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Abstract. A prime p is said to be a Wolstenholme prime if it satisfies the congruence
(

2p−1
p−1

)

≡ 1 (mod p4). For such a prime p, we establish an expression for
(

2p−1
p−1

)

(mod p8)

given in terms of the sums Ri :=
p−1
∑

k=1

1/ki (i = 1, 2, 3, 4, 5, 6). Further, the expression in

this congruence is reduced in terms of the sums Ri (i = 1, 3, 4, 5). Using this congruence,
we prove that for any Wolstenholme prime p we have

(

2p− 1
p− 1

)

≡ 1− 2p
p−1
∑

k=1

1
k
− 2p2

p−1
∑

k=1

1
k2
(mod p7).

Moreover, using a recent result of the author, we prove that a prime p satisfying the above
congruence must necessarily be a Wolstenholme prime.
Furthermore, applying a technique of Helou and Terjanian, the above congruence is given

as an expression involving the Bernoulli numbers.

Keywords: congruence; prime power; Wolstenholme prime; Wolstenholme’s theorem;
Bernoulli number

MSC 2010 : 11B75, 11A07, 11B65, 11B68, 05A10

1. Introduction and statements of results

Wolstenholme’s theorem (see, e.g., [23], [7]) asserts that if p is a prime greater

than 3, then the binomial coefficient
(

2p−1
p−1

)

satisfies the congruence

(

2p− 1

p− 1

)

≡ 1 (mod p3).

It is well known (see, e.g., [8]) that this theorem is equivalent to the assertion that

for any prime p > 5 the numerator of the fraction

1 +
1

2
+

1

3
+ . . .+

1

p− 1
,
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written in reduced form, is divisible by p2. A.Granwille [7] established broader

generalizations of Wolstenholme’s theorem. As an application, it is obtained in [7]

that for a prime p > 5 we have

(

2p− 1

p− 1

)

/

(

2p

p

)3

≡

(

3

2

)

/

(

2

1

)3

(mod p5).

Notice that C.Helou and G.Terjanian [9] established many Wolstenholme type con-

gruences modulo pk with a prime p and k ∈ N such that k 6 6. One of their

main results ([9], Proposition 2, pages 488–489) is a congruence of the form
(

np
mp

)

≡

f(n,m, p)
(

n
m

)

(mod p), where p > 3 is a prime number, m,n ∈ N with 0 6 m 6 n,

and f is a function on m,n and p involving the Bernoulli numbers Bk. As an ap-

plication, ([9], Corollary 2 (2), page 493; also see Corollary 6 (2), page 495), for any

prime p > 5 we have
(

2p− 1

p− 1

)

≡ 1− p3Bp3−p2−2 +
1

3
p5Bp−3 −

6

5
p5Bp−5 (mod p6).

A similar congruence modulo p7 (Corollary 1.2) is obtained in this paper for Wol-

stenholme primes.

A prime p is said to be a Wolstenholme prime if it satisfies the congruence
(

2p− 1

p− 1

)

≡ 1 (mod p4).

The two known such primes are 16843 and 2124679, and in 2007 R. J.McIntosh and

E.L.Roettger [17] reported that these primes are the only two Wolstenholme primes

less than 109. However, using an argument based on the prime number theorem,

McIntosh [16], page 387, conjectured that there are infinitely many Wolstenholme

primes, and that no prime satisfies the congruence
(

2p−1
p−1

)

≡ 1 (mod p5).

Wolstenholme primes form a subset of irregular primes. Indeed, Wolstenholme

primes are those irregular primes p which divide the numerator of Bp−3 (see, e.g.,

[16] or [19]). Recall that the irregular primes as well as Wieferich and related primes

are connected with the first case of Fermat’s last theorem; see [21], Lecture I, pages

9–12, and [21], Lecture VIII, pages 151–154, [2], [3], [12], [13], [22].

The following result is basic in our investigations.

Proposition 1.1. Let p be a Wolstenholme prime. Then

(

2p− 1

p− 1

)

≡ 1 + p

p−1
∑

k=1

1

k
−

p2

2

p−1
∑

k=1

1

k2
+

p3

3

p−1
∑

k=1

1

k3
−

p4

4

p−1
∑

k=1

1

k4

+
p5

5

p−1
∑

k=1

1

k5
−

p6

6

p−1
∑

k=1

1

k6
(mod p8).
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The above congruence can be simplified as follows.

