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BOUNDEDNESS OF STEIN’S SQUARE FUNCTIONS

AND BOCHNER-RIESZ MEANS ASSOCIATED

TO OPERATORS ON HARDY SPACES

Xuefang Yan, Shijiazhuang
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Abstract. Let (X, d, µ) be a metric measure space endowed with a distance d and a non-
negative Borel doubling measure µ. Let L be a non-negative self-adjoint operator of order
m on L2(X). Assume that the semigroup e−tL generated by L satisfies the Davies-Gaffney
estimate of order m and L satisfies the Plancherel type estimate. Let Hp

L(X) be the Hardy
space associated with L. We show the boundedness of Stein’s square function Gδ(L) arising
from Bochner-Riesz means associated to L from Hardy spaces Hp

L(X) to L
p(X), and also

study the boundedness of Bochner-Riesz means on Hardy spaces Hp
L(X) for 0 < p 6 1.

Keywords: non-negative self-adjoint operator; Stein’s square function; Bochner-Riesz
means; Davies-Gaffney estimate; molecule Hardy space
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1. Introduction

Let L be a non-negative self-adjoint operator acting on L2(X), where X is a dou-

bling measure space. It admits a spectral resolution

L =

∫ ∞

0

λdE(λ).

For a complex number δ = σ + iτ , σ > −1, by the spectral theorem we can define

the Bochner-Riesz means Sδ
R(L) = (I − L/Rm)δ+ of order δ of a function f as

(1.1) Sδ
R(L)f(x) =

∫ R

0

(

1− λ

Rm

)δ

dE(λ)f(x), x ∈ X, R > 0,

where m is a positive constant and m > 2.

This project was supported by Science and Technology Research of Higher Education in
Hebei province (No. Z2014057).
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Due to the above, we can also consider the following square function associated to

an operator L:

(1.2) Gδ(L)f(x) = cmδ

(
∫ ∞

0

∣

∣

∣

∂

∂R
Sδ+1
R (L)f(x)

∣

∣

∣

2

R dR

)1/2

, x ∈ X,

where cmδ = 1/(m(δ + 1)).

Note that when L is the Laplacian −∆ on R
D, the square function Gδ(∆) is

introduced by E.M. Stein in his study of Bochner-Riesz means [21]. It is known that

the Lp boundedness of Gσ(∆) for 1 < p 6 2 holds if and only if σ > D(1/p−1/2)−1/2

(see [14], [15] and [21]). For the range p > 2, the condition σ > max{1/2, D(1/2 −
1/p)} − 1 is known to be necessary and sufficient in dimensions D = 1 and 2. In

dimensions D > 3, there are some partial results, see for instance, for σ > D(1/2−
1/p) − 1/2 in [14] and [15]. For 0 < p 6 1, if σ > D(1/p− 1/2) − 1/2, then Gσ(∆)

is bounded from Hp to Lp (see [16]). Boundedness of the square function Gδ(∆) has

been studied extensively because of its important role in the Bochner-Riesz analysis

and we refer the reader to [5], [14], [15], [16] and [21] and the references therein.

Recently, in the abstract framework of a space of homogeneous type (X, d, µ) with

dimension n > 0 (see Section 2 below), P.Chen, X. T.Duong and L.X.Yan ([5])

studied and obtained the Lp boundedness of Stein’s square function Gδ(L) when the

semigroup e−tL, generated by −L on L2(X), has the kernels pt(x, y) which satisfy

the Gaussian upper bounds (see, for example, [18])

|pt(x, y)| 6
C

V (x, t1/m)
exp

(

−d(x, y)m/(m−1)

ct1/(m−1)

)

for all t > 0 and x, y ∈ X , where C, c are constants. They showed that under

the assumption of the Plancherel type estimate (see also [6], [10]), that is, for some

2 6 q 6 ∞ and any t > 0 and all Borel functions F such that suppF ⊆ [0, t],

(1.3)

∫

X

|KF (m√L)(x, y)|2 dµ(x) 6
C

V (y, t−1)
‖F (t·)‖2Lq ,

where KF (m√L)(x, y) : X × X → C denotes the kernel of the operator F (m
√
L), if

p ∈ (1,∞) and σ > (n+1− 2/q)|1/p− 1/2| − 1/2, then Gσ(L) is bounded on L
p(X)

(see Theorem 1.1, [5]).

Sometimes it is not clear whether, or it is even not true that, a non-negative

self-adjoint operator on L2(X) admits Gaussian upper bounds. This occurs, for

example, for Schrödinger operators with bad potentials [20] or elliptic operators of

higher order with bounded measurable coefficients [8]. So we consider the following

weaker assumptions:
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(H1) The operator L generates an analytic semigroup {e−tL}t>0 on L2(X) which

satisfies the Davies-Gaffney estimate (of orderm). That is, there exist constants

C, c > 0 such that for any open subsets U1, U2 ⊂ X ,

(1.4) |〈e−tLf1, f2〉| 6 C exp
(

−dist(U1, U2)
m/(m−1)

ct1/(m−1)

)

‖f1‖L2(X)‖f2‖L2(X), ∀ t > 0,

for every fi ∈ L2(X) with supp fi ⊂ Ui, i = 1, 2, where dist(U1, U2) :=

inf
x∈U1
y∈U2

d(x, y).

Motivated by the works [5] and [11] we study the boundedness of Stein’s square

function Gδ(L) from the Hardy spacesH
p
L(X) to Lp(X). Moreover, we get the bound-

edness of Bochner-Riesz means Sδ
R(L) on the Hardy spaces H

p
L(X) for 0 < p 6 1.

For our purposes we introduce the Hardy spaces Hp
L(X) as follows. Definition 1.1

below is inspired by [9].

Definition 1.1. Let L be a non-negative self-adjoint operator on L2(X) which

satisfies the Davies-Gaffney estimate (1.4). Consider the following quadratic operator

associated to L:

(1.5) Shf(x) =

(
∫ ∞

0

∫

d(x,y)<t

|(tmL)e−tmLf(y)|2 dµ(y)

V (x, t)

dt

t

)1/2

, x ∈ X, f ∈ L2(X).

