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Positive solutions for a system of third-order differential

equation with multi-point and integral conditions

RocHDI JEBARI, ABDERRAHMAN BOUKRICHA

Abstract. This paper concerns the following system of nonlinear third-order bound-
ary value problem:

u;//(t) +fi(t,ul(t)a s 7un(t)7ull(t)a s 7uln(t)) = O’ 0<t< 1’ i€ {17 e ,TL}

with the following multi-point and integral boundary conditions:

u;(0) =0
uf(0) =0
wi(1) = Y0y Byaul(mji) + fo hi(ur(s), ., un(s)) ds

where 3;; > 0,0 <my; < -+ < Mp; < %, fi :[0,1] Xx R* x R® — R and h; :
[0,1] x R™ — R are continuous functions for all i € {1,...,n} and j € {1,...,p}.
Using Guo-Krasnosel’skii fixed point theorem in cone, we discuss the existence
of positive solutions of this problem. We also prove nonexistence of positive
solutions and we give some examples to illustrate our results.

Keywords: third-order differential equation; multi-point and integral boundary
conditions; Guo-Krasnosel’skii fixed point theorem in cone; positive solutions

Classification: 34B15, 34B18, 34B27

1. Introduction

The third-order ordinary differential equations arise in different areas of applied
mathematics and physics among others the deflection of a curved beam having
a constant or a varying cross section, the three-layer beam, the electromagnetic
waves or the gravity driven flows and so on [1]. The aim of this paper is to inves-
tigate sufficient conditions for the existence of positive solutions for the following
problem:

(1.1) u’(t) + filt,ur(t), ... un(t),ul(t), ..., ul(t)) =0,
0<t<l,ie{l,...,n}
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with the following multi-point and integral boundary conditions:

ul(O) =0
(1.2) u;(0) =0
wb(1) = Y0 Bl (i) + Jy hi(ua(s), ... un(s)) ds

where 3;; > 0,0 < m; < - <mp; < 3, fi 1 [0,1] x R" x R" — R and h; :
[0,1] x R™ — R are continuous functions for all i € {1,...,n} and j € {1,...,p}.
Various types of boundary value problems were studied by many authors using
fixed point theorems on cones, fixed point index theory, upper and lower solutions
method, differential inequality, topological transversality and Leggett-Williams
fixed point theorem [2], [3], [4], [5], [6], [7], [8], [11].

In [2], Yao and Feng used the upper and lower solutions method to prove some
existence results for the following third-order two-point boundary value problem:

(1.3) o (t) + f(t,ut)=0,0<t <1
(1.4) u(0) = u/(0) = /(1) = 0.
In [3], Sanyang Liu and Yugiang Feng used the upper and lower solutions method

and a new maximum principle to prove the existence of some solutions to the
more general third-order two-point boundary value problem:

(1.5) u"(t) + fltu(t),u'(t) =0, 0<t<1
(1.6) u(0) =v/(0) = /(1) = 0.

In [8], Guo, Sun and Zhao studied the third-order three-point boundary value
problem:

(1.7) u"'(t) +a(t)g(u(t)) =0, 0<t <1
(1.8) u(0) = /(0) = 0, v'(1) = au(n),

where 0 <n < 1,1 < a< % and g : [0,1] x R — R is a given function. The
existence of at least one positive solution for (1.7)—(1.8) was proved when f is
superlinear or sublinear using fixed point theorems in cones.

Zhang et al. [11] investigated the existence of positive solutions for the following
third-order eigenvalue problem:

(1.9) u"(t) + Af(tu(t),w () =0, 0<t<1
(1.10) u(0) = u'(n) = u"(0) = 0.

In [7], Sun studied the following third-order nonhomogeneous boundary value
problem:

(1.11) u"" +a(t)g(t,u(t) =0, 0<t <1
(1.12) u(0) =4/(0) = 0,u'(1) — at/(n) = A
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Using the Guo-Krasnosel’skii fixed point theorem and Schauder’s fixed point the-
orem, Sun investigated the existence and nonexistence of positive solutions for
(1.11)—(1.12). For more knowledge about boundary value problem, we refer the
reader to [12]-[23].

