, g) is said to be super-Einstein if the following curvature

identity is satisfied:

(1.1) R̆ =
1

n
|R|2g

where R̆ is the tensor given by the coordinate formula R̆ij =
n
∑

a,b,c=1

RabciRabcj

for i, j = 1, . . . , n. Here, |R|2 was supposed to be constant. With respect to an
orthonormal frame, (1.1) can re-written in the form

(1.2)

n
∑

a,b,c=1

RabciRabcj =
1

n
|R|2δij , i, j = 1, . . . , n.

Now, a Riemannian manifold M = (M, g) is said to be weakly Einstein if it satisfies

the formula (1.1) (or (1.2), respectively). It is known from [3] that, for n 6= 4,

the constancy of |R| is automatically satisfied. Thus, the dimension 4 is the most

interesting case. In [5], the authors prove that, in the 4-dimensional case, each

Einstein manifold is weakly Einstein. The converse does not hold. In [6], the authors

present two different examples of homogeneous weakly Einstein spaces which are not

Einstein.

Example 1.1 ([6], Ex. 4). The Riemannian product manifold of 2-dimensional

Riemannian manifoldsM1(c) andM2(−c) of constant Gaussian curvatures c and −c

(c 6= 0), respectively.

Example 1.2 ([6], Ex. 5). A connected and simply connected solvable Lie group

(G, g)α,β whose associated Lie algebra gα,β = spanR{e1, e2, e3, e4} is equipped with
the following Lie bracket operation:

[e1, e2] = αe2, [e1, e3] = −αe3 − βe4, [e1, e4] = βe3 − αe4,(1.3)

[e2, e3] = 0, [e2, e4] = 0, [e3, e4] = 0,

where α 6= 0, β are constants. Here, g is the left-invariant Riemannian metric on G

determined by the inner product 〈, 〉 on gα,β defined by 〈ei, ej〉 = δij . In the sequel,

we will use for the Riemannian group spaces (G, g)α,β the name EPS spaces giving

hereby the credit to the authors of the papers [5], [6], [7].

The main goal of this paper is to find all homogeneous weakly Einstein examples

in dimension 4 using the classification given by L.Bérard Bergery. Our final result

is formulated in the following
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Main theorem. Every homogeneous weakly Einstein 4-manifold which is not

Einstein is isometric either to a direct product from Example 1.1 or to an EPS space

from Example 1.2.

In [2], L. Bérard Bergery published the classification of Riemannian homogeneous

4-spaces. In particular, he obtained the following

Proposition 1.1. In dimension 4, each simply connected Riemannian homoge-

neous space M is either symmetric or isometric to a Lie group with a left-invariant

metric. In the second case, either M is a solvable group or it is one of the groups

SU(2) × R, S̃l(2,R) × R. Moreover, the solvable and simply connected Lie groups

are:

(a) The non-trivial semi-direct products E(2)⋊R and E(1, 1)⋊R.

(b) The non-nilpotent semi-direct productsH⋊R, whereH is the Heisenberg group.

(c) All semi-direct products R3 ⋊R.

Now, the main part of our computations is to check which of these spaces are

weakly Einstein and not Einstein. We shall work at the Lie algebra level and use

Mathematica 7.0 for the computations.

Let us start with the symmetric case. Using the de Rham decomposition theorem

we can see easily the following:

Theorem 1.2. The only symmetric weakly Einstein spaces are the following ones:

(a) Any irreducible 4-dimensional symmetric space (which is known to be Einstein).

(b) The direct products M2(c)×M2(d) where c = ±d. Here, the only non-Einstein

weakly Einstein spaces are the direct products M2(c)×M2(−c).

We have recovered Example 1.1.

Let us continue with the non-solvable group case and later we shall work with the

solvable case.

2. Non-solvable cases (SU(2)× R and S̃l(2,R)× R)

Let g3 be a unimodular Lie algebra with a scalar product 〈, 〉3. According to [10],
page 305, there is an orthonormal basis {f1, f2, f3} of g3 such that

(2.1) [f2, f3] = af1, [f3, f1] = bf2, [f1, f2] = cf3,

where a, b, c are real numbers. In the following, we shall study the cases g3 = su(2)

and g3 = sl(2,R), which are characterized by the inequality abc 6= 0.
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Let now g = g3 ⊕ R be the direct sum, and 〈, 〉 a scalar product on g defined

as follows: we choose a basis {f1, f2, f3, f4} of unit vectors such that {f1, f2, f3} is
an orthonormal basis of g3 satisfying (2.1) and f4 spans R. Here R need not be

orthogonal to g3. In particular, we assume

(2.2) [fi, f4] = 0, 〈fi, f4〉 = ki, i = 1, 2, 3.

Here k1, k2, k3 are arbitrary parameters where
3
∑

i=1

k2i < 1 due to the Cauchy-Schwarz

inequality. Choosing a convenient orientation of f4, we can always assume that

k3 > 0.

Now we replace the basis {fi} by the new basis {ei} (i = 1, 2, 3, 4) putting

(2.3) ei = fi, i = 1, 2, 3, e4 =
1

R

(

f4 −
3

∑

i=1

kifi

)

where R =
√

1−∑3
i=1 k

2
i > 0. Then we get an orthonormal basis for which

[e2, e3] = ae1, [e3, e1] = be2, [e1, e2] = ce3,(2.4)

[e1, e4] =
1

R
(k3be2 − k2ce3), [e2, e4] =

1

R
(k1ce3 − k3ae1),

[e3, e4] =
1

R
(k2ae1 − k1be2).

Next, we shall consider the simply connected Lie group G with a left invariant

Riemannian metric g corresponding to the Lie algebra g and the scalar product 〈, 〉
on it. Here the vectors ei determine some left-invariant vector fields on G.

According to our construction, the underlying group G is the direct product of

the group SU(2), or ˜Sl(2,R), and the multiplicative group R+.

Theorem 2.1. The Riemannian manifolds (SU(2) × R, g) and ( ˜Sl(2,R) × R, g)

are not weakly Einstein.

We shall prove this theorem step by step. First, we calculate the conditions for

(G, g) to be a weakly Einstein manifold. From [1] we know the expression for the

curvature tensor. We denote by Aij the elementary skew-symmetric operators whose

corresponding action is given by the formulas Aij(el) = δilej − δjlei.
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Lemma 2.2 ([1]). The components of the curvature operator are

R(e1, e2) = α1212A12 + α1213A13 + α1214A14 + α1223A23 + α1224A24,(2.5)

R(e1, e3) = α1312A12 + α1313A13 + α1314A14 + α1323A23 + α1334A34,

R(e1, e4) = α1412A12 + α1413A13 + α1414A14 + α1424A24 + α1434A34,

R(e2, e3) = α2312A12 + α2313A13 + α2323A23 + α2324A24 + α2334A34,

R(e2, e4) = α2412A12 + α2414A14 + α2423A23 + α2424A24 + α2434A34,

R(e3, e4) = α3413A13 + α3414A14 + α3423A23 + α3424A24 + α3434A34,

where the coefficients αijlm = g(R(ei, ej)el, em) satisfy the standard symmetries with

respect to their indices and

α1212 =
1

4R2
((3c2 − (a− b)2 − 2c(a+ b))R2 − (a− b)2k23),(2.6)

α1213 =
1

4R2
((a− b)(a− c)k2k3),

α1214 =
1

4R
((a− c)(a− b+ 3c)k2),

α1223 =
1

4R2
((a− b)(b − c)k1k3),

α1224 =
1

4R
((b − c)(a− b− 3c)k1),

α1313 =
1

4R2
((3b2 − (a− c)2 − 2b(a+ c))R2 − (a− c)2k22),

α1314 =
1

4R
((a− b)(a− c+ 3b)k3),

α1323 =
1

4R2
((a− c)(b − c)k1k2),

α1334 =
1

4R
((c− b)(c− a+ 3b)k1),

α1414 =
1

4R2
((4c2 − (a+ c)2)k22 + (4b2 − (a+ b)2)k23),

α1424 =
1

4R2
((c(a+ b − 3c) + ab)k1k2),

α1434 =
1

4R2
((b(a+ c− 3b) + ac)k1k3),

α2323 =
1

4R2
((3a2 − (b− c)2 − 2a(b+ c))R2 − (b− c)2k21),

α2324 =
1

4R
((b − a)(3a+ b− c)k3),

α2334 =
1

4R
((a− c)(3a− b+ c)k2),
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α2424 =
1

4R2
((4c2 − (b+ c)2)k21 + (4a2 − (a+ b)2)k23),

α2434 =
1

4R2
((a(−3a+ b + c) + bc)k2k3),

α3434 =
1

4R2
((4b2 − (b+ c)2)k21 + (4a2 − (a+ c)2)k22).

Next, (G, g) is weakly Einstein if and only if the expression

(2.7)
4

∑

a,b,c=1

αabciαabcj −
1

4
|R|2δij

is equal to zero for every pair of indices (i, j), i, j = 1, . . . , 4. Moreover, note that

(2.8)

4
∑

i=1

4
∑

a,b,c=1

αabciαabci =

4
∑

i,a,b,c=1

α2
abci = |R|2.

Here we obtain, by a lengthy but routine calculation

Lemma 2.3.

|R|2 =

4
∑

i,j,k,l=1

α2
ijkl =

1

4R4
((−11(a4 + b4 + c4) + 12abc(a+ b+ c))R4(2.9)

+ 2(b− c)2(−a2 − 6a(b+ c))R2k21

+ 2(a− c)2(−b2 − 6b(a+ c))R2k22

+ 2(a− b)2(−c2 − 6c(a+ b))R2k23

+ (b− c)2(11b2 + 10bc+ 11c2)(R2 + k21)
2

+ (a− c)2(11a2 + 10ac+ 11c2)(R2 + k22)
2

+ (a− b)2(11a2 + 10ab+ 11b2)(R2 + k23)
2

+ 2(c2(11c2 − 6ac− a2)− 2bc(3c2 − 2ac+ 3a2)

+ b2(−c2 − 6ac+ 11a2))k21k
2
2

+ 2(b2(11b2 − 6bc− c2)− 2ab(3b2 − 2bc+ 3c2)

+ a2(−b2 − 6bc+ 11c2))k21k
2
3

+ 2(a2(11a2 − 6ab− b2)− 2ac(3a2 − 2ab+ 3b2)

+ c2(−a2 − 6ab+ 11b2))k22k
2
3).
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Lemma 2.4. The vanishing of the term (2.7) for each pair (i, j) is equivalent to

the system of algebraic equations

(1, 2) = k1k2((a− c)(c− b)(2ab+ c(a+ b)− 5c2)R2(2.10)