Proposition 1.2. Let p be a Wolstenholme prime. Then

(

2p− 1

p− 1

)

≡ 1 +
3p

2

p−1
∑

k=1

1

k
−

p2

4

p−1
∑

k=1

1

k2
+

7p3

12

p−1
∑

k=1

1

k3
+

5p5

12

p−1
∑

k=1

1

k5
(mod p8).

Reducing the modulus in the previous congruence, we can obtain the following

simpler congruences.

Corollary 1.1. Let p be a Wolstenholme prime. Then

(

2p− 1

p− 1

)

≡ 1− 2p

p−1
∑

k=1

1

k
− 2p2

p−1
∑

k=1

1

k2

≡ 1 + 2p

p−1
∑

k=1

1

k
+

2p3

3

p−1
∑

k=1

1

k3
(mod p7).

The Bernoulli numbers Bk (k ∈ N) are defined by the generating function

∞
∑

k=0

Bk

xk

k!
=

x

ex − 1
.

It is easy to find the values B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, and Bn = 0

for odd n > 3. Furthermore, (−1)n−1B2n > 0 for all n > 1. These and many other

properties can be found, for instance, in [10] or [4].

The second congruence from Corollary 1.1 can be given in terms of the Bernoulli

numbers by the following result.

Corollary 1.2. Let p be a Wolstenholme prime. Then

(

2p− 1

p− 1

)

≡ 1− p3Bp4−p3−2 −
3

2
p5Bp2−p−4 +

3

10
p6Bp−5 (mod p7).

The above congruence can be given by the following expression involving lower

order Bernoulli numbers.
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Corollary 1.3. Let p be a Wolstenholme prime. Then

(

2p− 1

p− 1

)

≡ 1− p3
(8

3
Bp−3 − 3B2p−4 +

8

5
B3p−5 −

1

3
B4p−6

)

− p4
(8

9
Bp−3 −

3

2
B2p−4 +

24

25
B3p−5 −

2

9
B4p−6

)

− p5
( 8

27
Bp−3 −

3

4
B2p−4 +

72

125
B3p−5 −

4

27
B4p−6 +

12

5
Bp−5 −B2p−6

)

−
2

25
p6Bp−5 (mod p7).

Combining the first congruence in Corollary 1.1 and a recent result of the author

in [18], Theorem 1.1, we obtain a new characterization of Wolstenholme primes as

follows.

Corollary 1.4 ([18], Remark 1.6). A prime p is a Wolstenholme prime if and

only if
(

2p− 1

p− 1

)

≡ 1− 2p

p−1
∑

k=1

1

k
− 2p2

p−1
∑

k=1

1

k2
(mod p7).

Remark 1.1. A computation shows that no prime p < 105 satisfies the second

congruence in Corollary 1.1, except the Wolstenholme prime 16843. Accordingly,

an interesting question is as follows: Is it true that the second congruence in Corol-

lary 1.1 implies that a prime p is necessarily a Wolstenholme prime? We conjecture

that this is true.

A proof of Proposition 1.1 is given in the next section. Proofs of Proposition 1.2

and Corollaries 1.1–1.3 are presented in Section 3.

2. Proof of Proposition 1.1

For the proof of Proposition 1.1, we will need some auxiliary results.

Lemma 2.1. For any prime p > 7, we have

(2.1) 2

p−1
∑

k=1

1

k
≡ −p

p−1
∑

k=1

1

k2
(mod p4).

P r o o f. The above congruence is in fact the congruence (14) in ([25], Proof of

Theorem 3.2). �
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Lemma 2.2. For any prime p > 7, we have

(2.2)

(

2p− 1

p− 1

)

≡ 1 + 2p

p−1
∑

k=1

1

k
(mod p5),

and

(2.3)

(

2p− 1

p− 1

)

≡ 1− p2
p−1
∑

k=1

1

k2
(mod p5).

P r o o f. Let R1(p) =
p−1
∑

k=1

1/k. Following ([25], Definition 3.1) we define wp < p2

to be the unique nonnegative integer such that wp ≡ R1(p)/p
2 (mod p2). Then by

([25], Theorem 3.2), for all nonnegative integers n and r with n > r,

(2.4)

(

np

rp

)/(

n

r

)

≡ 1 + wpnr(n− r)p3 (mod p5).