For each 0 < p 6 1, the space Hp
L(X) is defined as the completion of {f ∈ L2(X) :

Shf ∈ Lp(X)} in the norm

‖f‖Hp
L(X) = ‖Shf‖Lp(X).

Note that S.Hofmann, G. Z. Lu, D.Mitrea, M.Mitrea and L.X.Yan [12] developed

a theory of Hardy spaces adapted to non-negative self-adjoint operators L on L2(X)

which satisfy the Davies-Gaffney estimate (of order 2) in the framework of spaces of

homogeneous type. X.T.Duong and J. Li [9] studied even non-self-adjoint operators

and introduced Hardy spaces associated with operators which have a bounded holo-

morphic functional calculus on L2(X) and satisfy the Davies-Gaffney estimate (of

order 2). For more details about Hardy spaces, we refer the reader to [1], [13].

There is an equivalent characterization of the Hardy spaces Hp
L(X) in terms of

a molecular decomposition (see Theorem 3.3 below). In order to prove boundedness

of an operator on Hp
L(X), one only needs to understand the action of the operator

on an individual molecule. P.Chen [4] obtained the boundedness of Bochner-Riesz

means Sδ
R(L) on Hp

L(X) for L satisfying the Davies-Gaffney estimate (of order 2)

provided that L satisfies the so called Stein-Tomas restriction type condition. We
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generalize this result on Hp
L(X) to L satisfying the Davies-Gaffney estimate (of or-

der m, m > 2) provided that L satisfies a variation of Plancherel type estimates (see

Theorem 1.2 below). Following the work of P.C.Kunstmann and M.Uhl [17], we

introduce a variation of the Plancherel type condition (1.3) for L which fulfils the

Davies-Gaffney estimate: there exist C > 0 and q ∈ [2,∞] such that for any t > 0,

y ∈ X and all bounded Borel functions F : [0,∞) → C with suppF ⊆ [0, t],

(1.6) ‖F (
m
√
L)χB(y,1/t)‖L2(X)→L2(X) 6 C‖F (t·)‖Lq .

Having this replacement at hand, we are able to state our main results.

Theorem 1.2. Let L be a non-negative self-adjoint operator on L2(X) satisfying

the Davies-Gaffney estimate (1.4) and the Plancherel type condition (1.6) for some

q ∈ [2,∞]. Let δ = σ + iτ with σ > 0 and let Gδ(L) be an operator given in (1.2). If

p ∈ (0, 1] and

σ > n
(1

p
− 1

2

)

− 1

q
,

then there exists a constant C = C(σ, τ, p) > 0 such that

‖Gδ(L)f‖Lp(X) 6 C‖f‖Hp
L(X).

Theorem 1.3. Let L be a non-negative self-adjoint operator on L2(X) satisfying

the Davies-Gaffney estimate (1.4) and the Plancherel type condition (1.6) for some

q ∈ [2,∞]. If p ∈ (0, 1], then for all δ > max{n(1/p− 1/2)− 1/q, 0} we have
∥

∥

∥

(

I − L

Rm

)δ

+

∥

∥

∥

Hp
L(X)→Hp

L(X)
6 C

uniformly in R > 0.

Theorem 1.3, which is actually Corollary 5.3, follows from a spectral multiplier

result as those in [11], [17] which will be stated in Section 5 as Theorem 5.1. The

assertion of Theorem 1.3 generalizes results from [4].

This article is organized as follows. In Section 2, we prove some preliminary results

concerning operators satisfying the Davies-Gaffney estimate. In Section 3, we state

molecular decompositions of Hardy spaces Hp
L(X) associated to an operator L, and

then get the characterization of the Hardy spaces. In Section 4, we state a criterion

for Hp
L − Lp boundedness for singular integrals (cf. [3], [12]), and prove some esti-

mates on Stein’s square functions by using the Davies-Gaffney estimate (1.4) and

the Plancherel estimate (1.6). We then apply the criterion for Hp
L−Lp boundedness
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for singular integrals to prove Theorem 1.2. In Section 5, we get the boundedness of

Sδ
R(L) on the Hardy spaces H

p
L(X) for 0 < p 6 1.

2. Preliminaries

Throughout the whole article we assume that (X, d, µ) is a metric measure space

endowed with a distance d and a nonnegative Borel measure µ on X such that the

doubling condition

(2.1) V (x, 2r) 6 CV (x, r) < ∞

holds for all x ∈ X and for all r > 0, where B(x, r) = {y ∈ X : d(x, y) < r} and
V (x, r) = µ(B(x, r)). A more general definition and further studies of these spaces

can be found in [7].

It follows from the doubling property that the strong homogeneity property

(2.2) V (x, λr) 6 CλnV (x, r)

holds for some C, n > 0 uniformly for all λ > 1 and x ∈ X . In the sequel the value

n always refers to the constants in (2.2) which will be also called the dimension of

(X, d, µ). Of course, n is not uniquely determined and for any n′ > n the inequality

(2.2) is still valid. However, the smaller n is, the stronger will be the multiplier

theorems we are able to obtain. Therefore, we are interested in taking n as small as

possible. Besides, there also exist C and n0 such that

(2.3) V (y, r) 6 C
(

1 +
d(x, y)

r

)n0

V (x, r)

uniformly for all x, y ∈ X and r > 0. In fact, property (2.3) with n0 = n is a direct

consequence of the triangle inequality for the metric d and the strong homogeneity

property (2.2). But, in general, n0 can be taken to be smaller. For example, for the

Lebesgue measure on RD or the Lie groups with polynomial growth, n0 can be taken

to be 0.

Proposition 2.1. Assume that the non-negative self-adjoint operator L satisfies

the Davies-Gaffney estimate (1.4). Then for every K ∈ N, the family of operators

{(tL)Ke−tL}t>0

satisfies the Davies-Gaffney estimate (1.4) with c, C > 0 depending on K, n and n0

in (2.2) and (2.3) only.

P r o o f. The proof is similar to that of [12], Proposition 3.1, or [17], Lemma 2.7,

so we omit the details here. �
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As a consequence of Proposition 2.1, we have the following proposition.