+ (b − c)(ab(b+ c) + c2(2a+ b− 5c))k21

+ (a− c)(ab(a+ c) + c2(a+ 2b− 5c))k22

+ (−2ab(ab+ 3c2) + (a2 + b2)c(a+ b + 2c))k23) = 0,

(1, 3) = k1k3((a− b)(b− c)(2ac+ b(a+ c)− 5b2)R2

+ (c− b)(ac(b+ c) + b2(2a− 5b+ c))k21

+ (−2ac(3b2 + ac) + (a2 + c2)b(a+ 2b+ c))k22

+ (a− b)(ac(b+ a) + b2(2c− 5b+ a))k23) = 0,

(2, 3) = k2k3((b− a)(a− c)(2bc+ a(b+ c)− 5a2)R2

+ (−2bc(3a2 + bc) + (b2 + c2)a(2a+ b+ c))k21

+ (c− a)(bc(a+ c) + a2(2b− 5a+ c))k22

+ (b − a)(bc(a+ b) + a2(2c− 5a+ b))k23) = 0,

(1, 4) = k1((b − c)2(5c2 + (a− b)(a− 5b− 6c))R2

+ (b − c)2(5b2 + 2(3bc− a(b+ c)) + 5c2)k21

+ (a− c)((a− 5c)c2 + ab(a− 2c) + b2(2a+ 3c))k22

+ (a− b)((a− 5b)b2 + ac(a− 2b) + c2(2a+ 3b))k23) = 0,

(2, 4) = k2((c− a)2(5a2 + (b− c)(b − 5c− 6a))R2

+ (b − c)((b − 5c)c2 + ab(b− 2c) + a2(2b+ 3c))k21

+ (a− c)2(5a2 + 2(3ac− b(a+ c)) + 5c2)k22

+ (b − a)((b− 5a)a2 + bc(b− 2a) + c2(2b+ 3a))k23) = 0,

(3, 4) = k3((a− b)2(5b2 + (c− a)(c− 5a− 6b))R2

+ (c− b)((c− 5b)b2 + ac(c− 2b) + a2(2c+ 3b))k21

+ (c− a)((c− 5a)a2 + bc(c− 2a) + b2(2c+ 3a))k22

+ (a− b)2(5a2 + 2(3ab− c(a+ b)) + 5b2)k23) = 0,

(1, 1) = (7a4 + 4abc(5b− 7a+ 5c)− 2bc(2b+ c)(b + 2c))R4

− (b − c)2(11b2 + 10bc+ 11c2)k41

+ (c− a)3(7a+ 9c)(R2 + k22)
2

+ (b − a)3(7a+ 9b)(R2 + k23)
2

+ 2(b− c)2(3a2 − 2a(b+ c)− (b − c)2)R2k21

+ 2(a− c)2(2b(3a− c)− 3b2)R2k22
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+ 2(a− b)2(2c(3a− b)− 3c2)R2k23

+ 2(b− c)(c− a)(3a+ c)(c+ 3b)k21k
2
2

+ 2(a− b)(b − c)(3a+ b)(b+ 3c)k21k
2
3

+ 2(a2(−7a2 + 6ab− 3b2) + 2ac(3a2 + 6ab− 5b2)

+ c2(9b2 − 10ab− 3a2))k22k
2
3 = 0,

(2, 2) = (7b4 + 4abc(5a− 7b+ 5c)− 2ac(2a+ c)(a+ 2c))R4

+ (c− b)3(7b+ 9c)(R2 + k21)
2

− (a− c)2(11a2 + 10ac+ 11c2)k42

+ (a− b)3(9a+ 7b)(R2 + k23)
2

+ 2(b− c)2(2a(3b− c)− 3a2)R2k21

+ 2(a− c)2(3b2 − 2b(a+ c)− (a− c)2)R2k22

+ 2(a− b)2(2c(3b− a)− 3c2)R2k23

+ 2(b− c)(c− a)(3a+ c)(c+ 3b)k21k
2
2

+ 2(b2(−7b2 + 6bc− 3c2) + 2ab(3b2 + 6bc− 5c2)

+ a2(9c2 − 10bc− 3b2))k21k
2
3

+ 2(b− a)(a− c)(3b+ a)(a+ 3c)k22k
2
3 = 0,

(3, 3) = (7c4 + 4abc(5a− 7c+ 5b)− 2ab(2a+ b)(a+ 2b))R4

+ (b − c)3(9b+ 7c)(R2 + k21)
2

+ (a− c)3(9a+ 7c)(R2 + k22)
2

− (a− b)2(11a2 + 10ab+ 11b2)k43

+ 2(b− c)2(2a(3c− b)− 3a2)R2k21

+ 2(a− c)2(2b(3c− a)− 3b2)R2k22

+ 2(a− b)2(3c2 − 2c(a+ b)− (a− b)2)R2k23

+ 2(c2(−7c2 + 6ac− 3a2) + 2bc(3c2 + 6ac− 5a2)

+ b2(9a2 − 10ac− 3c2))k21k
2
2

+ 2(a− b)(b − c)(3a+ b)(b+ 3c)k21k
2
3

+ 2(b− a)(a− c)(3b+ a)(a+ 3c)k22k
2
3 = 0.

Here the symbol “(i, j)” marks the substitution of the corresponding i 6 j in (2.7).

Note that
4
∑

k=1

(k, k) = 0 in this notation.

Now, our goal is to find the values of a, b, c, k1, k2 and k3 which satisfy the system

of equations (2.10) and to study each of the particular cases.
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Lemma 2.5. a = b = c 6= 0, k1, k2, k3 arbitrary, is not a solution of the system

(2.10).

P r o o f. Substituting a and c by b in equation (1, 1) = 0 of (2.10) we get that

b4R4 = 0 which is a contradiction with the assumptions abc 6= 0 and R > 0. �

Proposition 2.6. The system of algebraic equations (2.10) does not have any

solution.

P r o o f. Because we can re-numerate the basis {e1, e2, e3} in arbitrary way
(which implies the corresponding permutation of the symbols a, b, c and the corre-

sponding re-numeration of the parameters k1, k2, k3), the system (2.10) is symmetric

with respect to all such permutations and re-numerations. Then, in order to solve

this system of equations, we can just consider the following cases:

A. k1k2k3 6= 0.

B. k1 = 0 and k2k3 6= 0.

C. k1 = k2 = 0, k3 arbitrary.

Case A. k1k2k3 6= 0. We first replace R2 by its value 1 −
3
∑

i=1

k2i in the equations

(1, 2) = 0, (1, 3) = 0, (2, 3) = 0, (1, 4) = 0, (2, 4) = 0 and (3, 4) = 0 of (2.10).

Moreover, we divide them by their nonzero coefficients k1k2, k1k3, k2k3, k1, k2 and

k3, respectively. Now, we consider the system formed by the equations (i, 4) = 0,

i = 1, 2, 3 as a system of linear equations with respect to k21 , k
2
2 and k23 whose

determinant D is the following:

D = −9a(a− b)2b(a− c)2(b − c)2c(a+ b+ c)F

where F = 3(a2 + b2 + c2) + 2(a+ b+ c)2 > 0 due to abc 6= 0.

If D 6= 0, we get by solving the system formed by (i, 4) = 0, i = 1, 2, 3 that

(2.11)

k21 =
1

9a(a− b)(a− c)(a+ b+ c)F
(45a6 + 11a5(b+ c)

+ 2a3(b + c)(67b2 − 35bc+ 67c2)− a4(186b2 + 337bc+ 186c2)

+ a2(21b4 + 214b3c+ 216b2c2 + 214bc3 + 21c4)

− a(b+ c)(25b4 − 18b3c+ 38b2c2 − 18bc3 + 25c4)

− bc(25b4 + 54b3c+ 178b2c2 + 54bc3 + 25c4)),

k22 =
1

9(a− b)b(b− c)(a+ b+ c)F
((a− b)2b(25a3 + 29a2b− 101ab2 − 45b3)

+ (25a5 + 7a4b− 214a3b2 − 64a2b3 + 337ab4 − 11b5)c

+ 2(27a4 + 10a3b− 108a2b2 − 32ab3 + 93b4)c2
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+ 2(89a3 + 10a2b− 107ab2 − 67b3)c3

+ (54a2 + 7ab− 21b2)c4 + 25(a+ b)c5),

k23 =
1

9(a− c)(b − c)c(a+ b+ c)F
(−ab(25a4 + 54a3b+ 178a2b2 + 54ab3 + 25b4)

− (a+ b)(25a4 − 18a3b+ 38a2b2 − 18ab3 + 25b4)c

+ (21a4 + 214a3b+ 216a2b2 + 214ab3 + 21b4)c2

+ 2(a+ b)(67a2 − 35ab+ 67b2)c3

− (186a2 + 337ab+ 186b2)c4 + 11(a+ b)c5 + 45c6).

Substituting the values of k21 , k
2
2 and k23 given in (2.11) in the equations (1, 2) = 0,

(1, 3) = 0 and (2, 3) = 0, and multiplying all of them by 3(a+ b+ c)F we get

(2.12)

(1, 2)′ = − ab(a+ b)(25a2 − ab+ 25b2)− (25a4 + 52a3b− 87a2b2 + 52ab3 + 25b4)c

− 3(a+ b)(13a2 − 57ab+ 13b2)c2 + (45a2 + 86ab+ 45b2)c3

− 76(a+ b)c4 − 45c5 = 0,

(1, 3)′ = 25a4(b + c) + a3(39b2 + 52bc+ 24c2)− 3a2(15b3 + 44b2c+ 29bc2 − 8c3)

+ b(45b4 + 76b3c− 45b2c2 + 39bc3 + 25c4)

+ a(76b4 − 86b3c− 132b2c2 + 52bc3 + 25c4) = 0,

(2, 3)′ = − 45a5 − 76a4(b + c)− 3a2(b + c)(13b2 − 57bc+ 13c2)

− bc(b+ c)(25b2 − bc+ 25c2) + a3(45b2 + 86bc+ 45c2)

− a(25b4 + 52b3c− 87b2c2 + 52bc3 + 25c4) = 0.

Now, we consider the following system:

(1, 2)′ − (2, 3)′ = 3(a− c)F1223 = 0,(2.13)

(1, 3)′ + (2, 3)′ = 3(b− a)F1323 = 0,

where

F1223 = 15a4 + 17a3b− 23a2b2 + 5ab3 + 32a3c− 29a2bc− 38ab2c

+ 5b3c+ 4a2c2 − 29abc2 − 23b2c2 + 32ac3 + 17bc3 + 15c4,

F1323 = 15a4 + 32a3b+ 4a2b2 + 32ab3 + 17a3c− 29a2bc− 29ab2c

+ 17b3c− 23a2c2 − 38abc2 − 23b2c2 + 5ac3 + 5bc3 + 15b4.

Due to D 6= 0, the previous system is equivalent to {F1223 = 0, F1323 = 0}. Here,
F1223 −F1323 = 0 gives −3(b− c)(a+ b+ c)F = 0 and hence D = 0, a contradiction.
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Finally we study the caseD = 0 which is equivalent to the case (a−b)(a−c)(b−c)×
(a + b + c) = 0. Obviously, because the system (2.10) is symmetric with respect to

all permutations, if we assume a− b = 0, we get also b− c = 0 and c− a = 0 which

cannot occur due to Lemma 2.5. Therefore, we can assume (a+b+c) = 0. Moreover,

at least one of the products ab, bc, ac is positive. Suppose that bc > 0, the other

cases are analogous. Substituting a by −(b+ c) in the equations (1, 4) = 0, (2, 4) = 0

and (3, 4) = 0 we get

(1, 4)′ = (b− c)(4(b− c)(3b2 + 5bc+ 3c2)− 5(b− c)(b+ c)2k21(2.14)

− b(11b2 + 10bc+ 6c2)k22 + c(6b2 + 10bc+ 11c2)k23) = 0,

(2, 4)′ = (b+ 2c)(4(b+ 2c)(3b2 + bc+ c2)− (b+ c)(11b2 + 12bc+ 7c2)k21

− 5b2(b + 2c)k22 − c(6b2 + 2bc+ 7c2)k23) = 0,

(3, 4)′ = (2b+ c)(4(2b+ c)(b2 + bc+ 3c2)− (b+ c)(7b2 + 12bc+ 11c2)k21

− b(7b2 + 2bc+ 6c2)k22 − 5c2(2b+ c)k23) = 0.

Now, we will show that the system (2.14) does not have any solution. Adding

(1, 4)′ = 0, (2, 4)′ = 0 and (3, 4)′ = 0 we get 10(b2 + bc + c2)G = 0 where G =

(b−c)2+3b2(1−k21−k22)+3c2(1−k21−k23)+6bc(1−k21). Here, obviously b
2+bc+c2 > 0

and G > 0 due to bc > 0, a contradiction.