Our aim in this paper is to use the Guo-Krasnosel’skii fixed point theorem
to prove the existence of at least one positive solution of our problem. To this
end, we formulate the boundary value problem as a fixed point problem. The
particularity of our method is in establishing the equation (1.1)—(1.2) so that the
boundary conditions involve multipoint integral boundary conditions. Our work
is new and more general than [7], [8]. For example, (1.7)—(1.8) is established for
the following case n = 1, p = 1, fi(t, u(t),w' (t)) = a(t)g(u(t)), h1 =0, m11 =7,
B11=caand (1.11)~(1.12) in the case n = 1, p=1, hy = X\, ;1 =1, f11 = q,
fl (t7 U(t), ul(t)) = a(t)g(tv U(t))

This paper is organized as follows. In Section 2 we present some useful pre-
liminaries to prove our results. Section 3 studies the positivity of solutions using
Guo-Krasnosel’skii fixed point theorem. Section 4 studies the nonexistence of
positive solutions. Finally, we give some examples to illustrate our main results.

2. Preliminaries and lemmas

Let E = (C'([0,1];R))™ equipped with the norm ||ul|p = Y_i_, ||u;]| where
|l || = max(]|willcos ||44]|00), w = (u1,...,u,) € E. The space E is then a Banach
space. We denote [[z||; = D1, |z for x € R", R} = {(x1,...,2,) € R";21 €
Ry,...,x, € Ry}. We assume that for all s € {1,...,n}, 0 < Z?Zl B < 1.

Definition 2.1. The function v = (uy,...,u,) is called a nonnegative (resp.
positive) solution of the system (1.1)—(1.2) if and only if u satisfies (1.1)—(1.2)
and for all i € {1,...,n}, u;(t) > 0 for all ¢ € [0,1] (resp. u;(t) > 0 for all
t €]0,1]).

Lemma 2.2. Leti € {1,...,n}, g; and h; € C([0,1]), then the problem

ul'(t) +hi(t) =0, 0 <t <1

(2.1) ui(0) =0

u;(0) =0

1

wj(1) =328 Bjaui(ne) + [y gi(s)ds

has a unique solution u = (u1,...,uy) in E such that
1
0

where

(22) ot = [ [ gioras]

189
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2.3 Hi(t,s) =G P Y LU
(2.3) i(t,s) =G(t,s) + Kit ;ﬂ“T
and
1| (1—s)t? if0<t<
(2.4 Glt,5)= 24179 ost<s
2 | (-s+2t—t%)s ifs<t<l,
(2.5) K — ! > 1

2 (1 -2 @ymj,i) 2
PROOF: Integrating the equation (2.1), it yields for all i € {1,...,n} that

1 t
ui(t)i/o(ts) hi(s) ds + Crat® + Coit + Cs.s.

From the boundary condition u;(0) = 0, we deduce that C5,; = 0 and from the
boundary condition w/ (0) = 0, we deduce that Cy; = 0. From the condition

u;(l) Zj lﬁ],lu N, +f0 gl dS we have

1 p .
Cy; = ! / (1 - s)hi(s)ds — 2 =1 P
2 (1 - Z?:l ﬂj,mj,i) 0 2 (1 - Z?:l ﬂj,mj,i)
Mj,i 1 1
X (nj,i — s)hi(s) ds + gi(s) ds.
/0 ' 2 (1 D ﬁjﬂj@) /0
Therefore
1 t t2 1
ui(t) = —= [ (t —s)%hi(s)ds + (1= s)hi(s)ds
2 /0 2 (1 -2 @ymj,i) /0

_ ?:1 ﬂj,i
2 (1 =251 Bramia

:—%/(t—s) ds+—/ (1 —-3s)h

—1 Bj.i _ ?:1 Bji
2 (1 - Zj:l ﬂj,inj,i) /0 il = ol ds 2 (1 - Z?:l ﬂj,inj,i)

N3,i L ;
x / (nj,i - S)hl(s) ds + j;) gz(S) S t2’
° 2 (1= S )

- )
/77 ' (77]‘71' — $)hi(s)ds + f() g;(S) ds 2
) 0 P (1 -5, ﬁj,i"h’,i)
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and we conclude that

t? 0G(nji, )

/ G(t,s)hi(s)ds + (1 S ) Zﬁﬁ /0 Thl(s) ds

+ it /Hts s)ds + pi(t)

where H;(t,s) and ¢;(t) are given by (2.2) and (2.3), which achieve the proof of
Lemma 2.2. d

We denote by T the operator defined by

T : F — F
u = (Ty(u),...,Th(u)),

where for all i € {1,...,n} and for all t € [0, 1]

Ty(u)(t) = Pi(t) + / Hi(t, ) fi(su(s). o () ds

and

Then we have

Lemma 2.3. Let i € {1,...,n}, h; € C([0,1] x R",R) and f; € C([0,
R™ x R™,R). Then u is a solution of (1.1)—(1.2) if and only if for all t € [0
T(u)(t) = u(t).