Proposition 2.2. Assume that the non-negative self-adjoint operator L satis-

fies the Davies-Gaffney estimate (1.4). Then for every K1,K2 ∈ N, the family of

operators

{(tL)K1(e−tL)K2}t>0

satisfies the Davies-Gaffney estimate (1.4) with c, C > 0 depending on K1, K2, n

and n0 in (2.2) and (2.3) only.

3. Molecular decompositions of the Hardy spaces Hp
L(X)

Let us denote by D(T ) the domain of an operator T . Recall that B = B(xB , rB)

is the ball of radius rB centered at xB . Given λ > 0, we will write λB for the ball

with the same center as B and with radius rλB = λrB . We set

(3.1) U0(B) := B, and Uj(B) := 2jB \ 2j−1B for j = 1, 2, . . . .

We next describe the notion of a (p,m,M, ε)-molecule associated with an opera-

tor L which satisfies (H1).

Definition 3.1. Let 0 < p 6 1, ε > 0 and M ∈ N. A function a(x) ∈ L2(X) is

called a (p,m,M, ε)-molecule associated with L if there exist a function b ∈ D(LM )

and a ball B such that

(i) a = LMb;

(ii) for every k = 0, 1, 2, . . . ,M and j = 0, 1, 2, . . ., we have

‖(rmBL)kb‖L2(Uj(B)) 6 rmM
B 2−jεV (2jB)1/2−1/p,

where the annuli Uj(B) are defined in (3.1).

Next, we give the definition of the molecular Hardy spaces associated with L

(cf. [9]).

Definition 3.2. Given 0 < p 6 1, ε > 0 and M ∈ N, M > 1
2n(2 − p)/mp, we

say that f =
∑

j

λjaj is a molecular (p,m,M, ε)-representation of f if {λj}∞j=0 ∈ lp,

each aj is a (p,m,M, ε)-molecule, and the sum converges in L2(X). Set

H
p
L,mol,M (X) := {f : f has a molecular (p,m,M, ε)-representation},
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with the “norm” (it is true norm only when p = 1) given by

‖f‖Hp
L,mol,M (X) = inf

{( ∞
∑

j=0

|λj |p
)1/p

: f =

∞
∑

j=0

λjaj is a molecular

(p,m,M, ε)-representation

}

.

The spaceHp
L,mol,M (X) is then defined as the completion of Hp

L,mol,M (X) with quasi-

metric d defined by d(f, g) = ‖f − g‖Hp
L,mol,M (X) for all f, g ∈ Hp

L,mol,M (X).

As a direct consequence of the definition, we note that

Hp
L,mol,M2

(X) ⊂ Hp
L,mol,M1

(X)

whenever 0 < p 6 1 and the integer Mi ∈ N, i = 1, 2 with [ 12n(2− p)/mp] < M1 <

M2 < ∞. We shall see that any choice of ε > 0 and M > 1
2n(2− p)/mp leads to the

same spaces Hp
L,mol,M (X); this follows from the more general fact that the “square

function” and the “molecular” Hp spaces are equivalent whenever ε > 0 and the

parameter M is large enough. One can show the following theorem, which is proved

as Theorem 3.15 of [9] in the special case when m = 2. In fact, the parameter m = 2

is not essential, similarly we can obtain the conclusion for more general cases. We

omit the details here.

Theorem 3.3. Let the non-negative self-adjoint operator L satisfy the Davies-

Gaffney estimate (1.4). Assume that 0 < p 6 1, ε > 0 and M > [ 12n(2− p)/mp],

M ∈ N. Then Hp
L(X) = Hp

L,mol,M (X) with equivalent norms ‖f‖Hp
L,mol,M (X) ≈

‖f‖Hp
L(X), where the implicit constants depend only on p,M, ε and on the constants

in the Davies-Gaffney estimate and the doubling condition.

4. Boundedness of Stein’s square functions from Hp
L(X) to Lp(X)

In this section we will prove Theorem 1.2. First, we state a criterion for Hp
L − Lp

boundedness for singular integrals.

Proposition 4.1. Let L be a nonnegative self-adjoint operator which satisfies

the Davies-Gaffney estimate (1.4). Let 0 < p 6 1. Assume that T is a non-negative

sublinear operator which is bounded on L2(X). If for some M0 > n(2− p)/(2p) and

C > 0 the estimate

(4.1) ‖Ta‖L2(Uj(B)) 6 C2−jM0V (B)1/2−1/p
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is satisfied for each (p,m,M, ε)-molecule a and all j > 0, then T is bounded from

Hp
L(X) to Lp(X).

P r o o f. The proof of this proposition is standard (cf. [3], [12]). For the sake of

completeness, we provide it here.

Suppose that f ∈ Hp
L(X). By Theorem 3.3 and density, we can write f =

∑

j

λjaj in the L
2(X) sense, where aj are (p,m,M, ε)-molecules and

( ∞
∑

j=0

|λj |p
)1/p

≈

‖f‖Hp
L(X). We claim that

(4.2) |T (f)| 6
∞
∑

j=0

|λj ||T (aj)|.

Indeed, for every η > 0 we have that, if fN =
∑

j>N

λjaj , then

(4.3) µ

{

|T (f)| −
∞
∑

j=0

|λj ||T (aj)| > η

}

6 lim sup
N→∞

µ{|T (fN)| > η}

6 CT η
−2 lim sup

N→∞
‖fN‖2L2(X) = 0,

from which (4.2) follows, where CT is the L
2-bound of T . Thus we have

(4.4) ‖T (f)‖pLp(X) 6

∞
∑

j=0

|λj |p‖T (aj)‖pLp(X).

By Hölder inequalities and (4.1), one has

(4.5) ‖T (aj)‖pLp(X) =

∞
∑

k=0

∫

Uk(B)

(Taj(x))
p dµ(x)

6

∞
∑

k=0

V (2kB)1−p/2‖Taj‖pL2(Uk(B))

6

∞
∑

k=0

2kn(1−p/2)V (B)1−p/22−kM0pV (B)p/2−1

=
∞
∑

k=0

2kn(1−p/2)−kM0p 6 C.

This together with (4.4) yields

(4.6) ‖T (f)‖pLp(X) 6 C

∞
∑

j=0

|λj |p 6 C‖f‖p
Hp

L(X)
.