Case B. k1 = 0 and k2k3 6= 0. We first replace R2 by its value 1− k22 − k23 and we

put k1 = 0 in the equations (2, 3) = 0, (2, 4) = 0, (3, 4) = 0, (1, 1) = 0 and (2, 2) = 0

of (2.10). Moreover, we divide (2, 3) = 0, (2, 4) = 0 and (3, 4) = 0 by their nonzero

coefficients k2k3, k2 and k3, respectively. We get

(2.15)

(2, 3) = (b − a)(a− c)(−5a2 + 2bc+ a(b + c)) + b(a− c)(4a2 − ab− 2bc− c2)k22

+ (a− b)c(4a2 − b2 − ac− 2bc)k23 = 0,

(2, 4) = (a− c)2(5a2 − 6ab+ b2 + 6ac− 6bc+ 5c2) + b(a− c)2(4a− b+ 4c)k22

+ c(4a3 − 4a2b− ab2 + b3 − a2c− 5abc+ b2c+ 4ac2 + 6bc2 − 5c3)k23 = 0,

(3, 4) = (a− b)2(5a2 + 6ab+ 5b2 − 6ac− 6bc+ c2)

+ b(4a3 − a2b+ 4ab2 − 5b3 − 4a2c− 5abc+ 6b2c− ac2 + bc2 + c3)k22

+ (a− b)2(4a+ 4b− c)ck23 = 0,

(1, 1) = (b − a)3(7a+ 9b) + 4(a− b)2(3a− b)c+ 2(3a2 + 10ab− 5b2)c2 − 4(5a+ b)c3

+ 9c4 + 2b(4b2c+ 7bc2 + 2c3 + a2(14c− 9b) + 2a(10b2 − 7bc− 5c2)− 6a3

− 9b3)k22 + b2(12a2 − 20ab+ 9b2 + 8ac− 4bc− 4c2)k42
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+ 2c(2(a− b)2(b− 3a) + (7b2 − 14ab− 9a2)c+ 4(5a+ b)c2 − 9c3)k23

+ c2(12a2 + 8ab− 4b2 − 20ac− 4bc+ 9c2)k43

+ 2bc(12a2 + (2c− b)(2b− c)− 6a(b+ c))k22k
2
3 = 0,

(2, 2) = (a− b)3(7b+ 9a) + 4(a− b)2(3b− a)c+ 2(3b2 + 10ab− 5a2)c2 − 4(5b+ a)c3

+ 9c4 − 2(10a4 + a2(3b2 + 18bc− 4c2) + 2a(b− c)(6b2 − 5bc+ 4c2)

− 2a3(9b+ 4c)− (b− c)(7b3 − 5b2c− 8bc2 + 10c3))k22

+ b(−16a3 − 7b3 + 16a2c+ 12b2c− 16c3 + 4a(3b2 − 4bc+ 4c2))k42

+ 2c(2(a− b)2(a− 3b) + (7a2 − 14ab− 9b2)c+ 4(5b+ a)c2 − 9c3)k23

+ c2(12b2 + 8ab− 4a2 − 20bc− 4ac+ 9c2)k43 + 2c(−8a3 + 6b3 − 3b2c

− 18bc2 + 10c3 + 2a2(2b+ c)− 2a(b2 − 9bc+ 4c2))k22k
2
3 = 0.

Now, we consider the system formed by the equations (2, 3) = 0 and (2, 4) = 0 of

(2.15) as a system of linear equations with respect to k22 and k23 whose determinant

is

D1 = b(c− a)(b − c)c2F1

where F1 = (28a3 − 12a2b − 4ab2 + 3b3 − 23a2c − 6abc+ 4b2c− 4ac2 + 9bc2 + 5c3).

Moreover, if D1 6= 0, we get

(2.16)

k22 =
a− b

b(c− b)F1
(8a4 + 24a3b− 13a2b2 − 2ab3 + 3b4 − (26a3 + 11a2b+ ab2 + 2b3)c

+ 5(2a2 + ab+ b2)c2),

k23 =
(a− c)2

c(b− c)F1
(8a3 + a(b− 2c)(5b+ 3c) + a2(−13b+ 19c) + c(3b2 − 4bc− 5c2)).

In addition, a− b 6= 0 due to R2 > 0, and using (2.16) we get

R2 = 1− k22 − k23 =
b− a

bcF1
(8a4 + 3b2c2 + abc(b+ 2c) + a2c(7b+ 10c)− a3(5b+ 26c)).

Now, substituting (2.16) in (3, 4) = 0 and (2, 2) = 0 of (2.15), these equations

became equivalent to

(2.17)

(3, 4)1 = 69a4 − 21a3(b+ c) + 5a(b− c)2(b+ c) + 3bc(5b2 + 6bc+ 5c2)

− a2(13b2 + 49bc+ 13c2) = 0,

(2, 2)1 = 5508a8 − 8a7(538b+ 2305c) + 8a6(−27b2 + 1067bc+ 3159c2)

+ 4a5(300b3 + 443b2c− 1413bc2 − 3152c3)

+ 3b2c2(21b4 − 12b3c+ 46b2c2 − 12bc3 − 7c4)
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− a4(309b4 + 2198b3c+ 2385b2c2 + 5944bc3 + 188c4)

+ 2abc(21b5 − 3b4c− 127b3c2 − 29b2c3 − 140bc4 − 94c5)

+ a3(−30b5 + 440b4c+ 3194b3c2 + 2396b2c3 + 5792bc4 + 1896c5)

+ a2(7b6 − 88b5c− 863b4c2 − 886b3c3 − 50b2c4 − 800bc5 − 416c6) = 0.

On the other hand, we consider the system formed by the equations (2, 3) = 0 and

(3, 4) = 0 of (2.15) as a system of linear equations with respect to k22 and k23 whose

determinant is

D2 = c(b− a)(b − c)b2F2

where F2 = F1 + (c− b)(11a2 − 2b2 − 7bc− 2c2). Moreover, if D2 6= 0, we get

(2.18)

k22 =
(a− b)2

b(b− c)F2
(−8a3 + a(2b− c)(3b+ 5c) + a2(−19b+ 13c) + b(5b2 + 4bc− 3c2)),

k23 =
a− c

c(b − c)F2
(2a2(4a2 − 13ab+ 5b2) + ac(24a2 − 11ab+ 5b2)− 2(a+ b)c3 + 3c4

− (13a2 + ab− 5b2)c2).

In addition, a− c 6= 0 due to R2 > 0 and we have using (2.18) that

R2 = 1− k22 − k23 =
c− a

bcF2
(8a4 + 3b2c2 + abc(2b+ c)− a3(26b+ 5c) + a2b(10b+ 7c)).

Now, substituting (2.18) in (2, 4) = 0 and (1, 1) = 0 of (2.15), these equations

became equivalent to

(2.19)

(2, 4)2 = 69a4 − 21a3(b+ c) + 5a(b− c)2(b+ c) + 3bc(5b2 + 6bc+ 5c2)

− a2(13b2 + 49bc+ 13c2) = 0,

(1, 1)2 = 4a3(4683a6 − 15468a5b+ 19468a4b2 − 8924a3b3 − 1137a2b4 + 2080ab5

− 446b6) + 4a2c(−7071a6 + 18895a5b− 17704a4b2 + 1740a3b3 + 5223a2b4

− 2147ab5 + 168b6) + ac2(11884a6 − 21352a5b+ 6453a4b2 + 17292a3b3

− 12082a2b4 + 1676ab5 + 33b6) + c3(2560a6 − 7758a5b + 9829a4b2

− 4634a3b3 − 364a2b4 − 168ab5 + 279b6) + c4(−3123a5 + 4898a4b

− 4131a3b2 − 228a2b3 + 192ab4 + 360b5) + c5(593a4 − 820a3b+ 787a2b2

+ 378ab3 − 90b4) + (a+ 3b)c6(47a2 + 37ab− 24b2)− 9c7(a+ 3b)2 = 0.

Note that (2, 4)2 = (3, 4)1. Moreover, if D1D2 6= 0, Mathematica 7.0 shows that the

only possible solution of the system formed by the equations (3, 4)1 = 0, (2, 2)1 = 0
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of (2.17) and (1, 1)2 = 0 of (2.19) is a = b = c 6= 0 which cannot happen due to

Lemma 2.5.

Now, we will study the case D1D2 = 0. First, we shall show that we can assume

(a− b)b3(a− c)(b− c)2c3 6= 0. If a = c, the equations (2, 3) = 0 and (2, 4) = 0 of the

system (2.15) become

(2, 3)′ = c(c− b)2(b+ 3c)k23 = 0,

(2, 4)′ = c(c− b)2(b+ 2c)k23 = 0.

Therefore, the only possible solution of the previous system is a = b = c, which

cannot occur due to Lemma 2.5. If a = b, the equations (2, 3) = 0 and (2, 4) = 0 of

the system (2.15) become

(2, 3)′ = b(b− c)2(3b+ c)k22 = 0,

(2, 4)′ = (b− c)2(b(3b+ 4c)k22 + 5c2(1− k23)) = 0,

and the only possible solutions of the previous system are: a = b = c, which cannot

occur, and c = −3b, k23 = (1/5)(5−k22), which does not satisfy the condition R
2 > 0.

If b = c, the equations (2, 3) = 0 and (2, 4) = 0 of the system (2.15) become

(2, 3)′ = (a− c)2(5a2 − 2c(a+ c) + (4ac+ 3c2)(k22 + k23)) = 0,

(2, 4)′ = (a− c)2(5a2 + (4ac+ 3c2)(k22 + k23)) = 0.

The only possible solutions of the previous system are: a = b = c, which cannot

occur, and a = −c, k22 = 5− k23 , which does not satisfy the condition R2 > 0.

Therefore, D1D2 = 0 is equivalent to F1F2 = 0. Finally, we will study the only

three different possibilities that can occur when F1F2 = 0. If F1 = 0 and F2 = 0, we

get that F2 = 0 becomes equivalent to (11a2−2b2−7bc−2c2) = 0. Mathematica 7.0

shows that the only possible solution of the system formed by F1 = 0, F2 = 0 and

by equations (2, 3) = 0 and (2, 4) = 0 of (2.15) is a = b = c which cannot occur by

Lemma 2.5.

If F1 = 0 and F2 6= 0, Mathematica 7.0 shows that the possible solutions of the

system formed by F1 = 0 and (2, 4)2 = 0 of (2.19) imply that k22 and k
2
3 of (2.18) do

not satisfy R2 > 0.

If F2 = 0 and F1 6= 0, Mathematica 7.0 shows that the possible solutions of the

system formed by F2 = 0 and (3, 4)1 = 0 of (2.17) imply that k22 and k
2
3 of (2.16) do

not satisfy R2 > 0.
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Case C. k1 = k2 = 0, k3 arbitrary. We first put k1 = k2 = 0 and replace R2 by

1− k23 in (2.10). We get

(2.20)

(3, 4) = k3(a− b)2(5a2 + 5b2 + 6a(b− c)− 6bc+ c2 + (4a+ 4b− c)ck23) = 0,

(1, 1) = (b− a)3(7a+ 9b) + 4(a− b)2(3a− b)c+ 2(3a2 + 10ab− 5b2)c2

− 4(5a+ b)c3 + 9c4 + c2(12a2 + 8ab− 4b2 − 20ac− 4bc+ 9c2)k43

+ 2c(2(a− b)2(b − 3a) + (−9a2 − 14ab+ 7b2)c+ 4(5a+ b)c2 − 9c3)k23 = 0,

(2, 2) = (a− b)3(9a+ 7b)− 4(a− 3b)(a− b)2c+ 2(−5a2 + 10ab+ 3b2)c2

− 4(a+ 5b)c3 + 9c4 + c2(−4a2 + 8ab+ 12b2 − 4ac− 20bc+ 9c2)k43

+ 2c(2(a− 3b)(a− b)2 + (7a2 − 14ab− 9b2)c+ 4(a+ 5b)c2 − 9c3)k23 = 0,

(3, 3) = 4a(3c− b)(b − c)2 − 4a3(b + 5c) + (b− c)3(9b+ 7c)

+ a2(−10b2 + 20bc+ 6c2) + 9a4 + c(−16(a− b)2(a+ b)

− 16abc+ 12(a+ b)c2 − 7c3)k43 + 2(18(a− b)2(a+ b)c

− 2(a− b)2(5a2 + 6ab+ 5b2) + (−3a2 + 22ab− 3b2)c2

− 12(a+ b)c3 + 7c4)k23 = 0.