Since 1
2

(

2p
p

)

=
(

2p−1
p−1

)

, taking n = 2 and r = 1, (2.4) becomes

(

2p− 1

p− 1

)

≡ 1 + 2wpp
3 (mod p5),

which is actually (2.2). Now the congruence (2.3) follows immediately from (2.2)

and (2.1) of Lemma 2.1. �

Lemma 2.3. The following statements about a prime p > 7 are equivalent:

(i) p is a Wolstenholme prime;

(ii)
p−1
∑

k=1

1/k ≡ 0 (mod p3);

(iii)
p−1
∑

k=1

1/k2 ≡ 0 (mod p2);

(iv) p divides the numerator of the Bernoulli number Bp−3.

P r o o f. The equivalences (i)⇔(ii)⇔(iii) are immediate from Lemma 2.2 if we

consider the congruences (2.2) and (2.3) modulo p4. Further, by a special case of

Glaisher’s congruence ([5], page 21, [6], page 323; also see [16], Theorem 2), we have

(

2p− 1

p− 1

)

≡ 1−
2

3
p3Bp−3 (mod p4),

which implies the equivalence (i)⇔(iv). This concludes the proof. �
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For the proof of Proposition 1.1, we use the congruences (2.2) and (2.3) of

Lemma 2.2 with (mod p4) instead of (mod p5). By a classical result of E. Leh-

mer [15]; (also see [24], Theorem 2.8),
p−1
∑

k=1

1/k ≡ − 1
3Bp−3 (mod p3). Substitut-

ing this into Glaisher’s congruence given above, we obtain immediately (2.2) of

Lemma 2.2, with (mod p4) instead of (mod p5).

Notice that the congruence (2.3) is also given in [16], page 385, but its proof is

there omitted.

For a prime p > 3 and a positive integer n 6 p− 2 we denote

Rn(p) :=

p−1
∑

i=1

1

kn
and Hn(p) :=

∑

16i1<i2<...<in6p−1

1

i1i2 . . . in
.

In the sequel we shall often write Rn andHn instead ofRn(p) andHn(p), respectively.

Lemma 2.4 ([1], Theorem 3; also see [24], Remark 2.3). For any prime p > 3

and a positive integer n 6 p− 3, we have

Rn(p) ≡ 0 (mod p2) if n is odd, and Rn(p) ≡ 0 (mod p) if n is even.

Lemma 2.5 (Newton’s formula, see, e.g., [11]). Let m and s be positive integers

such that m 6 s. Define the symmetric polynomials

Pm(s) = Pm(s;x1, x2, . . . , xs) = xm
1 + xm

2 + . . .+ xm
s ,

and

Am(s) = Am(s;x1, x2, . . . , xs) =
∑

16i1<i2<...<im6s

xi1xi2 . . . xim .

Then for n = 1, 2, . . . , s, we have

Pn(s)−A1(s)Pn−1(s) +A2(s)Pn−2(s)

+ . . .+ (−1)n−1An−1(s)P1(s) + (−1)nnAn(s) = 0.

Lemma 2.6 (see [20], Lemma 2.2, the case l = 1). For any prime p > 5 and

a positive integer n 6 p− 3, we have

Hn(p) ≡ 0 (mod p2) if n is odd and Hn(p) ≡ 0 (mod p) if n is even.

Lemma 2.6 is an immediate consequence of a result of X. Zhou and T.Cai [26],

Lemma 2; (also see [24], Theorem 2.14).
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Lemma 2.7. For any Wolstenholme prime p, we have

R2(p) ≡ −2H2(p) (mod p6), R3(p) ≡ 3H3(p) (mod p5),

R4(p) ≡ −4H4(p) (mod p4), R5(p) ≡ 5H5(p) (mod p4)

and R6(p) ≡ −6H6(p) (mod p3).

P r o o f. By Newton’s formula (see Lemma 2.5), for n = 2, 3, 4, 5, 6 we have

(2.5) Rn + (−1)nnHn = H1Rn−1 −H2Rn−2 + . . .+ (−1)nHn−1R1.

First note that by Lemma 2.3, R1 = H1 ≡ 0 (mod p3) and R2 ≡ 0 (mod p2).

Therefore, (2.5) implies R2 + 2H2 = H1R1 ≡ 0 (mod p6), so that R2 ≡ −2H2

(mod p6). From this and Lemma 2.3 we conclude that H2 ≡ R2 ≡ 0 (mod p2).