1] x
, 1

)

3. Existence of positive solutions

In this section, we will give some preliminary considerations and some lemmas
which are essential to establish sufficient conditions for the existence of at least one
positive solution for our problem. We make the following additional assumption:

(H1) The functions h; : [0,1] x R™ — [0, +o0], f; : [0,1] x R” x R™ — [0, 400,
i € {1,...,n} are continuous.

Now, we need some properties of the Green function G(t, s).

Lemma 3.1. For allt € [0,1], for all s € [0,1] we have
(1) 0<G(t,s) < p(s),
0G(t,s
(2) 0< 25 < 2(s),

(1—s)s ]

where ¢(s) =~

191
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PROOF: It is easy to see that, if t < s, G(t,s) = 1(1 —s)t? > 0 and G(t,s) =

T—s)2 < U2 Trg <t Gt,s) = L2t =12 —s)s = 3[(1—s) — (1 —1)%s > 0

and G(t,s) < (1 —s)(1 =1+ s) = £(1— s)s then the proof of (1) is complete.
We have

(3.1) G(t,s) {Els)t if 0<t<s,

ot 1—1t)s if s<t<I1.

Ift<s aG(t’s) =(1-9)t<(1—s)s. If s <t, then —t < —s and this implies that
aG(t S (1 —t)s < (1 —s)s. We deduce that the proof of (2) is complete. O

Lemma 3.2. Let a €]0, 1], then for all (¢,s) € [a,1] x [0,1]

(1) G(t,s) > a*p(s),
(2) foralli € {1,...,n}, j € {1,...,p}, 2902 > 9 00(s),

where o(s) = %

PRrROOF: Let a €]0,1[ and (¢, 5) € [a,1] x [0,1]. If s < ¢ then

G(t,s) = %(75 +2t — 1%)s
= %(2t—t2—s+t2—t2+t25—t25)5
1
> 5 2(1 —s)s+ 2(17t)[(t75)+(175)t]5
1
> §t2(1 —5)s
> a’p(s).

If s >t then

G(t,s) = %(1 —8)t? > —(1 —s)sa® = a*p(s).

l\D|>—‘

Then the proof of (1) is complete. Now we prove the inequality for

(3.2) G, 8) _ {(1 — s if p <s <1,

ot (1—mnj)s  if 0<s<n

If MNj,i <s then

OG(t, s
> (1—s)sn;
> 21;,:0(s)
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If n;; > s then

6G(77",i75)

T;f = (1 = nj,)s.
From 0 < m1; < m2; < -+ < 1Mpi < % we deduce that 1 — n;; > n;,, then
W > 2n;.:p(s). We conclude that the proofs of (2) and Lemma 3.2 are
complete. O

Lemma 3.3. Suppose that (H1) holds and let a €]0,1], then the solution u =
(u1,...,up) of the problem (1.1)—(1.2) is nonnegative and satisfies

n

min » (u;(t) +ui(t)) > y(a)|uls
t€la,1] P
where

max;e{1,...,n} ’Yi(a)
n

V(a) =
and
a® 370y Bjanj.i
2 (1 +2maxieqr,ny Ki )y ﬂj,z‘) '

vi(a) =

PROOF: Suppose that v = (u1,...,u,) is a solution of (1.1)—(1.2), then from
Lemma 2.3, (H1) and G( s) 2 n [0,1] x [0,1], it is obvious that for all ¢ €
{1,...,n} and for all ¢t € [0,1], 4(t > 0. For all i € {1,...,n} and for all
t € [0,1], we have

WNN§AHNJMGW@W%»%+H@

g@wmzmilwwmwawmw

j=1

0
1
< (1+216{m17ax’n}K 2@, /0 o(8) fi(s,u(s),u'(s))ds
1
K; h; ey Uy ds.
8 [ (o) () ds

This implies that for alli € {1,...,n}

1
Judloe < | 1+2_max KZ@, /O $) fils, u(s), ' (s)) ds

{(imy o
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+ Kl/o hi(ui(s), ..., un(s))ds,

and for all s € {1,...,n} and for all ¢ € [0, 1], we have

(0] < [ S s u(e) a6 ds + P

p 1
<2(1+42K:) 8. / ©(s) fi(s,u(s),u'(s)) ds
=1 0

+ 2Ki/0 hi(u1(s),...,un(s))ds

1€ 17 ,n

<2142 max KZ[?M /01 (5)fi(s,u(s),u (s))ds

+2K1/0 hz(ul(s),,un(s))ds

This implies that for all ¢ € {1,...,n}

1
lui]]oo <2 1+2 max KZﬁJ’ /Ogo(s)fi(s,u(s),u'(s))ds

c{1,....n =1

+2K1/0 hi(ul(s),...,un(s))ds.