Here we can assume that (a − b)k3 6= 0 because if we put a = b in the previous

system, we get that equations (1, 1) = 0 and (3, 3) = 0 of (2.20) become

(1, 1)′ = c2R4(4b− 3c)2 = 0,

(3, 3)′ = c2R4(16b2 − 24bc+ 7c2) = 0.

Now, (1, 1)′ − (3, 3)′ = 0 gives c = 0, a contradiction. If k3 = 0 the equations

(1, 1) = 0 and (2, 2) = 0 of (2.20) reduce to the following:

(1, 1)∗ = (b− a)3(7a+ 9b) + 4(a− b)2(3a− b)c(2.21)

+ 2(3a2 + 10ab− 5b2)c2 − 4(5a+ b)c3 + 9c4 = 0,

(2, 2)∗ = (a− b)3(9a+ 7b)− 4(a− 3b)(a− b)2c

+ 2(−5a2 + 10ab+ 3b2)c2 − 4(a+ 5b)c3 + 9c4 = 0.

Adding equations (1, 1)∗ = 0 and (2, 2)∗ = 0 of (2.21) we get

16(b− a)(a− b− c)(a+ b− c)(a− b+ c) = 0.

Then, we only have to study three different possibilities: a = b + c, a = c − b and

a = b− c. If we replace a = b + c in (1, 1)∗ = 0 of (2.21) we get 16b2c2 = 0 which is
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a contradiction. If we put a = c− b or a = b− c in (1, 1)∗ = 0 of (2.21) we get b = c

which is a contradiction with a 6= 0.

Therefore, we get that equation (3, 4) = 0 of (2.20) is equivalent to

(3, 4)♯ = (5a2 + 5b2 + 6a(b− c)− 6bc+ c2 + (4(a+ b)− c)ck23) = 0.

Now, we divide the study into two different cases: 4(a+b)−c = 0 and 4(a+b)−c 6= 0.

If 4(a+ b)− c = 0, we reduce the equations (3, 4)♯ = 0 and (3, 3) = 0 of (2.20) to

(3, 4)♭ = (a− b)2(3a+ b)(a+ 3b)k3 = 0,

(3, 3)♭ = − 999a4 − 4356a3b− 6698a2b2 − 4356ab3 − 999b4 − 1088(a+ b)4k43

+ 4(519a4 + 2180a3b+ 3306a2b2 + 2180ab3 + 519b4)k23 = 0.

Now, if we put a = −3b or b = −3a in (3, 3)♭ = 0 we get (45− 108k23 + 68k43) = 0 or

equivalently that k23 = 27
34 ± 3

17 i, a contradiction.

If 4(a+ b)− c 6= 0, we get that (3, 4)♯ = 0 is satisfied if and only if

(2.22) k23 =
5a2 + 6ab+ 5b2 − 6(a+ b)c+ c2

(c− 4(a+ b))c
.

Thus, the equations (1, 1) = 0 and (2, 2) = 0 of (2.20) become equivalent to the

following:

(1, 1)† = 107a6 + 214a5b+ 369a4b2 + 260a3b3 + 45a2b4 + 38ab5 − 9b6(2.23)

− 8c(3a+ b)(2a2 + ab+ b2)(5a2 + 6ab+ 5b2)

+ 4c2(48a4 + 99a3b+ 113a2b2 + 69ab3 + 23b4)

− 4c3(a+ b)(17a2 + 18ab+ 13b2) + 9c4(a+ b)2 = 0,

(2, 2)† = 9a6 − 38a5b− 45a4b2 − 260a3b3 − 369a2b4 − 214ab5 − 107b6

+ 8c(a+ 3b)(a2 + ab+ 2b2)(5a2 + 6ab+ 5b2)

− 4c2(23a4 + 69a3b+ 113a2b2 + 99ab3 + 48b4)

+ 4c3(a+ b)(13a2 + 18ab+ 17b2)− 9c4(a+ b)2 = 0.

Moreover, the previous system (2.23) is equivalent to

(2.24)

(1, 1)† + (2, 2)† = 29a5 + 73a4b+ 154a3b2 + 154a2b3 + 73ab4 + 29b5 − 4c3(a+ b)2

− 2c(5a2 + 6ab+ 5b2)2 + 5c2(a+ b)(5a2 + 6ab+ 5b2) = 0,

(1, 1)† − (2, 2)† = 7a3 + 9a2b+ 9ab2 + 7b3 − 2(5a2 + 6ab+ 5b2)c+ 3(a+ b)c2 = 0.
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Here, we have a + b 6= 0 because if we replace a by −b in (2.22) we get k23 =

1+ 4b2/c2 and hence R2 = 1− k23 < 0, a contradiction. Therefore from the equation

(1, 1)† − (2, 2)† = 0 we get

(2.25) c =
5a2 + 6ab+ 5b2 ± 2

√
E

3(a+ b)
,

where

E = a4 + 3a3b+ 8a2b2 + 3ab3 + b4 =
1

2
(a4 + 5a2b2 + b4 + (a2 + 3ab+ b2)2) > 0.

Now, substituting (2.25) in (1, 1)† + (2, 2)† = 0 and multiplying by − 27
16 (a + b) we

get:

(2.26) (a2 − 3ab− 2b2)(2a2 + 3ab− b2)(a2 + 6ab+ b2) = ∓2E3/2.

Taking squares on both sides of the equality (2.26), it becomes equivalent to

(2.27) −27a2(a− b)2b2(a+ b)2(3a+ b)2(a+ 3b)2 = 0.

Finally, equations (2.25) and (2.27) show that the only solutions of (2.24) such

that abc 6= 0 are:

⊲ b = −3a, c± = 8
3a(−2 ± 1), which for c+ gives a contradiction with k23 > 0.

That is, substituting this possible solution in (2.22) we get k23 = − 1
2 . For c−, it

gives a contradiction with 4(a+ b)− c 6= 0.

⊲ b = − 1
3a, c± = 8

9a(2 ± 1), which also gives a contradiction. For c+ we get

4(a+ b)− c = 0. For c−, we obtain as before that k
2
3 = − 1

2 .

Proposition 2.6 is proved. �

This completes the proof of the Theorem 2.1. �

3. Solvable case

As concerns the semidirect products of the form G = G3 ⋊ R in Proposition 1.1

and all possible left-invariant metrics on them, we can construct all of them on the

level of Lie algebras as follows: we consider the Lie algebra g3 and the vector space

g = g3 + R. Let {f1, . . . , f4} be any basis of g such that g3 = span{f1, f2, f3},
R = span{f4}. Let D be an arbitrary derivation of the algebra g3 and let us define

(3.1) [f4, fi] = Dfi for i = 1, 2, 3.
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(This completes the multiplication table of the algebra g3 to the multiplication table

of g). Then we choose any scalar product 〈, 〉 on g for which {f1, f2, f3} forms an
orthonormal triplet but f4 is just a unit vector which need not be orthonormal to g3.

Thus we have, as in the formula (2.2), 〈fi, f4〉 = ki, i = 1, 2, 3. Now, all semi-direct

products G3 ⋊ R with left-invariant metrics correspond to various choices of the

derivations D of g3 and to all scalar products given by the above rule. The algebra

of all derivations D of g3 will be usually represented in the corresponding matrix

form.

Now, we shall study each of the solvable cases from Proposition 1.1 separately

following the construction indicated above and preserving the style of Section 2.

4. Non-trivial semi-direct products E(2)⋊R

Let e(2) be the Lie algebra of E(2) with a scalar product 〈, 〉3. Then, there is an
orthonormal basis {f1, f2, f3} of e(2) such that

(4.1) [f2, f3] = −γf1, [f3, f1] = −γf2, [f1, f2] = 0

where γ 6= 0 is a real number. The algebra of all derivations D of e(2) is











a b 0

−b a 0

c d 0



 : a, b, c, d ∈ R







,

when represented in the matrix form.

According to the general scheme, we consider the algebra g = e(2) +R, where the

multiplication table is given by (4.1) and, according to the general formula (3.1),

also by

[f4, f1] = af1 + bf2, [f4, f2] = −bf1 + af2, [f4, f3] = cf1 + df2,(4.2)

〈fi, f4〉 = ki, i = 1, 2, 3.

Here γ 6= 0, a, b, c, d, k1, k2, k3 are arbitrary parameters where
3
∑

i=1

k2i < 1 due to

the positivity of the scalar product. We exclude the case a = b = c = d = 0, i.e., the

direct product E(2)× R.

This gives rise to a simply connected group space (G = E(2)⋊R, g).
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Theorem 4.1. The only metric which makes (E(2) ⋊ R, g) a weakly Einstein

manifold is the flat one. Moreover, the corresponding Lie algebra is determined by

(4.2) where d = γk1, c = −γk2, a = 0, γ 6= 0, and b, k1, k2, k3 are arbitrary.

In the remainder of the section we will prove the announced theorem. We replace

the basis {fi} by the new basis {ei}, as in the formula (2.3). Then we get an
orthonormal basis for which

[e2, e3] = −γe1, [e3, e1] = −γe2, [e1, e2] = 0,(4.3)

[e4, e1] =
1

R
(ae1 + (b + k3γ)e2), [e4, e2] =

1

R
(−(b + k3γ)e1 + ae2),

[e4, e3] =
1

R
((c+ k2γ)e1 + (d− k1γ)e2).

Now we are going to calculate the expression for the condition for (G, g) to be

a weakly Einstein manifold. From [1] we know

Lemma 4.2. The components of the curvature operator are

R(e1, e2) = α1212A12 + α1213A13 + α1223A23,(4.4)

R(e1, e3) = α1312A12 + α1313A13 + α1323A23 + α1334A34,

R(e1, e4) = α1414A14 + α1424A24 + α1434A34,

R(e2, e3) = α2312A23 + α2313A13 + α2323A23 + α2334A34,

R(e2, e4) = α2414A14 + α2424A24 + α2434A34,

R(e3, e4) = α3413A13 + α3414A14 + α3423A23 + α3424A24 + α3434A34,

where the coefficients αijlm = g(R(ei, ej)el, em) satisfy the standard symmetries with

respect to their indices and

(4.5)

α1212 =
a2

R2
, α1213 =

a(d− γk1)

2R2
, α1223 = −a(c+ γk2)

2R2
, α1313 = − (c+ γk2)

2

4R2
,

α1323 = − (d− γk1)(c+ γk2)

4R2
, α1334 =

γ(−d+ γk1)

2R
, α1414 =

4a2 − (c+ γk2)
2

4R2
,

α1424 = − (d− γk1)(c+ γk2)

4R2
, α1434 =

2a(c+ γk2) + (d− γk1)(b+ γk3)

2R2
,

α2323 = − (d− γk1)
2

4R2
, α2334 =

γ(c+ γk2)

2R
, α2424 =

4a2 − (d− γk1)
2

4R2
,

α2434 =
2a(d− γk1)− (c+ γk2)(b + γk3)

2R2
, α3434 =

3((d− γk1)
2 + (c+ γk2)

2)

4R2
.

Now we obtain the following analogue of Lemmas 2.3 and 2.4:
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Lemma 4.3.

|R|2 =

4
∑

i,j,k,l=1

α2
ijkl =

1

4R4
(48a4 + (c+ γk2)

2(8(4a2 + γ2R2) + 11(c+ γk2)
2)(4.6)

+ 8(c+ γk2)
2(b+ γk3)

2 + (d− γk1)
2(8(4a2 + γ2R2) + 11(d− γk1)

2

+ 22(c+ γk2)
2 + 8(b+ γk3)

2)).