Further, by Lemma 2.4 and Lemma 2.6, R3 ≡ H3 ≡ R5 ≡ H5 ≡ 0 (mod p2)

and R4 ≡ H4 ≡ 0 (mod p). Substituting the previous congruences for Hi and Ri

(i = 1, 2, 3, 4, 5) into (2.5) with n = 3, 4, 5, 6, we get

R3 − 3H3 = H1R2 −H2R1 ≡ 0 (mod p5),

R4 + 4H4 = H1R3 −H2R2 +H3R1 ≡ 0 (mod p4),

R5 − 5H5 = H1R4 −H2R3 +H3R2 −H4R1 ≡ 0 (mod p4),

R6 + 6H6 = H1R5 −H2R4 +H3R3 −H4R2 +H5R1 ≡ 0 (mod p3).

This completes the proof. �

P r o o f of Proposition 1.1. For any prime p > 7, we have

(

2p− 1

p− 1

)

=
(p+ 1)(p+ 2) . . . (p+ k) . . . (p+ (p− 1))

1 · 2 . . . k . . . p− 1

=
(p

1
+ 1

)(p

2
+ 1

)

. . .
(p

k
+ 1

)

. . .
( p

p− 1
+ 1

)

= 1 +

p−1
∑

i=1

p

i
+

∑

16i1<i26p−1

p2

i1i2
+ . . .+

∑

16i1<i2<...<ik6p−1

pk

i1i2 . . . ik

+ . . .+
pp−1

(p− 1)!
= 1 +

p−1
∑

k=1

pkHk = 1 +

6
∑

k=1

pkHk +

p−1
∑

k=7

pkHk.

Since by Lemma 2.6, p9
∣

∣

∣

p−1
∑

k=7

pkHk for any prime p > 11, the above identity yields

(

2p− 1

p− 1

)

≡ 1 + pH1 + p2H2 + p3H3 + p4H4 + p5H5 + p6H6 (mod p8).
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Now by Lemma 2.7, for n = 2, 3, 4, 5, 6, we have

Hn ≡ (−1)n−1Rn

n
(mod pen) for e2 = 6, e3 = 5, e4 = 4, e5 = 4 and e6 = 3.

Substituting the above congruences into the previous one, and setting H1 = R1, we

obtain
(

2p− 1

p− 1

)

≡ 1 + pR1 −
p2

2
R2 +

p3

3
R3 −

p4

4
R4 +

p5

5
R5 −

p6

6
R6 (mod p8).

This is the desired congruence from Proposition 1.1. �

3. Proofs of Proposition 1.2 and Corollaries 1.1–1.3

In order to prove Proposition 1.2 and Corollaries 1.1–1.3, we need some auxiliary

results.

Lemma 3.1. Let p be a prime, and let m be any even positive integer. Then the

denominator dm of the Bernoulli number Bm, written in reduced form, is given by

dm =
∏

p−1|m

p,

where the product is taken over all primes p such that p− 1 divides m.

P r o o f. The assertion is an immediate consequence of the von Staudt-Clausen

theorem (see, e.g., [10], page 233, Theorem 3) which asserts that Bm +
∑

p−1|m

1/p is

an integer for all even m, where the summation is over all primes p such that p− 1

divides m. �

Recall that for a prime p and a positive integer n, we denote

Rn(p) = Rn =

p−1
∑

k=1

1

kn
and Pn(p) =

p−1
∑

k=1

kn.

Lemma 3.2 ([9], page 8). Let p be a prime greater than 5, and let n, r be positive

integers. Then

(3.1) Pn(p) ≡
∑

s−ordp(s)6r

1

s

(

n

s− 1

)

psBn+1−s (mod pr),

where ordp(s) is the largest power of p dividing s, and the summation is taken over

all integers 1 6 s 6 n+ 1 such that s− ordp(s) 6 r.

The following result is well known as the Kummer congruences.
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Lemma 3.3 ([10], page 239). Suppose that p > 3 is a prime and m, n, r are

positive integers such that m and n are even, r 6 n − 1 6 m − 1, and m 6≡ 0

(mod p − 1). If n ≡ m (mod ϕ(pr)), where ϕ(pr) = pr−1(p − 1) is Euler’s totient

function, then

(3.2)
Bm

m
≡

Bn

n
(mod pr).

The following congruences are also due to Kummer.