Using Lemma 3.2 we obtain for all ¢ € {1,...,n} and for all ¢ € [a, 1]

1

ui(t) > a? / () fi(s,u(s),u'(s))ds +a’K; | hi(s,ui(s),...,un(s))ds

0 0

2 P
z ¢ 14+2 max Kizﬁj,i
(1 + Qmaxie{17._.7n} K,L Z?:l 6‘711) i€{l,...,n} =

1
x/go(s)fi(s,u(s),u'(s))ds—i—Ki 14+2 max KZﬁL
0

i€{l,...,n}

X /01 hi(s,u1(s),...,,un(s)) ds]

a2

P
= 1+2 max Ky B,
(1 + 2maXie{17“.7n} K,L Z?:l 6‘711) lE{l,...,’rb} "
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1 1

X / o(s)fi(s,u(s),u'(s)) ds + Ki/ hi(s,u1(8),...,,un(s))ds
0 0

a? 328y Bjingi

>

[l oo
)

Then for all i € {1,...,n}

a? 325y Bjinji

min u;(t) >
tcla,1] 2 (1 + 2 maX;e{1,....n} K; Z?:l ﬁjﬂ'

)||Ui|oo-
Similarly for all ¢ € {1,...,n} and for all ¢ € [a, 1]

(D) > 2K, S By / o(8) (s, u(s), o (s)) ds

j=1

1
+2aK; Z@m“/ hi(s,u1(s), ..., un(s))ds

j=1

p
Z] 1 ﬁJ,mJ, 2142 max K, Z ﬁM
" (1 2masicqr, oy K 0, B4 ety &

1
x/0<p s)fi(s,u(s),u'(s))ds+2[1+2 max KZﬁJ’ K;

i€{l,...,n}

X /Olhz (s,u1(s un(s))ds]

p M P
2]21 ﬁJ, il 211+2 ~ Inax Kl Z Bj,i
2 (1 +2maxie 1,y K 20 5;‘,1‘) L A

1 1
X / o(s) fi(s,u(s),u'(s)) ds + 2Ki/ hi(s,u1(8),...,un(s)) ds}
0 0
> Baingi
2 (1 + 2 max;e{1,...,n} K; Zg‘):l ﬂj,i

>a

>a’

)IIUQlw

Then for all i € {1,...,n}

a* >0 Binji
min (1) > Lot il 4o
t€fa,1] 2 (1 +2maxieqr, . Ki Y0, ﬂjﬂ-)
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Then for all ¢ € {1,...,n},

a0 Bjanji
min (ui(t) + (1)) > 2= il s
tefa,1] 2 (1 +2max;e(1,....n} K; Z§:1 ﬁjﬂ-)

= vi(@)]uill,

we deduce that

Jmin (i) + wi(6) 2 3 @) ]
=1 i=1
>  max i(a) X ||u,;
> max [5(a) x ]
> max i(a) X max usill.
“je{ann}qﬁ( ) jE{Luwn}” il

This implies that for all j € {1,...,n},

n

min > (wi(t) + ul(t) > max i(a) x [luy]-

t€la,1] P i€{l,...,n}
Then
min, Do) +uf() 2 RS 2
=7(a)llul 5.
The proof is complete. O

Definition 3.4. We denote by E* the following set:
Et ={u=(ui,...,u,) € B, ui(t) >0,t€[0,1],i € {1,...,n}}.

Definition 3.5. Let E be a Banach space. A nonempty closed convex K C E is
called a cone if it satisfies the following two conditions:

(1) x € K, A >0 implies \x € K,
(2) z € K, —z € K implies z = 0.

Remark 3.6. For all a €]0, 1], the set defined by

n

K(a) = {u €ET, min » (ui(t)+ui(t)) > ’Y(G)HUHE}

t€la,1] P

is a cone of E.

Theorem 3.7 (Guo-Krasnosel’skii fixed point theorem [9]). Let E be a Banach
space, and let K C E be a cone. Assume €1 and 5 are two bounded subsets
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of E with 0 € Qi, Q; C Qy and let A : KN (Q2\Q) — K be a completely
continuous operator such that:
(1) AW < [Jul|, v € KNI and ||A(u)]
(2) [[A()l| = [Jull, w € KN 02 and [|A(u)]
Then A has a fixed point in K N (Q2\Q1).

lu|l, w € K N Oy or

> |
<ull, uw € K NOQs.