Lemma 4.4. The condition (2.7) is equivalent to the system of algebraic equations

(1, 2) = − 4a(c+ γk2)
2(b + γk3)(4.7)

+ (d− γk1)((c+ γk2)((d− γk1)
2 + (c+ γk2)

2 + 2(a2 + γ2R2))

− 2(b+ γk3)((c + γk2)(b+ γk3)− 2a(d− γk1))) = 0,

(1, 3) = 4a(c+ γk2)(3a
2 + (c+ γk2)

2) + (d− γk1)(4a(d− γk1)(c+ γk2)

+ (4a2 + 3(c+ γk2)
2 + 3(d− γk1)

2)(b + γk3)) = 0,

(2, 3) = − (c+ γk2)(4a
2 + 3(c+ γk2)

2)(b+ γk3)

+ (d− γk1)(4a(3a
2 + (d− γk1)

2 + (c+ γk2)
2)

− 3(d− γk1)(c+ γk2)(b + γk3)) = 0,

(1, 4) = 3γ(d− γk1)((d − γk1)
2 + (c+ γk2)

2) = 0,

(2, 4) = − 3γ(c+ γk2)((d − γk1)
2 + (c+ γk2)

2) = 0,

(3, 4) = − γ(b+ γk3)((d− γk1)
2 + (c+ γk2)

2) = 0,

(1, 1) = 16a4 − (d− γk1)
2(16a2 + 11(d− γk1)

2)

− (c+ γk2)((c+ γk2)(8(a
2 + γ2R2) + 7(c+ γk2)

2 + 18(d− γk1)
2)

+ 8(b+ γk3)(c(b + γk3)− 4a(d− γk1) + γk2(b + γk3))) = 0,

(2, 2) = 16a4 − (c+ γk2)
2(16a2 + 11(c+ γk2)

2)

− (d− γk1)((d− γk1)(8(a
2 + γ2R2) + 7(d− γk1)

2 + 18(c+ γk2)
2)

+ 8(b+ γk3)(4a(c+ γk2) + d(b + γk3)− γk1(b + γk3))) = 0,

(4, 4) = 16a4 + (c+ γk2)
2(16a2 + 9(c+ γk2)

2) + 8(c+ γk2)
2(b + γk3)

2

+ (d− γk1)
2(16a2 + 9(d− γk1)

2 + 18(c+ γk2)
2 + 8(b+ γk3)

2) = 0.

Here the symbol “(i, j)” marks again the substitution of the corresponding i 6 j

in (2.7). Moreover,
4
∑

k=1

(k, k) = 0.

Now, the goal is to find the values of a, b, c, d, k1, k2, k3 and γ 6= 0 which satisfy

the system of equations (4.7).
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Proposition 4.5. The set of all solutions of the system of algebraic equa-

tions (4.7) is given by the formulas

(4.8) d = γk1, c = −γk2, a = 0, γ 6= 0, b, k1, k2, k3, arbitrary.

The corresponding spaces are flat.

P r o o f. From the subsystem of (4.7) formed by the equations (1, 4) = 0 and

(2, 4) = 0 we obtain (d − γk1) = (c + γk2) = 0 due to γ 6= 0. Then, the remaining

equations (4.7) are automatically satisfied except (1, 1) = 0, (2, 2) = 0 and (4, 4) = 0

which became equivalent to the equation 16a4 = 0. Thus a = 0.

Substituting the equalities d = γk1, c = −γk2 and a = 0 into the right-hand side

of (4.6), we see that |R|2 = 0 and hence R = 0. �

This completes the proof of Theorem 4.1. �

5. Non-trivial semi-direct products E(1, 1)⋊R

Let e(1, 1) be the Lie algebra of E(1, 1) with a scalar product 〈, 〉3. Then, there is
an orthonormal basis {f1, f2, f3} of e(1, 1) such that

(5.1) [f2, f3] = γf2, [f3, f1] = γf1, [f1, f2] = 0

where γ 6= 0 is a real number. The algebra of all derivations D of e(1, 1) is











a 0 0

0 a 0

b c 0



 : a, b, c ∈ R







,

when represented in the matrix form.

According to the general scheme, we consider the algebra g = e(1, 1) + R, where

the multiplication table is given by (5.1) and, according to the general formula (3.1),

also by

(5.2) [f4, f1] = af1, [f4, f2] = af2, [f4, f3] = bf1 + cf2, 〈fi, f4〉 = ki, i = 1, 2, 3.

Here γ 6= 0, a, b, c, k1, k2, k3 are arbitrary parameters where
3
∑

i=1

k2i < 1, and we

exclude the case a = b = c = 0.

This gives rise to a simply connected group space (G = E(1, 1)⋊R, g).
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Theorem 5.1. The only family of metrics which makes (E(1, 1) ⋊ R, g) weakly

Einstein manifold is Einstein and locally symmetric. Moreover, the corresponding

Lie algebra it is determined by (5.2) where a = γ
√

1− k21 − k22 , b = −γk1, c = γk2,

k3 = 0, γ 6= 0, and k1, k2 are arbitrary.

In what follows, we will prove the announced theorem. We replace the basis {fi}
by the new basis {ei}, as in the formula (2.3). Then we get an orthonormal basis for
which

[e2, e3] = γe2, [e3, e1] = γe1, [e1, e2] = 0,(5.3)

[e4, e1] =
1

R
((a− k3γ)e1), [e4, e2] =

1

R
((a+ k3γ)e2),

[e4, e3] =
1

R
((b + k1γ)e1 + (c− k2γ)e2).

Now we are going to calculate the expression of the condition for (G, g) to be

a weakly Einstein manifold. From [1] we know

Lemma 5.2. The components of the curvature operator are

R(e1, e2) = α1212A12 + α1213A13 + α1214A14 + α1223A23 + α1224A24,(5.4)

R(e1, e3) = α1312A12 + α1313A13 + α1314A14 + α1323A23 + α1334A34,

R(e1, e4) = α1412A12 + α1413A13 + α1414A14 + α1424A24 + α1434A34,

R(e2, e3) = α2312A23 + α2313A13 + α2323A23 + α2324A24 + α2334A34,

R(e2, e4) = α2412A12 + α2414A14 + α2423A23 + α2424A24 + α2434A34,

R(e3, e4) = α3413A13 + α3414A14 + α3423A23 + α3424A24 + α3434A34,

where the coefficients αijlm = g(R(ei, ej)el, em) satisfy the standard symmetries with

respect to their indices and

α1212 =
a2 + γ2(−1 + k21 + k22)

R2
, α1213 =

(c− γk2)(a− γk3)

2R2
,(5.5)

α1214 =
−γ(c− γk2)

2R
, α1223 =

−(b+ γk1)(a+ γk3)

2R2
,

α1224 =
−γ(b+ γk1)

2R
, α1313 =

4R2γ2 − (b + γk1)
2

4R2
,

α1314 =
γ(a− γk3)

R
, α1323 =

(b + γk1)(−c+ γk2)

4R2
,

α1334 =
γ(b+ γk1)

R
, α1414 =

4(a− γk3)
2 − (b+ γk1)

2

4R2
,
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α1424 =
(b+ γk1)(−c+ γk2)

4R2
, α1434 =

(b + γk1)(a− γk3)

R2
,

α2323 =
4R2γ2 − (c− γk2)

2

4R2
, α2324 =

−γ(a+ γk3)

R
,

α2334 =
γ(−c+ γk2)

R
, α2424 =

4(a+ γk3)
2 − (c− γk2)

2

4R2
,

α2434 =
(c− γk2)(a+ γk3)

R2
, α3434 =

3((b + γk1)
2 + (c− γk2)

2)

4R2
.

Further, we obtain easily

Lemma 5.3 ([1]). The matrix of the Ricci tensor of type (1, 1) expressed with

respect to the basis {e1, e2, e3, e4} is of the form

(5.6)











β11
(b+γk1)(c−γk2)

2R2

(b+γk1)(−3a+γk3)
2R2

γ(b+γk1)
2R

(b+γk1)(c−γk2)
2R2 β22

−(c−γk2)(3a+γk3)
2R2

γ(−c+γk2)
2R

(b+γk1)(−3a+γk3)
2R2

−(c−γk2)(3a+γk3)
2R2 β33

2γ2k3

R
γ(b+γk1)

2R
γ(−c+γk2)

2R
2γ2k3

R β44











where

β11 =
(b+ γk1)

2 − 4a(a− γk3)

2R2
, β22 =

(c− γk2)
2 − 4a(a+ γk3)

2R2
,

β33 = −4R2γ2 + (b + γk1)
2 + (c− γk2)

2

2R2
,

β44 = −4(a2 + γ2k23) + (b+ γk1)
2 + (c− γk2)

2

2R2
.

Now we obtain the following analogue of Lemmas 2.3 and 2.4:

Lemma 5.4.

|R|2 =

4
∑

i,j,k,l=1

α2
ijkl(5.7)

=
1

4R4
((b + γk1)

2(2(11(c− γk2)
2 + 16(a(a− γk3)− γ2(−1 + k21 + k22))))

+ (c− γk2)
2(11(c− γk2)

2 + 32(a(a+ γk3)− γ2(−1 + k21 + k22)))

+ 11(b+ γk1)
4 + 16a2(3a2 + 8γ2k23 − 2γ2(−1 + k21 + k22))

+ 48γ4(−1 + k21 + k22)
2).
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Lemma 5.5. The condition (2.7) is equivalent to the system of algebraic equations

(5.8)

(1, 2) = (b+ γk1)(c− γk2)((b + γk1)
2 + (c− γk2)

2

+ 2(a2 + 5γ2(−1 + k21 + k22))) = 0,

(1, 3) = (b+ γk1)((c − γk2)
2(2a− 5γk3) + 2(b+ γk1)

2(a− γk3)

+ 2a2(2a− γk3) + 2a(a− 2γk3)
2 + 2γ2(3γk3 − a)(−1 + k21 + k22)) = 0,

(2, 3) = (c− γk2)((b + γk1)
2(2a+ 5γk3) + 2(c− γk2)

2(a+ γk3)

+ 2a2(2a+ γk3) + 2a(a+ 2γk3)
2 − 2γ2(a+ 3γk3)(−1 + k21 + k22)) = 0,

(1, 4) = − γ(b+ γk1)(5(c− γk2)
2 + 2(b+ γk1)

2

+ 2(3γ2(1− k21 − k22) + a2 − 4aγk3)) = 0,

(2, 4) = γ(c− γk2)(5(b + γk1)
2 + 2(c− γk2)

2

+ 2(3γ2(1− k21 − k22) + a2 + 4aγk3)) = 0,

(3, 4) = γ((b+ γk1)
2(3a− γk3)− (c− γk2)

2(3a+ γk3)

− 8γk3(3a
2 − γ2(−1 + k21 + k22))) = 0,

(1, 1) = − (b + γk1)
2(18(c− γk2)

2 + 8(a(a− 2γk3)− γ2(−1 + k21 + k22)))

− (c− γk2)
2(11(c− γk2)

2 + 16(a(a+ 4γk3)− γ2(−1 + k21 + k22)))

− 7(b+ γk1)
4 + 16a(a2(a− 8γk3) + 2γ2(a+ 4γk3)(−1 + k21 + k22))

+ 16γ4(−1 + k21 + k22)
2 = 0,

(2, 2) = − (b + γk1)
2(18(c− γk2)

2 + 16(a(a− 4γk3)− γ2(−1 + k21 + k22)))

− (c− γk2)
2(7(c− γk2)

2 + 8(a(a+ 2γk3)− γ2(−1 + k21 + k22)))

− 11(b+ γk1)
4 + 16a((a2(a+ 8γk3) + 2γ2(a− 4γk3)(−1 + k21 + k22)))

+ 16γ4(−1 + k21 + k22)
2 = 0,

(3, 3) = 2(b+ γk1)
2(9(c− γk2)

2 + 4(a2 − γk3(2a+ γk3)− 2γ2(−1 + k21 + k22)))

+ (c− γk2)
2(9(c− γk2)

2 + 8(a2 + γk3(2a− γk3)− 2γ2(−1 + k21 + k22)))

− 16(3a2 − γ2(−1 + k21 + k22))(a
2 + 4γ2k23 + γ2(−1 + k21 + k22))

+ 9(b+ γk1)
4 = 0.