Lemma 3.4 ([14]; also see [9], page 20). Let p > 3 be a prime and let m, r be

positive integers such that m is even, r 6 m− 1 and m 6≡ 0 (mod p− 1). Then

(3.3)

r
∑

k=0

(−1)k
(

m

k

)

Bm+k(p−1)

m+ k(p− 1)
≡ 0 (mod pr).

Lemma 3.5. For any prime p > 11, we have

(i) R1(p) ≡ − 1
2p

2Bp4−p3−2 −
1
4p

4Bp2−p−4 +
1
6p

5Bp−3 +
1
20p

5Bp−5 (mod p6),

(ii) R3(p) ≡ − 3
2p

2Bp4−p3−4 (mod p4),

(iii) R4(p) ≡ pBp4−p3−4 (mod p3),

(iv) pR6(p) ≡ − 2
5R5(p) (mod p4).

P r o o f. If s is a positive integer such that ordp(s) = e > 1, then for p > 11 we

have s− e > pe− e > 10. This shows that the condition s− ordp(s) 6 6 implies that

ordp(s) = 0, and thus, s 6 6 must hold for such an s. Therefore, by Lemma 3.2,

(3.4) Pn(p) ≡

6
∑

s=1

1

s

(

n

s− 1

)

psBn+1−s (mod p6) for n = 1, 2, . . . .

By Euler’s theorem, for 1 6 k 6 p − 1 and positive integers n, e we have

1/kϕ(pe)−n ≡ kn (mod pe), where ϕ(pe) = pe−1(p − 1) is Euler’s totient function.

Hence, Rϕ(pe)−n(p) ≡ Pn(p) (mod pe). In particular, if n = ϕ(p6)−1 = p5(p−1)−1,

then by Lemma 3.1, p6 | p6Bp5(p−1)−6 for each prime p > 11. Therefore, using the

fact that Bp5(p−1)−1 = Bp5(p−1)−3 = Bp5(p−1)−5 = 0, (3.4) yields

R1(p) ≡ Pp5(p−1)−1(p) ≡
1

2
(p5(p− 1)− 1)p2Bp5(p−1)−2

+
1

4

(p5(p− 1)− 1)(p5(p− 1)− 2)(p5(p− 1)− 3)

6
p4Bp5(p−1)−4 (mod p6),
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whence we have

(3.5) R1(p) ≡ −
p2

2
Bp6−p5−2 −

p4

4
Bp6−p5−4 (mod p6).

By the Kummer congruences (3.2) from Lemma 3.3, we have

Bp6−p5−2 ≡
p6 − p5 − 2

p4 − p3 − 2
Bp4−p3−2 ≡

2Bp4−p3−2

p3 + 2
≡

(

1−
p3

2

)

Bp4−p3−2 (mod p4).

Substituting this into (3.5), we obtain

(3.6) R1(p) ≡ −
p2

2
Bp4−p3−2 +

p5

4
Bp4−p3−2 −

p4

4
Bp6−p5−4 (mod p6).

Similarly, we have

Bp4−p3−2 ≡
p4 − p3 − 2

p− 3
Bp−3 ≡

2

3
Bp−3 (mod p)

and

Bp6−p5−4 ≡
p6 − p5 − 4

p2 − p− 4
Bp2−p−4 ≡

4Bp2−p−4

p+ 4
≡

(

1−
p

4

)

Bp2−p−4 (mod p2).

Substituting the above two congruences into (3.6), we get

(3.7) R1(p) ≡ −
p2

2
Bp4−p3−2 +

p5

6
Bp−3 −

p4

4
Bp2−p−4 +

p5

16
Bp2−p−4 (mod p6).

Finally, since

Bp2−p−4 ≡
p2 − p− 4

p− 5
Bp−5 ≡

4

5
Bp−5 (mod p),

the substitution of the above congruence into (3.7) immediately gives the congru-

ence (i).

To prove the congruences (ii) and (iii), note that if n− 3 6≡ 0 (mod p− 1), then by

Lemma 3.1, p4 | p4Bn−3 for odd n > 5, while Bn−3 = 0 for even n > 6. Therefore,

reducing the modulus in (3.4) to p4, for all odd n > 3 with n − 3 6≡ 0 (mod p − 1)

and for all even n > 2 we have

(3.8) Pn(p) ≡ pBn +
p2

2
nBn−1 +

p3

6
n(n− 1)Bn−2 (mod p4).