Then the proof is complete. �
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Lemma 4.2. Suppose that L satisfies the Davies-Gaffney estimate (1.4) and the

Plancherel estimate (1.6) for some q ∈ [2,∞]. Then for any v > 2/q, ε > 0, there

exists a constant C = C(v, ε) such that

‖F (
m
√
L)χB(y,1/t)‖L2(X)→L2(X,(1+td(·,y))v dµ) 6 C‖F(t)(λ)‖W q

v/2+ε

for every t > 0, y ∈ X , and all bounded Borel functions F : [0,∞) → C with

suppF ⊆ [t/4, t], where F(t)(λ) = F (tλ) and ‖F‖W q
v
= ‖(I − d2/dx2)v/2F‖Lq .

P r o o f. For a proof, see Lemma 4.10 of [17]. �

Proposition 4.3. Let the non-negative self-adjoint operator L satisfy the Davies-

Gaffney estimate (1.4) and the Plancherel estimate (1.6) for some q ∈ [2,∞]. Let

δ = σ + iτ with σ > 0, let Gσ(L) be an operator given in (1.2). Suppose that

0 < p 6 1 and M ∈ N, M > n(2− p)/(2mp). If

σ > n
(1

p
− 1

2

)

− 1

q
,

then there exist constants v0 > n(2 − p)/(2p) and C = C(σ, τ) > 0 such that for any

ball B

(α) ‖Gδ(L)(I − e−rmB L)Mf‖L2(Uj(B)) 6 C2−jv0‖f‖L2(B)

for all integers j > 0 and for all f ∈ L2(X) with supp f ⊂ B;

(β) ‖Gδ(L)(I − e−rmB L)Mf‖L2(Uj(B)) 6 C2−|j−i|v02in‖f‖L2(Ui(B))

for all integers j, i > 0 and for all f ∈ L2(X) with supp f ⊂ Ui(B).

P r o o f. We first show that the operator Gδ(L) is bounded on L2(X) (see [5]).

For every R > 0 and λ > 0, we recall that Sδ
R(λ) = (1 − λ/Rm)δ+, and

F δ
R(λ) = cδR

∂

∂R
Sδ+1
R (λ)

with cmδ = 1/(m(δ + 1)). It follows from the spectral theory in [22] that for any

f ∈ L2(X),

(4.7) ‖Gδ(L)f‖L2(X) =

{
∫ ∞

0

〈F δ
R(L)F

δ
R(L)f, f〉

dR

R

}1/2

=

{〈
∫ ∞

0

|F δ
R|2(L)

dR

R
f, f

〉}1/2

=

{
∫ ∞

λ1/2

(

1− λ

Rm

)2σ λ2

R2m+1
dR

}1/2

‖f‖L2(X)

= Bσ‖f‖L2(X),
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where

B2
σ =

∫ ∞

λ1/m

(

1− λ

Rm

)2σ λ2

R2m+1
dR =

∫ ∞

1

s−(2m+1)(1 − s−m)2σ ds < ∞

and the integral above converges if σ > −1/2.

To complete the proof of this proposition, we need some preliminary results. We

shall be working with an auxiliary nontrivial function ϕ with compact support. The

choice of ϕ in the statements is not unique. Let ϕ ∈ C∞
c (0,∞) be a non-negative

function satisfying

(4.8) suppϕ ⊆
[1

4
, 1
]

,

∞
∑

l=−∞
ϕ(2−lλ) = 1 for any λ > 0.

Since suppF δ
R(λ

m) ⊂ [0, R] and suppϕ ⊆ [1/4, 1], we have that for every λ > 0,

F δ
R(λ

m) =
∞
∑

l=−∞
ϕ(2−lλ/R)F δ

R(λ
m) =

1
∑

l=−∞
ϕ(2−lλ/R)F δ

R(λ
m).

This decomposition implies that the sequence
1
∑

l=−N

ϕ(2−l m
√
L/R)F δ

R(L) converges

strongly in L2(X) to F δ
R(L) (see, for instance, Reed and Simon [19], Theorem VIII.5).

For every l 6 1 and r > 0, we set for λ > 0,

(4.9) F δ
R,l,r(λ) = ϕ(2−lλ/R)F δ

R(λ
m)(1− e−(rλ)m)M .

We may write

(4.10) F δ
R(L)(I − e−rmL)Mf = lim

N→∞

1
∑

l=−N

F δ
R,l,r(

m
√
L)f,

where the sequence converges strongly in L2(X).

For a ball B, we let rB be the radius of B. For every j = 1, 2, 3, . . . , we recall that

Uj(B) = 2jB \ 2j−1B is defined in (3.1). Then the following result holds.

Lemma 4.4. Suppose that F δ
R,l,rB

(m
√
L) are defined as above. Let σ > n(1/p−

1/2)− 1/q with some q ∈ [2,∞] and let max
{

1/q, n(1/p− 1/2)} < v < σ + 1/q and

v < mM . Then there exists a constant C = C(v, σ) > 0 such that

(4.11) ‖χUj(B)F
δ
R,l,rB (

m
√
L)χB‖L2(X)→L2(X)

6 C2mlec|τ |max{1, (2lRrB)
n/2}(2lR2j−1rB)

−v min{1, (2lRrB)
mM}
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for all j = 2, 3, . . ., and

(4.12) ‖χUj(B)F
δ
R,l,rB (

m
√
L)χUi(B)‖L2(X)→L2(X)

6 C2mlec|τ |2in max{1, (2lRrB)
n/2}(2lR2|j−i|rB)

−v min{1, (2lRrB)
mM}

for all |j − i| > 4.

P r o o f of Lemma 4.4. Consider a ball B ⊂ X with center y ∈ X and radius

rB . Due to suppF
δ
R,l,rB

(λ) ⊂ [2lR/4, 2lR], we use Lemma 4.2 to obtain that for any

l ∈ Z,

‖F δ
R,l,rB (

m
√
L)χB(y,2−lR−1)‖L2(X)→L2(X,(1+2lRd(·,y))2v dµ) 6 C‖F δ

R,l,rB (2
lRλ)‖W q

v
.