Now, we have

Proposition 5.6. The set of all solutions of the system of algebraic equations

(5.8) is, up to a re-numeration of the triplet {e1, e2, e3},

(5.9) a = γ
√

1− k21 − k22 , b = −γk1, c = γk2, k3 = 0, γ 6= 0, k1, k2 arbitrary.

The corresponding spaces are Einstein and locally symmetric.
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P r o o f. Suppose first b+γk1 6= 0. Thus, due to γ 6= 0 we obtain from (5.8) that

(1, 3)′ = (c− γk2)
2(2a− 5γk3) + 2(b+ γk1)

2(a− γk3) + 2a2(2a− γk3)(5.10)

+ 2a(a− 2γk3)2 + 2γ2(3γk3 − a)(−1 + k21 + k22) = 0,

(1, 4)′ = 5(c− γk2)
2 + 2(b+ γk1)

2 + 2(3γ2(1 − k21 − k22) + a2 − 4aγk3) = 0,

(2, 4)′ = (c− γk2)(5(b+ γk1)
2 + 2(3γ2(1 − k21 − k22) + a2 + 4aγk3))

+ 2(c− γk2)
4 = 0,

(3, 4)′ = (b+ γk1)
2(3a− γk3)− (c− γk2)

2(3a+ γk3)

− 8γk3(3a
2 − γ2(−1 + k21 + k22)) = 0.

Moreover, if c− γk2 6= 0 we can reduce the equation (2, 4)′ = 0 to

(2, 4)′′ = 2(c− γk2)
2 + 5(b+ γk1)

2 + 2(3γ2(1− k21 − k22) + a2 + 4aγk3) = 0.

Adding the equations (1, 4)′ = 0 and (2, 4)′′ = 0 we get

7(c− γk2)
2 + 7(b+ γk1)

2 + 12γ2(1− k21 − k22) + 4a2 = 0,

a contradictions due to 1 − k21 − k22 > 0. Thus, c − γk2 = 0. In this case, (5.10)

reduce to

(1, 3)∗ = 2(b+ γk1)
2(a− γk3) + 2a2(2a− γk3) + 2a(a− 2γk3)

2(5.11)

+ 2γ2(3γk3 − a)(−1 + k21 + k22) = 0,

(1, 4)∗ = 2(b+ γk1)
2 + 2(3γ2(1− k21 − k22) + a2 − 4aγk3) = 0,

(3, 4)∗ = (b+ γk1)
2(3a− γk3)− 8γk3(3a

2 − γ2(−1 + k21 + k22)) = 0.

Now, we have a 6= 0 because if a = 0 from (1, 4)∗ = 0 we get a contradiction with

1− k21 − k22 > 0. Thus, from (1, 4)∗ = 0 we get

(5.12) k3 =
a2 + (b + γk1)

2 + 3γ2(1− k21 − k22)

4aγ
.

Now, substituting (5.12) in (1, 3)∗ = 0 we obtain 4a(a2− γ2(1− k21 − k22)) = 0. Thus

(5.13) a2 = γ2(1 − k21 − k22).

Finally, substituting (5.12) and (5.13) in (3, 4)∗ = 0 we get

1

4a
((b+ γk1)

2 + 16γ2(1 − k21 − k22))((b + γk1)
2 + 8γ2(1− k21 − k22)) = 0,

a contradiction with 1− k21 − k22 > 0.
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Therefore, we must assume b+ γk1 = 0. In this case, due to γ 6= 0 we obtain from

(5.8) that

(2, 3)′ = (c− γk2)(2(c− γk2)
2(a+ γk3) + 2a2(2a+ γk3)(5.14)

+ 2a(a+ 2γk3)
2 − 2γ2(a+ 3γk3)(−1 + k21 + k22)) = 0,

(2, 4)′ = (c− γk2)(2(c− γk2)
2 + 2(3γ2(1 − k21 − k22) + a2 + 4aγk3)) = 0,

(3, 4)′ = −(c− γk2)
2(3a+ γk3)− 8γk3(3a

2 − γ2(−1 + k21 + k22)) = 0,

(1, 1)′ = −(c− γk2)
2(11(c− γk2)

2 + 16(a(a+ 4γk3)− γ2(−1 + k21 + k22)))

+ 16a(a2(a− 8γk3) + 2γ2(a+ 4γk3)(−1 + k21 + k22))

+ 16γ4(−1 + k21 + k22)
2 = 0.

Now, if we assume c−γk2 6= 0 we can reduce the equations (2, 3)′ = 0 and (2, 4)′ = 0

of (5.14) to

(2, 3)′′ = 2(c− γk2)
2(a+ γk3) + 2a2(2a+ γk3) + 2a(a+ 2γk3)

2

− 2γ2(a+ 3γk3)(−1 + k21 + k22) = 0,

(2, 4)′′ = 2(c− γk2)
2 + 2(3γ2(1 − k21 − k22) + a2 + 4aγk3) = 0.

Now, we have a 6= 0 because if a = 0 from (2, 4)′′ = 0 we get a contradiction with

1− k21 − k22 > 0. Thus, from (2, 4)′′ = 0 we get

(5.15) k3 = −a2 + (c− γk2)
2 + 3γ2(1− k21 − k22)

4aγ
.

Now, substituting (5.15) in (2, 3)′′ = 0 we obtain 4a(a2 − γ2(1− k21 − k22)) = 0. Thus

(5.16) a2 = γ2(1 − k21 − k22).

Finally, substituting (5.15) and (5.16) in (3, 4)′ = 0 of (5.14) we get

32γ4(−1 + k21 + k22)
2

a
+

(−c+ γk2)
2((c− γk2)

2 + 24γ2(1− k21 − k22))

4a
= 0,

a contradiction with 1 − k21 − k22 > 0. Therefore, we must assume c − γk2 = 0. In

this case, we get that (5.14) reduces to

(3, 4)∗ = k3(3a
2 + γ2(1− k21 − k22)) = 0,(5.17)

(1, 1)∗ = 16a(a2(a− 8γk3) + 2γ2(a+ 4γk3)(−1 + k21 + k22))

+ 16γ4(−1 + k21 + k22)
2 = 0.
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Now, from (3, 4)∗ = 0 we get k3 = 0 due to 1− k21 − k22 > 0. Finally, putting k3 = 0

in (1, 1)∗ = 0 we obtain 16(a2 − γ2(1− k21 − k22))
2 = 0. That is, the formulas (5.9).

On the other hand, (5.8) is automatically satisfied by the solution (5.9). Moreover,

we get substituting (5.9) in (5.6) that the corresponding spaces have the Ricci eigen-

value ̺ = −2γ2 with multiplicity four. Then the corresponding spaces are Einstein

and by [9] they are locally symmetric. Proposition 5.6 is proved. �

This completes the proof of the Theorem 5.1. �

6. Non-nilpotent semi-direct products H ⋊R

Let h be the Lie algebra of H (the Heisenberg group) with a scalar product 〈, 〉3.
Then, there is an orthonormal basis {f1, f2, f3} of h such that

(6.1) [f3, f2] = 0, [f3, f1] = 0, [f1, f2] = γf3

where γ 6= 0 is a real number. The algebra of all derivations D of h is











a b h

c d f

0 0 a+ d



 : a, b, c, d, h, f ∈ R







,

when represented in the matrix form.

According to the general scheme, we consider the algebra g = h + R, where the

multiplication table is given by (6.1) and, according to the general formula (3.1),

also by

[f4, f1] = af1 + bf2 + hf3, [f4, f2] = cf1 + df2 + ff3,(6.2)

[f4, f3] = (a+ d)f3, 〈fi, f4〉 = ki, i = 1, 2, 3.

Here γ 6= 0, a, b, c, d, f, h, k1, k2, k3 are arbitrary parameters where
3
∑

i=1

k2i < 1. We

exclude the nilpotent case a = b = c = d = h = 0. (See [2]).

This give rise to a simply connected group space (G = H ⋊ R, g).

Theorem 6.1. The only family of metrics such that (H⋊R, g) is a weakly Einstein

manifold is Einstein and locally symmetric. Moreover, the corresponding Lie algebra

is determined by (6.2) where a = d = ±γR/2, b = −c, h = −γk2, f = γk1, γ 6= 0,

and k1, k2, k3 arbitrary.
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In the remainder of the section, we will prove the announced theorem. We replace

the basis {fi} by the new basis {ei}, as in the formula (2.3). Then we get an
orthonormal basis for which

[e1, e2] = γe3, [e3, e2] = [e3, e1] = 0, [e4, e1] =
1

R
(ae1 + be2 + (h+ k2γ)e3),(6.3)

[e4, e2] =
1

R
(ce1 + de2 + (f − k1γ)e3), [e4, e3] =

1

R
((a+ d)e3).

Now we are going to calculate, in the new basis, the expression for the condition

for (G, g) to be a weakly Einstein manifold. From [1] we know

Lemma 6.2. The components of the curvature operator are

(6.4)

R(e1, e2) = α1212A12 + α1213A13 + α1214A14 + α1223A23 + α1224A24 + α1234A34,

R(e1, e3) = α1312A12 + α1313A13 + α1314A14 + α1323A23 + α1324A24 + α1334A34,

R(e1, e4) = α1412A12 + α1413A13 + α1414A14 + α1423A23 + α1424A24 + α1434A34,

R(e2, e3) = α2312A23 + α2313A13 + α2314A14 + α2323A23 + α2324A24 + α2334A34,

R(e2, e4) = α2412A12 + α2413A13 + α2414A14 + α2423A23 + α2424A24 + α2434A34,

R(e3, e4) = α3412A12 + α3413A13 + α3414A14 + α3423A23 + α3424A24 + α3434A34,

where the coefficients αijlm = g(R(ei, ej)el, em) satisfy the standard symmetries with

respect to their indices and

α1212 =
4ad+ 3γ2R2 − (b+ c)2

4R2
, α1213 =

2a(f − γk1)− (b + c)(h+ γk2)

4R2
,(6.5)

α1214 =
−3γ(h+ γk2)

4R
, α1223 =

(b+ c)(f − γk1)− 2d(h+ γk2)

4R2
,

α1224 =
3γ(−f + γk1)

4R
, α1234 =

−(a+ d)γ

2R
,

α1313 =
4a(a+ d)−R2γ2 − (h+ γk2)

2

4R2
,

α1323 =
2(a+ d)(b + c) + (−f + γk1)(h+ γk2)

4R2
, α1314 =

−(b+ c)γ

4R
,

α1324 =
−dγ

2R
, α1334 =

γ(f − γk1)

4R
, α1423 =

aγ

2R
,

α1414 =
4a2 + (3b− c)(b + c) + 3(h+ γk2)

2

4R2
,

α1424 =
4(ac+ bd) + 3(f − γk1)(h+ γk2)

4R2
,
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α1434 =
(b− c)(f − γk1) + 4(a+ d)(h+ γk2)

4R2
,

α2323 =
4d(a+ d)−R2γ2 − (f − γk1)

2

4R2
,

α2324 =
(b+ c)γ

4R
, α2334 =

−γ(h+ γk2)

4R
,

α2424 =
−(b− 3c)(b+ c) + 4d2 + 3(f − γk1)

2

4R2
,

α2434 =
4(a+ d)(f − γk1) + (c− b)(h+ γk2)

4R2
,

α3434 =
4(a+ d)2 − (f − γk1)

2 − (h+ γk2)
2

4R2
.