In particular, for n = p4 − p3 − 3 we have Bp4−p3−3 = Bp4−p3−5 = 0, and thus (3.8)

yields

R3(p) ≡ Pp4−p3−3(p) ≡
p2(p4 − p3 − 3)

2
Bp4−p3−4 ≡ −

3p2

2
Bp4−p3−4 (mod p4).
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Similarly, if n = p4 − p3 − 4, then since p4 − p3 − 6 6≡ 0 (mod p− 1), by Lemma 3.1

we have p3 | p3Bp4−p3−6 for each prime p > 11. Using this and the fact that

Bp4−p3−5 = 0, from (3.8) modulo p3 we find that

R4(p) ≡ Pp4−p3−4(p) ≡ pBp4−p3−4 (mod p3).

It remains to show (iv). If n is odd such that n− 3 6≡ 0 (mod p− 1), then by (3.8)

and Lemma 3.1, Pn(p) ≡ (n/2)p2Bn−1 (mod p4) and Pn−1(p) ≡ pBn−1 (mod p3).

Thus, for such an n we have

Pn(p) ≡
n

2
pPn−1 (mod p4).

In particular, for n = p4 − p3 − 5, from the above we get

R5(p) ≡ Pp4−p3−5(p) ≡
(p4 − p3 − 5)p

2
Pp4−p3−6(p)

≡ −
5

2
pPp4−p3−6(p) ≡ −

5

2
pR6(p) (mod p4).

This implies (iv) and the proof is complete. �

Lemma 3.6. For any prime p and any positive integer r, we have

(3.9) 2R1 ≡ −

r
∑

i=1

piRi+1 (mod pr+1).

P r o o f. Multiplying the identity

1 +
p

i
+ . . .+

pr−1

ir−1
=

pr − ir

ir−1(p− i)

by −p/i2, 1 6 i 6 p− 1, we obtain

−
p

i2

(

1 +
p

i
+ . . .+

pr−1

ir−1

)

=
−pr+1 + pir

ir+1(p− i)
≡

p

i(p− i)
(mod pr+1).

Therefore,
(1

i
+

1

p− i

)

≡ −
( p

i2
+

p2

i3
+ . . .+

pr

ir+1

)

(mod pr+1),

from which we immediately obtain (3.9) after summing over all i from 1 to p−1. �
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P r o o f of Proposition 1.2. We begin with the congruence from Proposition 1.1:

(3.10)

(

2p− 1

p− 1

)

≡ 1 + pR1 −
p2

2
R2 +

p3

3
R3 −

p4

4
R4 +

p5

5
R5 −

p6

6
R6 (mod p8).

As by Lemma 2.4 we have p2 | R7, Lemma 3.6 with r = 7 yields

(3.11) 2R1 ≡ −pR2 − p2R3 − p3R4 − p4R5 − p5R6 (mod p8),

and after multiplying by p/4 it follows that

−
p4

4
R4 ≡

p

2
R1 +

1

4
(p2R2 + p3R3 + p5R5 + p6R6) (mod p8).

Substituting this into the congruence (3.10), we obtain

(

2p− 1

p− 1

)

≡ 1 +
3p

2
R1 −

p2

4
R2 +

7p3

12
R3 +

9p5

20
R5 +

p6

12
R6 (mod p8).

Further, from (iv) of Lemma 3.5 we see that

p6R6 ≡ −
2

5
p5R5 (mod p8).

The substitution of this into the previous congruence immediately gives

(

2p− 1

p− 1

)

≡ 1 +
3p

2
R1 −

p2

4
R2 +

7p3

12
R3 +

5p5

12
R5 (mod p8),

as desired. �

Remark 3.1. Proceeding in the same way as in the previous proof and using

(3.11), we can eliminate R2 to obtain

(

2p− 1

p− 1

)

≡ 1 + 2pR1 +
5p3

6
R3 +

p4

4
R4 +

17p5

30
R5 (mod p8).

Remark 3.2. If we suppose that there exists a prime p such that
(

2p−1
p−1

)