Let j > 2. For each x ∈ Uj(B) we have, due to d(x, y) > 2j−1rB , the estimate

(1 + 2lRd(x, y))2v > (2lR2j−1rB)
2v. Hence we get

(4.13) ‖χUj(B)F
δ
R,l,rB (

m
√
L)χB(y,2−lR−1)‖L2(X)→L2(X)

6 C(2lR2j−1rB)
−v

× ‖χUj(B)F
δ
R,l,rB (

m
√
L)χB(y,2−lR−1)‖L2(X)→L2(X,(1+2lRd(·,y))2v dµ)

6 C(2lR2j−1rB)
−v‖F δ

R,l,rB (2
lRλ)‖W q

v
.

Case 1. rB 6 2−lR−1. From (4.13) we have

(4.14) ‖χUj(B)F
δ
R,l,rB (

m
√
L)χB‖L2(X)→L2(X)

6 C(2lR2j−1rB)
−v‖F δ

R,l,rB (2
lRλ)‖W q

v
.

Case 2. rB > 2−lR−1. In this case we follow Lemma 2.2 of [17] to select a finite

number of points y1, . . . , yK ∈ B(y, rB) such that

(i) d(yj , yk) > 2−l−1R−1 for all j, k ∈ {1, . . . ,K} with j 6= k;

(ii) B(y, rB) ⊂
K
⋃

m=1
B(ym, 2−lR−1);

(iii) K . (2lRrB)
n;

(iv) each x ∈ B(y, rB) is contained in at most M balls of B(ym, 2−lR−1), where M

depends only on the constants in (2.2).

Observe that for all j > 2 and m ∈ {1, 2, . . . ,K},

Uj(B(y, rB)) ⊂
j+1
⋃

η=j−1

Uη(B(ym, rB)).
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By (4.13),

(4.15) ‖χUj(B(y,rB))F
δ
R,l,rB (

m
√
L)χB(ym,2−lR−1)‖L2(X)→L2(X)

6 C

j+1
∑

η=j−1

‖χUη(B(ym,rB))F
δ
R,l,rB (

m
√
L)χB(ym,2−lR−1)‖L2(X)→L2(X)

6 C

j+1
∑

η=j−1

(2lR2η−1rB)
−v‖F δ

R,l,rB (2
lRλ)‖W q

v

6 C(2lR2j−1rB)
−v‖F δ

R,l,rB (2
lRλ)‖W q

v
.

Consider g, h ∈ L2(X) with supp g ⊂ B, ‖g‖L2(X) = 1 and supph ⊂ Uj(B),

‖h‖L2(X) = 1. From (4.15) we obtain that for every j > 2,

|〈h, χUj(B(y,rB))F
δ
R,l,rB (

m
√
L)χB(y,rB)g〉|2

6 ‖χB(y,rB)F
δ
R,l,rB (

m
√
L)∗χUj(B(y,rB))h‖2L2(X)‖g‖2L2(X)

6

K
∑

m=1

‖χUj(B(y,rB))F
δ
R,l,rB (

m
√
L)χB(ym,2−lR−1)‖2L2(X)→L2(X)

6

K
∑

m=1

C(2lR2j−1rB)
−2v‖F δ

R,l,rB (2
lRλ)‖2W q

v
.

Taking the supremum over all such g, h and recalling
√
K 6 C(2lRrB)

n/2, we deduce

(4.16) ‖χUj(B(y,rB))F
δ
R,l,rB (

m
√
L)χB(y,rB)‖L2(X)→L2(X)

6 C(2lRrB)
n/2(2lR2j−1rB)

−v‖F δ
R,l,rB (2

lRλ)‖W q
v
.

Now for any Sobolev space W q
v (R), if k is an integer greater than v, then

(4.17) ‖F δ
R,l,rB (2

lRλ)‖W q
v

6 C‖(2lλ)mϕ(λ)(1 − 2mlλm)δ+‖W q
v
‖(1− e−(2lRrB)mλm

)M‖Ck[1/4,1]

6 C2ml‖ϕ(λ)(1 − 2mlλm)δ+‖W q
v
min{1, (2lRrB)

mM}.

It is known that for σ > −1/2, 0 < v < σ + 1/q

(4.18) sup
l∈Z : l61

‖ϕ(λ)(1 − 2mlλm)δ+‖W q
v (R) 6 Cσe

c|τ |

see Lemma 2.2 of [5]. This, in combination with (4.14), (4.16) and (4.17), yields

‖χUj(B)F
δ
R,l,rB (

m
√
L)χB‖L2(X)→L2(X)

6 C2mlec|τ |max{1, (2lRrB)
n/2}(2lR2jrB)

−v min{1, (2lRrB)
mM}.

Then the proof of (4.11) is complete.
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Next we have to check (4.12). Since L is a non-negative self-adjoint operator, one

can swap i and j in the term on the left-hand side of (4.12). Hence, it will be enough

to show the assertion for every i, j ∈ N with j − i > 4. By applying [2] Lemma 3.4,

(4.11), and the doubling property, we get

‖χUj(B)F
δ
R,l,rB (

m
√
L)χUi(B)‖L2(X)→L2(X)

6 C

∫

X

‖χUj(B(y,rB))F
δ
R,l,rB (

m
√
L)χB(z,rB)‖L2(X)→L2(X)

× ‖χB(z,rB)χUi(B(y,rB))‖L2(X)→L2(X)
dµ(z)

V (z, rB)

6 C

∫

B(y,2i+1rB)\B(y,2i−2rB)

η=j+i+1
∑

η=j−i−3

‖χUη(B(z,rB))F
δ
R,l,rB (

m
√
L)χB(z,rB)‖L2(X)→L2(X)

dµ(z)

V (z, rB)

6 C

∫

B(y,2i+1rB)

η=j+i+1
∑

η=j−i−3

C(F )2−ηv2(i+1)n dµ(z)

V (z, 2i+1rB)
,

where C(F ) = C2mlec|τ |max{1, (2lRrB)
n/2}(2lRrB)

−v min{1, (2lRrB)
mM}. In the

remaining steps we covered Uj(B(y, rB)) by dyadic annuli around the point z with

the same radius rB. With help of

η=j+i+1
∑

η=j−i−3

2−ηv = 23v2−(j−i)v

η=2i+4
∑

η=0

2−ηv 6 C2−(j−i)v,

we finish our estimates as follows:

(4.19) ‖χUj(B)F
δ
R,l,rB (

m
√
L)χUi(B)‖L2(X)→L2(X)

6 C(F )2−(j−i)v2(i+1)n

∫

B(y,2i+1rB)

dµ(z)

V (z, 2i+1rB)

6 C2mlec|τ |2in max{1, (2lRrB)
n/2}(2lR2(j−i)rB)

−v min{1, (2lRrB)
mM}.