Further, we obtain easily

Lemma 6.3 ([1]). The matrix of the Ricci tensor of type (1, 1) expressed with

respect to the basis {e1, e2, e3, e4} is of the form

(6.6)









β11 β12 β13
γ(−f+γk1)

2R

β12 β22 β23
γ(h+γk2)

2R

β13 β23 β33 0
γ(−f+γk1)

2R
γ(h+γk2)

2R 0 β44









where

β11 =
−4a(a+ d)− b2 + c2 −R2γ2 − (h+ γk2)

2

2R2
,

β12 =
(−f + γk1)(h+ γk2)− a(b+ 3c)− d(3b+ c)

2R2
,

β13 =
c(f − γk1)− (2a+ 3d)(h+ γk2)

2R2
,

β22 =
b2 − c2 − 4d(a+ d)−R2γ2 − (f − γk1)

2

2R2
,

β23 =
(3a+ 2d)(−f + γk1) + b(h+ γk2)

2R2
,

β33 =
−4(a+ d)2 +R2γ2 + (f − γk1)

2 + (h+ γk2)
2

2R2
,

β44 =
−(b+ c)2 − 4((a+ d)2 − ad)− (f − γk1)

2 − (h+ γk2)
2

2R2
.

Now we obtain the following analogue of Lemmas 2.3 and 2.4:
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Lemma 6.4.

|R|2 =

4
∑

i,j,k,l=1

α2
ijkl(6.7)

=
1

4R4
((f − γk1)(−16(a(b− 2c)− (2b− c)d)(h+ γk2)

+ (f − γk1)(32(c
2 + d2) + 8(a+ d)(4a+ d)− 2(b− 5c)(b− c)

+ 11(f − γk1)
2 + 22((h+ γk2)

2 + γ2R2))) + (h+ γk2)
2(40a(a+ d)

+ 2(11b2 + 6bc− c2 + 16d2) + 11(h+ γk2)
2 + 22γ2R2)

+ (b+ c)(−32c(a− d)2 + (b + c)(32a2 + 11b2 − 10bc+ 11c2 + 8ad+ 32d2)

− 2(b+ c)γ2R2) + 8d2(16c2 + 6d2 − γ2R2) + 11γ4R4

+ 8(a+ d)(2(a+ d)(3a2 + 2c2 + 6d2)− 4d(4c2 + 3d2) + (a+ 2d)γ2R2)).

Lemma 6.5. The condition (2.7) is equivalent to the following system of algebraic

equations where F = f − γk1, H = h+ γk2 and S = γ2R2 > 0.

(6.8)

(1, 2) = 4c(a+ d)(4a2 + 4c2 + 4ad+ 4d2) + 2(b− c)(2d((b + c)2 + 2d2 + 2a2)

+ 2(a+ d)(bc+ 3c2) + 2(a+ d)3) + (2ab+ 4ac+ 7bd− 3cd)F 2

− 2(b+ c)(a+ d)S − (3ab− 7ac− 4bd− 2cd)H2 + 5FH3 + 5F 3H

+ FH(2(b2 + 3bc+ c2 + 7d2) + 2(6a− d)(a+ d)) + 5FHS = 0,

(1, 3) = F (4bd(2a+ 3d) + (b + c)(2(a− 2d)(a+ d) + (b− c)2) + b(b+ c)2)

+H((a+ d)(2b(3b+ c) + (b+ c)2 − 16ad) + 16(a+ d)3

− d(2b2 + 2c2 + (b− c)2 + 4d2)) + 4(a+ d)HS + cF 3

+ (5a+ 3d)F 2H − bFH2 + 4(a+ d)H3 = 0,

(2, 3) = H(4ac(3a+ 2d) + (b+ c)((b − c)2 + c(b + c) + 2(d− 2a)(a+ d)))

+ F (2(a+ d)(−b(3b+ c) + 2(b+ c)2 − 2ad) + 12(a+ d)3

+ d(2b2 + 2c2 + (b− c)2 + 4d2)) + 4(a+ d)FS + bH3 − cF 2H

+ (3a+ 5d)FH2 + 4(a+ d)F 3 = 0,

(1, 4) = H((b− c)(a+ 6d) + 10c(a+ d)) + 5FS + 5F 3 + 5FH2

+ F (2(a+ d)(a+ 7d)− (3b− 2c)(b + c)− 2d2) = 0,

(2, 4) = F ((b − c)(4a+ 9d) + 10c(a+ d)) + 5HS + 5F 2H + 5H3

+H((2b− 3c)(b + c) + 4(a+ d)(3a+ d)− 2d2) = 0,

(3, 4) = 2(b− c)((a− d)2 + (b + c)2)− bH2 + cF 2 + (a− d)FH = 0,
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(2, 2) = −H2(40a2 + 18b2 + 12bc− 6c2 + 40ad+ 16d2)− 2H2S − 11H4

− (b+ c)(24a2b+ 7b3 − 8a2c+ 5b2c− 11bc2 − 9c3 + 8abd+ 8acd

+ 8bd2 − 24cd2)− 6(b+ c)2S − 8(a+ d)(6a3 + 6a2d+ 4ad2)

+ F 2(8a2 − 6b2 + 20bc+ 18c2 + 8ad+ 24d2) + 18F 2S + 9F 4 − 2F 2H2

+ 8(a+ d)(a+ 2d)S − 2FH(8ab− 8ac+ 12bd− 4cd) + (4d2 − 3S)2 = 0,

(3, 3) = − 7S2 −H2(40a2 + 18b2 + 12bc− 6c2 + 24ad+ 8d2)− 14H2S − 7H4

− (b+ c)(16a2b+ 11b3 − 16a2c+ b2c+ bc2 + 11c3 − 24abd+ 40acd

+ 16bd2 − 16cd2) + 8(a+ d)(2a3 − 4ac2 + 10a2d+ 12c2d+ 4ad2 + 8d3)

+ 6(b+ c)2S − 8(a+ d)(a+ 4d)S − 2FH(4ab+ 28ac+ 28bd+ 4cd)

− F 2(8a2 − 6b2 + 12bc+ 18c2 + 24ad+ 40d2)− 8d2(16c2 + 6d2 − 3S)

− 14F 2S − 14F 2H2 − 7F 4 = 0,

(4, 4) = 16d2(8c2 + d2) + 24d2S +H2(56a2 + 18b2 + 4bc− 6c2 + 56ad+ 16d2)

− 11S2 − 2H2S + (b+ c)(16a2b+ 9b3 − 16a2c− 5b2c− 5bc2 + 9c3

− 8abd+ 56acd+ 16bd2 − 16cd2) + 2FH(8ab+ 32ac+ 32bd+ 8cd)

+ 8(a+ d)(2a3 + 4ac2 + 2a2d− 12c2d+ 4ad2) + 18F 2H2 − 2F 2S

+ F 2(16a2 − 6b2 + 4bc+ 18c2 + 56ad+ 56d2)− 8(a+ d)(2d− a)S

+ 6(b+ c)2S + 9F 4 + 9H4 = 0.

Proposition 6.6. The solutions of the system of algebraic equations (6.8) are,

up to a re-numeration of the triplet {e1, e2, e3},

(6.9) a = d = ±1

2

√
S, b = −c, H = 0, F = 0.

In this situation, the corresponding spaces are Einstein and locally symmetric.

P r o o f. We obtain solving the system (6.8) numerically with Mathematica 7.0

that its solution set depends exactly on two parameters. Moreover, we get that the

solutions are real if and only if F = H = 0. Thus, we will just study this subcase. If

we put F = H = 0 in (6.8), the system reduces to

(6.10)

(1, 2) = 16c(a+ d)(a2 + c2 + ad+ d2) + 4(b− c)(c(b + 3c)(a+ d) + (a+ d)3

+ d(2a2 + (b+ c)2 + 2d2))− 2(b+ c)(a+ d)S = 0

(3, 4) = (b− c)((a− d)2 + (b+ c)2) = 0,

(2, 2) = −(b+ c)(24a2b + 7b3 − 8a2c+ 5b2c− 11bc2 − 9c3 + 8abd+ 8acd

+ 8bd2 − 24cd2)− 6(b+ c)2S − 8(a+ d)(6a3 + 6a2d+ 4ad2)
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+ 8(a+ d)(a + 2d)S + (4d2 − 3S)2 = 0,

(3, 3) = −(b + c)(16a2b + 11b3 − 16a2c+ b2c+ bc2 + 11c3 − 24abd+ 40acd

+ 16bd2 − 16cd2) + 8(a+ d)(2a3 − 4ac2 + 10a2d+ 12c2d+ 4ad2 + 8d3)

+ 6(b+ c)2S − 8(a+ d)(a+ 4d)S − 8d2(16c2 + 6d2 − 3S) = 0,

(4, 4) = 16d2(8c2 + d2) + 24d2S − 11S2 + (b+ c)(16a2b+ 9b3 − 16a2c− 5b2c

− 5bc2 + 9c3 − 8abd+ 56acd+ 16bd2 − 16cd2)− 8(a+ d)(2d− a)S

+ 6(b+ c)2S + 8(a+ d)(2a3 + 4ac2 + 2a2d− 12c2d+ 4ad2) = 0.

Now, in order to solve this system of equations, we focus the attention on the equation

(3, 4) = 0 and we divide the study into two cases:

Case 1. a = d, b = −c. Replacing the previous hypothesis in the system (6.10),

this becomes equivalent to

(2, 2)′ = −3(4d2 − S)(20d2 + 3S) = 0,(6.11)

(3, 3)′ = 7(4d2 − S)(12d2 + S) = 0,

(4, 4)′ = (4d2 − S)(36d2 + 11S) = 0.

Then, due to S > 0, necessarily d2 = 1
4S = 1

4γ
2R2 and we get the desired solu-

tion (6.9). Moreover, substituting (6.9) into (6.6) (remember here that F = f − γk1,

H = h + γk2 and S = γ2R2 > 0) we get that the corresponding spaces are irre-

ducible Riemannian manifolds with all Ricci eigenvalues equal to − 3
2γ

2. Then, they

are Einstein and by a well-known theorem of G.R. Jensen [9] they are also locally

symmetric.

Case 2. b = c. After substitution of the previous condition, we can rewrite the

system (6.10) as follows:

(1, 2)′ = 4c(a+ d)(4(a2 + c2 + ad+ d2)− S) = 0(6.12)

(2, 2)′ = − 16(3a2 − c2 + 3ad− d2)(a2 + c2 + ad+ d2)

+ 8(a2 − 3c2 + 3ad− d2)S + 9S2 = 0,

(3, 3)′ = 16(a2 + c2 + ad+ d2)(a2 − 3c2 + 5ad+ d2)

− 8(a2 − 3c2 + 5ad+ d2)S − 7S2 = 0,

(4, 4)′ = 16(a2 + c2 + ad+ d2)2 + 8(a2 + 3c2 − ad+ d2)S − 11S2 = 0.

Now, subtracting equations we also get the following information:

(3, 3)′ − (4, 4)′ = −4(4(a2 + c2 + ad+ d2)− S)(4c2 − 4ad+ S) = 0.

52



Therefore, we can divide the study into two new cases depending on whether S is

equal to 4(a2+ c2+ad+d2) or to 4(ad− c2). In the first case, we get a contradiction

due to S = 4(a2 + c2 + ad + d2) > 0 and the system (6.12) reduces to the unique

equation

(a2 + c2 + ad+ d2)((a2 + c2 + ad+ d2) + (a+ d)2) = 0.

If we assume that S 6= 4(a2 + c2 + ad + d2) but S = 4(ad − c2), from the equation

(1, 2)′ = 0 using the fact that S > 0, we also know that necessarily c = 0. Finally,

putting c = 0 and S = 4ad in (6.12), we reduce the system to

(2, 2)′′ = −16(a− d)(3a3 + 7a2d− 3ad2 + d3) = 0,

(3, 3)′′ = (4, 4)′′ = 16(a− d)2((a+ d)2 + 4ad) = 0.

From the equation (3, 3)′′ = 0 and using the fact that S = 4ad > 0, we get a = d,

the necessary and sufficient condition to fulfill the previous system. Thus, we have

obtained a solution of the system (6.8). This is the solution (6.9) with b = 0 = c.