≡ 1

(mod p5), then by Lemma 2.2, for such a p we must have R1 ≡ 0 (mod p4) and

R2 ≡ 0 (mod p3). Starting with these two congruences, in the same manner as in

the proof of Lemma 2.7, it can be deduced that for n = 2, 3, 4, 5, 6, 7, 8,

Hn ≡ (−1)n−1Rn

n
(mod pen),
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where e2 = 8, e3 = 7, e4 = 6, e5 = 5, e6 = 4, e7 = 3 and e8 = 2. Since as in the

proof of Proposition 1.1 we have

(

2p− 1

p− 1

)

≡ 1+pH1+p2H2+p3H3+p4H4+p5H5+p6H6+p7H7+p8H8 (mod p10),

then substituting the previous congruences into the right hand side of the above

congruence and setting H1 = R1, we obtain

(

2p− 1

p− 1

)

≡ 1+pR1−
p2

2
R2+

p3

3
R3−

p4

4
R4+

p5

5
R5−

p6

6
R6+

p7

7
R7−

p8

8
R8 (mod p10).

Since by Lemma 2.4, p2 | R7 and p | R8, from the above we get

(

2p− 1

p− 1

)

≡ 1 + pR1 −
p2

2
R2 +

p3

3
R3 −

p4

4
R4 +

p5

5
R5 −

p6

6
R6 (mod p9).

Then as in the above proof, using (3.11) and the fact that by (iv) of Lemma 3.5,

p6R6(p) ≡ −(2/5)p5R5(p) (mod p9), we can find that

(

2p− 1

p− 1

)

≡ 1 +
3p

2
R1 −

p2

4
R2 +

7p3

12
R3 +

5p5

12
R5 (mod p9).

P r o o f of Corollary 1.1. In view of the fact that by Lemma 2.4, p2 | R5, the

congruence from Proposition 1.2 immediately yields

(3.12)

(

2p− 1

p− 1

)

≡ 1 +
3p

2
R1 −

p2

4
R2 +

7p3

12
R3 (mod p7).

Lemma 3.6 with r = 5 and the fact that by Lemma 2.4, p2 | R5 and p | R6 imply

2R1 ≡ −pR2 − p2R3 − p3R4 (mod p6).

From (ii) and (iii) of Lemma 3.5 we see that pR4 ≡ − 2
3R3 (mod p4), so that p3R4 ≡

− 2
3p

2R3 (mod p6). Substituting this into the previous congruence, we obtain

2R1 + pR2 ≡ −
1

3
p2R3 (mod p6),

whence we have

(3.13) p3R3 ≡ −6pR1 − 3p2R2 (mod p7).
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Substituting this into (3.12), we get
(

2p− 1

p− 1

)

≡ 1− 2pR1 − 2p2R2 (mod p7),

which is actually the first congruence from Corollary 1.1. Finally, from (3.13) we

have

p2R2 ≡ −2pR1 −
1

3
p3R3 (mod p7),

and substituting this into (3.12) gives

(3.14)

(

2p− 1

p− 1

)

≡ 1 + 2pR1 +
2

3
p3R3 (mod p7).

This completes the proof. �

P r o o f of Corollary 1.2. By (ii) of Lemma 3.5, we have

p3R3(p) ≡ −(3/2)p5Bp4−p3−4 (mod p7).

Substituting this into (3.14), we obtain

(3.15)

(

2p− 1

p− 1

)

≡ 1 + 2pR1 − p5Bp4−p3−4 (mod p7).

By Lemma 2.3, p | Bp−3 so that p
6 | (p5/6)Bp−3, and hence from (i) of Lemma 3.5

we obtain

2pR1(p) ≡ −p3Bp4−p3−2 −
p5

2
Bp2−p−4 +

p6

10
Bp−5 (mod p7).

Furthermore, by the Kummer congruences (3.2), since p4 − p3 − 2 6≡ 0 (mod p− 1)

and p4 − p3 − 2 ≡ p2 − p− 2 (mod ϕ(p2)), we have

Bp4−p3−4 ≡
p4 − p3 − 4

p2 − p− 4
Bp2−p−4 ≡

4

p+ 4
Bp2−p−4 ≡

(

1−
p

4

)

Bp2−p−4 (mod p2).