Thus, the proof of Lemma 4.4 is completed. �

Back to the p r o o f of Proposition 4.3. Let B be a ball with the radius rB of B

and all f supported in B. Fix v0 in Lemma 4.4. For j = 0, 1, we use the L2

boundedness of Gδ(L)(I − e−rmB L)M to get that

(4.20) ‖Gδ(L)(I − e−rmB L)Mf‖L2(Uj(B)) 6 C‖f‖L2(B).
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For j > 2, from the definition of Gδ(L) and (4.9), we use the Minkowski inequality

to obtain that

‖Gδ(L)(I − e−rmB L)Mf‖L2(Uj(B)) 6
∑

l61

(
∫ ∞

0

∫

Uj(B)

|F δ
R,l,rB (

m
√
L)f |2 dµ dR

R

)1/2

.

One may write

∫ ∞

0

∫

Uj(B)

|F δ
R,l,rB (

m
√
L)f |2 dµ dR

R

=

(
∫ 2−lr−1

B

0

+

∫ ∞

2−lr−1

B

)
∫

Uj(B)

|F δ
R,l,rB (

m
√
L)f |2 dµ(x)dR

R
= I + II.

For the term I, we note that 0 < R < 2−lr−1
B , and then max{1, (rB2lR)n} = 1

min{1, (2lRrB)
2mM} = (2lRrB)

2mM . In view of the inequality (4.11), we have

I 6 Cec|τ |‖f‖2L2(B)

∫ 2−lr−1

B

0

22ml(2jrB2
lR)−2v0(2lRrB)

2mM dR

R

6 Cec|τ |22ml2−2jv0‖f‖2L2(B).

Consider the term II. Since rB2
lR > 1, we have (rB2

lR)n < (rB2
lR)n(2/p−1). In

view of the inequality (4.11) again, one obtains

II 6 Cec|τ |‖f‖2L2(B)

∫ ∞

2−lr−1

B

22ml(2jrB2
lR)−2v0(2lRrB)

n dR

R

6 Cec|τ |‖f‖2L2(B)

∫ ∞

2−lr−1

B

22ml(2jrB2
lR)−2v0(2lRrB)

n(2/p−1) dR

R

6 Cec|τ |22ml2−2jv0‖f‖2L2(B).

Therefore, a simple calculation shows that for every j > 2,

(4.21)

(
∫

Uj(B)

|Gδ(L)(I − e−rmB L)Mf |2 dµ
)1/2

6 Cec|τ |‖f‖L2(B)2
−jv0

∑

l61

2ml

= C2−jv0‖f‖L2(B).

Then (α) of Proposition 4.3 is proved.

In the following, we will check (β). Let f be supported in Ui(B). For |j − i| 6 4,

by using the L2 boundedness of Gδ(L)(I − e−rmB L)M , we get

(4.22) ‖Gδ(L)(I − e−rmB L)Mf‖L2(Uj(B)) 6 C‖f‖L2(Ui(B)).

74



For |j − i| > 4, we also use the Minkowski inequality to obtain that

(4.23) ‖Gδ(L)(I − e−rmB L)Mf‖L2(Uj(B))

6
∑

l61

(
∫ ∞

0

∫

Uj(B)

|F δ
R,l,rB (

m
√
L)f |2 dµdR

R

)1/2

.

With help of (4.12), by using an argument in a way similar to the proof of (α), we

get

(4.24)

∫ ∞

0

∫

Uj(B)

|F δ
R,l,rB (

m
√
L)f |2 dµ dR

R

=

(
∫ 2−lr−1

B

0

+

∫ ∞

2−lr−1

B

)
∫

Uj(B)

|F δ
R,l,rB (

m
√
L)f |2 dµ(x) dR

R

6 Cec|τ |22ml2−2|j−i|v022in‖f‖2L2(Ui(B)).

Inserting (4.24) into (4.23) yields that for every |j − i| > 4,

(
∫

Uj(B)

|Gδ(L)(I − e−rmB L)Mf |2 dµ
)1/2

6 Cec|τ |2in‖f‖L2(Ui(B))2
−|j−i|v0

∑

l61

2ml

= C2−|j−i|v02in‖f‖L2(Ui(B)).

Then (β) of Proposition 4.3 is proved. The proof is complete. �

P r o o f of Theorem 1.2. We apply Proposition 4.1 to show that for every p ∈
(0, 1] and σ > n(1/p− 1/2)− 1/q there exists a constant C = C(p) > 0 such that for

every f ∈ Hp
L(X),

(4.25) ‖Gσ(L)f‖Lp(X) 6 C‖f‖Hp
L(X).

So we only need to check (4.1) in Proposition 4.1. Let ε ∈ (n+n(1/p− 1/2), n+ v0)

be fixed, define ε̃ = ε − n, where v0 is the constant given in Proposition 4.3. Let a

be an (p,m,M, ε)-molecule. First, we have that for j = 0, 1, 2,

‖Gσ(L)a‖L2(Uj(B)) 6 ‖Gσ(L)a‖L2(X) 6 C‖a‖L2(X) 6 CV (B)1/2−1/p.

Now assume that j > 3. By the spectral theorem, we write

(4.26) I = m

(

r−m
B

∫
m√2rB

rB

sm−1 ds

)

· I

= mr−m
B

∫
m√2rB

rB

sm−1(I − e−smL)M ds

+

M
∑

u=1

muCu,Mr−m
B

∫
m√2rB

rB

sm−1e−usmL ds,
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where Cu,M = (−1)u+1/uCu
M . However, ∂se

−usmL = −musm−1Le−usmL and there-

fore,

(4.27) muL

∫
m√2rB

rB

sm−1e−usmL ds = e−urmB L − e−2urmB L = e−urmB L(I − e−urmB L)

= e−urmB L(I − e−rmB L)
u−1
∑

i=0

e−irmB L.