Proposition 6.6 is proved. �

If we substitute F = f − γk1, H = h + γk2 and S = γ2R2 > 0 into (6.9) we get

just the proof of the last statement of Theorem 6.1. �

7. Semi-direct products R3 ⋊R

Let r3 be the Lie algebra of R3 with a scalar product 〈, 〉3. The algebra of all
derivations D of r3 is gl(3,R). This means that the matrix form of D depends on

9 arbitrary parameters with respect to any fixed orthonormal basis of r3. Moreover,

if D is fixed, then we can make three convenient rotations in the coordinate planes

to obtain a particular orthonormal basis {f1, f2, f3} for which the matrix form of D
is a sum of a diagonal matrix and a skew-symmetric matrix. In other words, we have

the general matrix form

D :











a b c

−b f h

−c −h p



 : a, b, c, f, h, p ∈ R







depending just on 6 parameters. Moreover, we have

(7.1) [f1, f2] = 0, [f1, f3] = 0, [f2, f3] = 0.
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According to the general scheme, we consider the algebra g = r3 + R, where the

multiplication table is given by (7.1) and

[f4, f1] = af1 + bf2 + cf3, [f4, f2] = −bf1 + ff2 + hf3,(7.2)

[f4, f3] = −cf1 − hf2 + pf3, 〈fi, f4〉 = ki, i = 1, 2, 3.

Here a, b, c, f, h, p, k1, k2, k3 are arbitrary parameters where
3
∑

i=1

k2i < 1.

This gives rise to a simply connected group space (G = R3 ⋊R, g).

Theorem 7.1. There are two families of metrics which make (H⋊R, g) a weakly

Einstein manifold. The first family consists of Einstein, locally symmetric spaces,

and the corresponding Lie algebra is determined by (7.2), where p = f = a, and a,

b, c, h, k1, k2, k3 are arbitrary. The second family corresponds to Example 1.2.

In the remainder of the section we will prove the announced theorem. We replace

the basis {fi} by the new basis {ei}, as in the formula (2.3). Then we get an
orthonormal basis for which

[e1, e2] = 0, [e1, e3] = 0, [e2, e3] = 0, [e4, e1] =
1

R
(ae1 + be2 + ce3),(7.3)

[e4, e2] =
1

R
(−be1 + fe2 + he3), [e4, e3] =

1

R
(−ce1 − he2 + pe3).

Now we are going to calculate, in the new basis, the expression for the condition

for (G, g) to be a weakly Einstein manifold. From [1] we know

Lemma 7.2.

∇e1e1 =
a

R
e4, ∇e2e2 =

f

R
e4, ∇e3e3 =

p

R
e4, ∇e4e4 = 0,(7.4)

∇e1e2 = 0 = ∇e2e1, ∇e1e3 = 0 = ∇e3e1, ∇e2e3 = 0 = ∇e3e2,

∇e1e4 = − a

R
e1, ∇e4e1 =

b

R
e2 +

c

R
e3, ∇e2e4 = − f

R
e2,

∇e4e2 = − b

R
e1 +

h

R
e3, ∇e3e4 = − p

R
e3, ∇e4e3 = − c

R
e1 −

h

R
e2.

Similarly to Lemma 2.2 we can now derive
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Lemma 7.3 ([1]). The components of the curvature operator are

R(e1, e2) =
af

R2
A12, R(e1, e4) =

a2

R2
A14 +

b(f − a)

R2
A24 +

c(p− a)

R2
A34,(7.5)

R(e1, e3) =
ap

R2
A13, R(e2, e4) =

b(f − a)

R2
A14 +

f2

R2
A24 +

h(p− f)

R2
A34,

R(e2, e3) =
fp

R2
A23, R(e3, e4) =

c(p− a)

R2
A14 +

h(p− f)

R2
A24 +

p2

R2
A34.

Further, we obtain easily

Lemma 7.4 ([1]). The matrix of the Ricci tensor of type (1, 1) expressed with

respect to the basis {e1, e2, e3, e4} is of the form

(7.6)









−a(a+f+p)
R2

b(a−f)
R2

c(a−p)
R2 0

b(a−f)
R2 − f(a+f+p)

R2

h(f−p)
R2 0

c(a−p)
R2

h(f−p)
R2 − p(a+f+p)

R2 0

0 0 0 −a2+f2+p2

R2









.

Now we obtain the following analogue of Lemmas 2.3 and 2.4:

Lemma 7.5.

|R|2 =
4

∑

i,j,k,l=1

α2
ijkl =

4

R4
(a4 + f4 + p4 + a2f2 + a2p2 + f2p2 + 2b2(a− f)2(7.7)

+ 2c2(a− p)2 + 2h2(f − p)2).

Lemma 7.6. The condition (2.7) is equivalent to the system of algebraic equations

(1, 2) = b(a− f)(a2 + f2)− ch(a− p)(f − p) = 0,(7.8)

(1, 3) = c(a− p)(a2 + p2)− bh(a− f)(f − p) = 0,

(2, 3) = h(f − p)(f2 + p2)− bc(a− f)(a− p) = 0,

(1, 1) = −2h2(f − p)2 + (a− f)(a+ f)(f2 + p2) + a4 − p4 = 0,

(2, 2) = −2c2(a− p)2 + (f − p)(f + p)(a2 + p2)− a4 + f4 = 0,

(4, 4) = 2b2(a− f)2 + 2c2(a− p)2 + 2h2(f − p)2 + a4 − a2f2 + f4

− a2p2 − f2p2 + p4 = 0.
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Proposition 7.7. The only solutions of the system of algebraic equations (7.8)

are, up to a re-numeration of the triplet {e1, e2, e3}, the following ones:
(1) p = f = a, and a, b, c, h, k1, k2, k3 are arbitrary. In this situation, the

corresponding spaces are Einstein with all Ricci eigenvalues equal to −3a2/R2.

(2) c = h = 0, a = f = −p, and a, b, k1, k2, k3 are arbitrary. In this situation,

the corresponding spaces are neither Einstein nor locally symmetric. Moreover,

this case corresponds to Example 1.2.

P r o o f. Suppose first a− f = 0. Thus, the equation (4, 4) = 0 of (7.8) reduces

to

(4, 4)′ = (a− p)2(2c2 + 2h2 + (a+ p)2) = 0.

Now, we get only two possibilities which both are solutions of the system (7.8): a = p

or a = −p, c = h = 0. We call them solutions 1 and 2, respectively.

For the solution 1 we obtain from (7.6) that all four Ricci eigenvalues are equal

to −3a2/R2. Then the corresponding spaces are Einstein and by [9] they are locally

symmetric.

For the solution 2 we obtain from (7.6) that the Ricci eigenvalues are ̺1 = ̺2 =

−a2/R2, ̺3 = a2/R2, ̺4 = −3a2/R2 and, from (7.4) and (7.5) that the corresponding

spaces are not locally symmetric due to (∇e1R)(e1, e3)e3 6= 0. Besides, it is easy to

check that the curvature tensor (7.5) takes on the form

R(e1, e2) =
a2

R2
A12, R(e1, e3) = − a2

R2
A13, R(e1, e4) =

a2

R2
A14,(7.9)

R(e2, e3) = − a2

R2
A23, R(e2, e4) =

a2

R2
A24, R(e3, e4) =

a2

R2
A34.

Then, the space of the curvature operators is obviously spanned by the six operators

A12, A13, A14, A23, A24, A34. Hence the Lie algebra generated by these operators

is so(4). We see that the action of the holonomy algebra on the tangent space TeG

is irreducible and hence the corresponding Riemannian manifolds are irreducible.

Moreover, in this case the formula (7.3) simplifies as follows

[e1, e2] = 0, [e1, e3] = 0, [e2, e3] = 0, [e4, e1] =
1

R
(ae1 + be2),(7.10)

[e4, e2] =
1

R
(−be1 + ae2), [e4, e3] =

1

R
(−ae3).

Then making the change of the basis

e′1 = e4, e′2 = e3, e′3 = e2, e′4 = e1,
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and putting α = −a/R, β = b/R, we get that the multiplication table (7.10) for the

new basis {e′1, e′2, e′3, e′4} becomes exactly the same as in Example 1.2.
Let now assume that a− f 6= 0. Because the system is symmetric with respect to

all re-numerations of the basis {e1, e2, e3} which implies corresponding permutations
and some changes of sign of the symbols a, b, c, f , h, p, we can also assume that

a − p 6= 0 and p − f 6= 0. Moreover, note that bch = 0 if and only if b = c = h = 0

due to the equations (1, 2) = 0, (1, 3) = 0 and (2, 3) = 0. In addition, if we put

b = c = h = 0 in the equation (4, 4) = 0 we get a2 = 1
2 ((f

2 + p2) ± i
√
3(f − p)×

(f + p)). Therefore, necessarily f = −p and a = −f , a contradiction. Now we

can also assume that bch 6= 0 and from the equation (1, 2) = 0 we obtain b =

−ch(a− p)(−f + p)/(a− f)(a2 + f2). Substituting this value of b into the equation

(1, 3) = 0 we get

(1, 3)′ =
c(a− p)

a2 + f2
((a2 + f2)(a2 + p2)− h2(f − p)2) = 0.

Therefore, h2 = (a2 + f2)(a2 + p2)/(f − p)2 and the equation (1, 1) = 0 becomes

equivalent to

(1, 1)′ = a4 + a2(f2 + p2) + (f2 + p2)2 + f2p2 = 0.

Thus, a2 = 1
2 (−(f2 + p2)± i

√

(3f2 + p2)(f2 + 3p2)) which is a contradiction due to

(3f2 + p2)(f2 + 3p2) > 0. Proposition 7.7 is proved. �

This completes the proof of the Theorem 7.1 and also that of the Main Theorem.

8. Isomorphisms of EPS spaces

In this section we study the possible isomorphisms among the EPS spaces (G, g)α,β

depending on the parameters α and β. Here we shall use the classification of 4-

dimensional solvable algebras given by de Graaf [4]. According to this classification

theorem, our algebras gα,β from Example 1.2 for different β
2/α2 are not isomorphic

and hence the corresponding groups Gα,β are not isomorphic as well.

Theorem 8.1. Two Lie algebras gα,β, gα′,β′ are isomorphic if and only if β/α =

±β′/α′. Therefore the corresponding simply connected Lie groups Gα,β , Gα′,β′ are

isomorphic if and only if β/α = ±β′/α′.

P r o o f. We divide the proof into two cases according as β 6= 0 or β = 0 in

(1.3). For the first case we replace in (1.3) the basis {ei} by a new quadruplet {xi}
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(i = 1, 2, 3, 4) putting

x1 = e2 + e3 + e4,(8.1)

x2 = − e2 +
(

1− β

α

)

e3 +
(

1 +
β

α

)

e4,

x3 = e2 +
(

1− β(2α+ β)

α2

)

e3 +
(

1 +
β(2α− β)

α2

)

e4,

x4 = − 1

α
e1,

where α 6= 0, β 6= 0 are constants. In fact, the determinant of the coefficients is

−(2β/α4)(4α2 + β2) 6= 0. Thus we get a basis for which

[x4, x1] = x2, [x4, x2] = x3, [x4, x3] = Ax1 + (2 +A)x2 + x3,(8.2)

[x1, x2] = 0, [x1, x3] = 0, [x2, x3] = 0,

where A = −1− β2/α2. Note that this multiplication table corresponds to the class

M6
ab of the classification of solvable Lie algebras of dimension 4 given by de Graaf [4]

where a = A, b = 2 + A. Hence A is an algebraic invariant and β2/α2 is also an

algebraic invariant.

On the other hand, if β = 0 in (1.3), we replace the basis {ei} by a new basis {xi}
(i = 1, 2, 3, 4) putting

(8.3) x1 = e4, x2 = e2 + e3, x3 = −e2 + e3, x4 = − 1

α
e1,

where α 6= 0 is a constant. Then we get a basis for which

[x4, x1] = x1, [x4, x2] = x3, [x4, x3] = x2,(8.4)

[x1, x2] = 0, [x1, x3] = 0, [x2, x3] = 0.

This multiplication table corresponds to the classM3
a of the classification of solvable

Lie algebras of dimension 4 given by de Graaf [4] putting a = −1. �
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