The substitution of the above two congruences into (3.15) immediately gives

(3.16)

(

2p− 1

p− 1

)

≡ 1−p3Bp4−p3−2−
3p5

2
Bp2−p−4+

p6

10
Bp−5+

p6

4
Bp2−p−4 (mod p7).

Finally, since by the Kummer congruences (3.2),

Bp2−p−4 ≡
p2 − p− 4

p− 5
Bp−5 ≡

4

5
Bp−5 (mod p),

after substitution of this into (3.16) we obtain

(3.17)

(

2p− 1

p− 1

)

≡ 1− p3Bp4−p3−2 −
3p5

2
Bp2−p−4 +

3p6

10
Bp−5 (mod p7).

This is the required congruence. �
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P r o o f of Corollary 1.3. As noticed in [9], congruence (3) on page 494, combining

the Kummer congruences (3.2) and (3.3) for m = ϕ(pn) − s, n, s ∈ N with s 6≡ 0

(mod p− 1), we obtain

(3.18)
Bpn−pn−1−s

pn − pn−1 − s
≡

n
∑

k=1

(−1)k+1

(

n

k

)

Bk(p−1)−s

k(p− 1)− s
(mod pn).

Now (3.18) with n = 2 and s = 4 gives

Bp2−p−4

p2 − p− 4
≡

2Bp−5

p− 5
−

B2p−6

2p− 6
(mod p2),

or equivalently,

Bp2−p−4 ≡ −
2(p+ 4)

p− 5
Bp−5 +

p+ 4

2(p− 3)
B2p−6 (mod p2).

Substituting 1/(p−5) ≡ −(5+p)/25 (mod p2) and 1/(p−3) ≡ −(3+p)/9 (mod p2),

the above congruence becomes

(3.19) Bp2−p−4 ≡
18p+ 40

25
Bp−5 −

7p+ 12

18
B2p−6 (mod p2).

Similarly, (3.18) with n = 4 and s = 2 yields

Bp4−p3−2

p4 − p3 − 2
≡

4
∑

k=1

(−1)k+1

(

4

k

)

Bk(p−1)−2

k(p− 1)− 2
(mod p4),

whence, multiplying by p3 + 2, we get

(3.20) −Bp4−p3−2 ≡ (p3 + 2)
(4Bp−3

p− 3
−

6B2p−4

2p− 4
+

4B3p−5

3p− 5
−

B4p−6

4p− 6

)

≡ p3
(4Bp−3

−3
−

6B2p−4

−4
+

4B3p−5

−5
−

B4p−6

−6

)

+ 2
(4Bp−3

p− 3
−

6B2p−4

2p− 4
+

4B3p−5

3p− 5
−

B4p−6

4p− 6

)

(mod p4).

As by the Kummer congruences (3.2),

B4p−6

4p− 6
≡

B3p−5

3p− 5
≡

B2p−4

2p− 4
≡

Bp−3

p− 3
(mod p),

we have

B4p−6 ≡ 2Bp−3 (mod p), B3p−5 ≡
5

3
Bp−3 (mod p), B2p−4 ≡

4

3
Bp−3 (mod p).
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Substituting this into the first term on the right-hand side in the congruence (3.20),

we obtain

p3
(4Bp−3

−3
−

6B2p−4

−4
+

4B3p−5

−5
−

B4p−6

−6

)

≡ −
p3

3
Bp−3 ≡ 0 (mod p4),

where we have used the fact that by Lemma 2.3, p divides the numerator of Bp−3.

Further, as for all integers a, b, n such that b 6≡ 0 (mod p) we have

1

ap− b
≡ −

1

b

3
∑

k=0

akpk

bk
(mod p4),

applying this to 1/(p−3), 1/(2p−4) and 1/(3p−5), the second term on the right-hand

side in the congruence (3.20) becomes

−Bp4−p3−2 ≡ 2
(

−
4

3

(

1 +
p

3
+

p2

9

)

Bp−3 +
3

2

(

1 +
p

2
+

p2

4

)

B2p−4

−
4

5

(

1 +
3p

5
+

9p2

25

)

B3p−5 +
1

6

(

1 +
2p

3
+

4p2

9

)

B4p−6

)

(mod p4).

Muptiplying by p3, the above congruence becomes

−p3Bp4−p3−2 ≡ −
8

3

(

p3 +
p4

3
+

p5

9

)

Bp−3 + 3
(

p3 +
p4

2
+

p5

4

)

B2p−4

−
8

5

(

p3 +
3p4

5
+

9p5

25

)

B3p−5 +
1

3

(

p3 +
2p4

3
+

4p5

9

)

B4p−6 (mod p7).

Finally, substituting this and the congruence (3.19) into (3.17), we obtain the con-

gruence from Corollary 1.3. �
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