Set Pm,M,rB (L) = r−m
B

∫
m√2rB

rB
sm−1(I − e−smL)M ds. Inserting the equation (4.27)

into (4.26), we obtain the formula

I = mPm,M,rB (L) +

M
∑

u=1

Cu,Mr−m
B L−1(I − e−rmB L)

2u−1
∑

i=u

e−irmB L.

Calculating IM by means of the binomial formula leads to

I = mM (Pm,M,rB (L))
M

+
M−1
∑

l=1

r−ml
B L−l(I − e−rmB L)l(Pm,M,rB (L))

M−l

(2M−1)l
∑

u=1

C(l, u,M)e−urmB L

+

(2M−1)M
∑

u=1

C(M,u,M)r−mM
B L−M (I − e−rmB L)Me−urmB L

for some constants C(l, u,M) ∈ R, l = 1, 2, . . . ,M. Recall that F δ
R(λ) = cδR×

(∂/∂R)Sδ+1
R (λ); applying the above identity, we note that a = LM b to obtain

F δ
R(L)a(x)

= mMr−m
B

∫
m√2rB

rB

sm−1PM−1
m,M,rB

(L)F δ
R(L)(I − e−smL)Ma(x) ds

+

M−1
∑

l=1

{(2M−1)l
∑

u=1

C(l, u,M)r
−m(M+1)
B

×
∫

m√2rB

rB

sm−1(rmBL)M−l(I − e−rmB L)lPM−l−1
m,M,rB

(L)e−urmB LF δ
R(L)(I − e−smL)M b(x) ds

}

+

(2M−1)M
∑

u=1

C(M,u,M)r−mM
B e−urmB LF δ

R(L)(I − e−rmB L)M b(x).

Putting this into the definition of Gδ(L) in (1.2), we have

(4.28) Gδ(L)a(x) =

(
∫ ∞

0

|F δ
R(L)a(x)|2

dR

R

)1/2

6

M
∑

l=0

Gm
l,M,rB (x),
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where

Gm
0,M,rB (x) = mMr−m

B

∫
m√2rB

rB

sm−1

×
(
∫ ∞

0

|PM−1
m,M,rB

(L)F δ
R(L)(I − e−smL)Ma(x)|2 dR

R

)1/2

ds,

and for l = 1, 2, . . . ,M − 1,

Gm
l,M,rB (x) =

(2M−1)l
∑

u=1

C(l, u,M)r
−m(M+1)
B

∫
m√2rB

rB

sm−1

(
∫ ∞

0

|(rmBL)M−le−urmB L

× (I − e−rmB L)lPM−l−1
m,M,rB

(L)F δ
R(L)(I − e−smL)M b(x)|2 dR

R

)1/2

ds,

and

Gm
M,M,rB (x) =

(2M−1)M
∑

u=1

C(M,u,M)r−mM
B

×
(
∫ ∞

0

|e−urmB LF δ
R(L)(I − e−rmB L)M (b)(x)|2 dR

R

)1/2

.

Now we shall estimate {Gl,M,rB}Ml=0 by examining l in three different cases.

Subcase 1. l = 0. It follows from condition (1.4) that the operator PM−1
m,M,rB

(L)

satisfies L2 off-diagonal estimates, that is, there exist constants c, C > 0 such that

for every i, j = 0, 1, 2, . . .

‖PM−1
m,M,rB

(L)f‖L2(Uj(B))

6 C exp(−dist(Uj(B), Ui(B))m/(m−1)/cr
m/(m−1)
B )‖f‖L2(Ui(B))

6 Ce−c2|j−i|‖f‖L2(Ui(B)).

Hence, one can write

‖Gm
0,M,rB‖L2(Uj(B)) 6 Cr−m

B

∞
∑

i=0

∫
m
√
2rB

rB

sm−1

×
(
∫ ∞

0

∫

Uj(B)

|PM−1
m,M,rB

(L)([F δ
R(L)(I − e−smL)Ma]χUi(B))(x)|2 dµ(x)

dR

R

)1/2

ds

6 Cr−m
B

∞
∑

i=0

e−c2|j−i|

∫
m√2rB

rB

sm−1

(
∫ ∞

0

‖F δ
R(L)(I − e−smL)Ma‖2L2(Ui(B))

dR

R

)1/2

ds

6 Cr−m
B

∞
∑

i=0

e−c2|j−i|

∫
m√2rB

rB

sm−1‖Gδ(L)(I − e−smL)Ma‖L2(Ui(B)) ds.
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In order to use Proposition 4.3, we note that for every s ∈ [rB ,
m
√
2rB], U0(B) = B ⊂

B(xB , s) and Ui(B) ⊂ Ui−1(B(xB , s)) ∪ Ui(B(xB , s)) for i > 1. By the Minkowski

inequality, for every s ∈ [rB ,
m
√
2rB ],

(4.29) ‖Gδ(L)(I − e−smL)Ma‖L2(Ui(B)

6 ‖Gδ(L)(I − e−smL)M (aχB(xB ,s))‖L2(Ui(B))

+
∞
∑

η=1

‖Gδ(L)(I − e−smL)M (aχUη(B(xB ,s)))‖L2(Ui(B)).

Due to (α) in Proposition 4.3,

(4.30) ‖Gδ(L)(I − e−smL)M (aχB(xB ,s))‖L2(Ui(B))

6 C2−iv0‖a‖L2(B) 6 C2−iv0V (B)1/2−1/p.

The series in (4.29) can be estimated with help of (β) in Proposition 4.3,

(4.31)

∞
∑

η=1

‖Gδ(L)(I − e−smL)M (aχUη(B(xB,s)))‖L2(Ui(B))

6 C
∞
∑

η=1

2−|η−i|v02ηn‖a‖L2(Uη(B))

6 C

∞
∑

η=1

2−|η−i|v02ηn2−ηεV (2ηB)1/2−1/p

6 C2−i(ε−n)V (B)1/2−1/p;

in the last step we used the fact that

∞
∑

η=1

2−|η−i|v02−η(ε−n) = 2−i(ε−n)

( 0
∑

m=−∞
2m(ε−n)2−|m|v0 +

i−1
∑

m=1

2m(ε−n)2−mv0

)

6 C2−i(ε−n)

( 0
∑

m=−∞
2−|m|v0 +

∞
∑

m=1

2m(ε−n)2−mv0

)

6 C2−i(ε−n).

Recall that ε̃ = ε−n < v0. In view of the inequalities (4.30) and (4.31), we have the

estimate of (4.29)

‖Gδ(L)(I − e−smL)Ma‖L2(Ui(B) 6 C2−iε̃V (B)1/2−1/p,
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which yields that

(4.32) ‖G0,M,rB‖L2(Uj(B)) 6 C

∞
∑

i=0

e−c2|j−i|

2−iε̃V (B)1/2−1/p 6 C2−jε̃V (B)1/2−1/p.

Subcase 2. l = M . In this case we may write

‖Gm
M,M,rB‖L2(Uj(B)) 6 Cr−mM

B

(2M−1)M
∑

u=1

∞
∑

i=0

(
∫ ∞

0

∫

Uj(B)

|e−urmB L([F δ
R(L)(I

− e−rmB L)M b]χUi(B))(x)|2 dµ(x)
dR

R

)1/2

.

It follows from the condition (1.4) that the operators {e−urmB L}(2M−1)M
u=1 satisfy L2

off-diagonal estimate, and then

(4.33) ‖Gm
M,M,rB‖L2(Uj(B)) 6 Cr−mM

B

∞
∑

i=0

e−c2|j−i|‖Gδ(L)(I − e−rmB L)M b‖L2(Ui(B))

6 Cr−mM
B

∞
∑

i=0

e−c2|j−i|

rmM
B 2−iε̃V (B)1/2−1/p

6 C2−jε̃V (B)1/2−1/p.

Subcase 3. l = 1, 2, . . . ,M − 1. In these cases, one has

‖Gm
l,M,rB‖L2(Uj(B))

6

(2M−1)l
∑

u=1

C(l, u,M)r
−m(M+1)
B

∞
∑

i=0

∫
m√2rB

rB

sm−1

(
∫ ∞

0

∫

Uj(B)

|(rmBL)M−le−urmB L

× (I − e−rmB L)lPM−l−1
m,M,rB

(L)([F δ
R(L)(I − e−smL)M b]χUi(B))(x)|2 dµ(x)

dR

R

)1/2

ds.

By Proposition 2.2, the operator family {(tL)M−le−utL}t>0 satisfies L
2 off-diagonal

estimates, and it is easy to prove that L2 off-diagonal estimates also hold for

{(tL)M−le−utL(I − e−tL)l}t>0. So using arguments similar to Subcase 1, we con-

clude that

‖Gm
l,M,rB‖L2(Uj(B)) 6 C2−jε̃V (B)1/2−1/p.

This, in combination with estimates (4.32) and (4.33), gives the desired estimate

(4.1) for T = Gδ(L). The proof of Theorem 1.2 is complete. �
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5. Boundedness of Bochner-Riesz means Sδ
R(L) on Hp

L(X)

In this section we prove a result for Bochner-Riesz means Sδ
R(L). First, we will

state a Hörmander type spectral multiplier result on Hp
L(X). As a corollary, we

get the boundedness of Bochner-Riesz means Sδ
R(L) on Hp

L(X) for 0 < p 6 1,

which generalizes the results from [4] for operators L satisfying the Davies-Gaffney

estimates (of order m).

Theorem 5.1. Let L be a non-negative self-adjoint operator which satisfies the

Davies-Gaffney estimate (1.4) and the Plancherel estimate (1.6) for some q ∈ [2,∞].

Suppose that 0 < p 6 1. If v > max{n(1/p − 1/2
)

, 1/q} and F : [0,∞) → C is

a bounded Borel function with

sup
l∈Z

‖ϕF (2l·)‖W q
v
< ∞,

where ϕ is the function given in (4.8), then there exists a constant C > 0 such that

for all f ∈ Hp
L(X)

‖F (L)f‖Hp
L(X) 6 C

(

sup
l∈Z

‖ϕF (2l·)‖W q
v
+ |F (0)|

)

‖f‖Hp
L(X).

The following proposition plays an important role in proving Theorem 5.1.

Proposition 5.2. Let L be a non-negative self-adjoint operator on L2(X) satisfy-

ing the Davies-Gaffney estimate (1.4). Let F be a bounded Borel function. Suppose

that 0 < p 6 1 and M ∈ N, M > 1
2n(2− p)/mp. Assume that there exist constants

M0 > n(1/p− 1/2) and C > 0 such that for every j = 2, 3 . . . ,

‖F (L)(1− e−rmB L)Mf‖L2(Uj(B)) 6 C2−jM0‖f‖L2(B)

for any ball B with radius rB and for all f ∈ L2(X) with supp f ⊂ B. Then the

operator F (L) extends to a bounded operator onHp
L(X). More precisely, there exists

a constant C > 0 such that for all f ∈ Hp
L(X)

‖F (L)f‖Hp
L(X) 6 C‖f‖Hp

L(X).

P r o o f. The proof is similar to that of Theorem 3.1 [11] or Theorem 4.6 [17].

We omit the details here. �

P r o o f of Theorem 5.1. The proof follows from a slight modification of an

argument as in [17], Theorem 4.2. In fact, we can get the desired result by using

Proposition 5.2 and Lemma 4.2. We omit the details here. �
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A standard application of spectral multiplier theorems is Bochner-Riesz means.

Let us recall that Bochner-Riesz means of order δ for a non-negative self-adjoint

operator L is defined by the formula

Sδ
R(L) =

(

I − L

Rm

)δ

+
, R > 0.

If we set F (λ) = (1−λm)δ+ in Theorem 5.1, then F ∈ W q
α if and only if δ > α− 1/q.

So we have the following corollary.

Corollary 5.3. Let L be a non-negative self-adjoint operator on L2(X) satisfying

the Davies-Gaffney estimate (1.4) and the Plancherel type condition (1.6) for some

q ∈ [2,∞]. If p ∈ (0, 1], then for all δ > max{n(1/p− 1/2)− 1/q, 0} we have

∥

∥

∥

(

I − L

Rm

)δ

+

∥

∥

∥

Hp
L(X)→Hp

L(X)
6 C

uniformly in R > 0.
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