Now, we give the following assumptions.

(H2) For all i € {1,...,n}, h; € C([0,1] x R}, Ry) and f; € C([0,1] x R} x
R" Ry).

(H3) For all i € {1,...,n}, there exists M; > 0 such that h;(t,u) < M; for all
t €[0,1] and for all u € RY.

Theorem 3.8. Suppose that (H2) and (H3) hold. Then the problem (1.1)—(1.2)

has at least one nonnegative solution if for all i € {1,...,n},
3 t7 ’
im 7f1( U v) = 400
lall+llolls—0 t€(0,1] [|ufl1 + [Jv]lx
and
. fi(tauvv) _
im max ———21 7 —
llull+ilolls—-+o0 tef0.1] [Jullx + [lv]l2
where u = (uq,...,uy) € R" and v = (vy,...,v,) € R™.

ProOF: Step 1. Based on Remark 3.6, there exists o €]0, 1[ such that

K(a) ={u € BT, mingejq > iy (ui(t) +ui(t) > y(a)|ull e}
is a cone of E. By Arzela-Ascoli theorem [10], T : K(a) — E is a completely
continuous mapping.

We will show that T(K(a)) C K(a). In fact, for all ¢ € [0,1], s € [0,1],
G(t,s) > 0. From (H2), we deduce that for all ¢ € {1,...,n}, for all u € K(«),
for all ¢t € [0,1], T;(u)(t) > 0.

For all i € {1,...,n}, for all ¢ € [0, 1], we have

ITi(u)(®)] < / Hi(t, 5) fi(s,u(s), u/(5)) ds + Pi(t)
0
< (1423 0 / o(5) (s, u(s), o () ds
+K/ h(ur(s), . tn(s)) ds
< ”21-4“1,?%’.‘,”}&;[’3‘@ /Oso<s>fi<s,u<s>,u'<s>>ds

+ Ki/o h(u1(s),...,un(s))ds.
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This implies that, for all ¢ € {1,...,n}
T; o 1+2 K; i i ! d
IT3(w)] _( 2 _max Zﬂg )/ ) fi(s,u(s), w(s)) ds

1
e / B(ur(s),. . tn(s)) ds

0
and for all ¢ € {1,...,n}, for all t € [0, 1], we have

m < [ 2 s ()6 ds + P

<2 (1 +2K; Zﬁ”> /0 o(s)fi(s,u(s),u'(s)) ds
19K, / ha(ua(3), -, un(s)) ds

(1 —|—Qlenﬁax’n K; ZﬁJ’ ) / s)fi(s,u(s),u'(s))ds

+2K1/0 hi(ul(s),...,un(s))ds.

This implies that for all ¢ € {1,...,n}

1Ti(u)|oo <2142 glax K; Zﬁjv /0 o(s) fi(s,u(s),u'(s)) ds

..... =
1

+2Kz/ hi(ul(s),...,un(s))ds.
0

Using Lemma 3.2 we obtain, for all i € {1,...,n}, for all ¢t € [a, 1]

Tl(u)(t) 20‘2/0 (p(S)fi(S,u(S),ul(S))dS+Oz2Ki/0 hi(saul(s)a-~'7un(5))ds

1+2 max K;
( i€{l,...,n} Zﬁ'}’)

Oé2

(1 +2maxje(1,... ny Ki Z?:l 5]11‘)

>

1
x/ o(s)fi(s,u(s),u'(s))ds + K; [ 1+2 max KZﬁJ’
0

ie{1,...n}

x /Olhi(s,ul(s),...,,un(s))ds]
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2
> a 1+2 max K; ZﬂJ’
(1+2maxicq, oy Ki S0, B ie{ln}
1 1
X / o(s)fi(s,u(s),u'(s))ds + K; | hi(s,u1(s),...,un(s)) ds]
0 0
2
a
> IT5(u) oo
(1 + 2maxz€{1 ..... n} K Z] 1 ﬁ_}, )
N o 320 Bjanja

T
2 (1 +2maxieqr, .y Ki Y0, 5j,i)

Then for all ¢ € {1,...,n}

a? 3 b Bjin,i
min T;(u)(t) > ZJ*l B35,

> 175 (w) | oo-
tefa,1] 2 (1 +2 max;ec(1,...,n} K; Z?:l ﬁjﬂ')

Similarly for all i € {1,...,n}, for all ¢ € [«, 1]
1
T (02 2003 Byons [ o161 o w0 (5) s

Jj=1

+ 204KZ-/0 hi(s,u1(s),...,un(s))ds

p .
>a 21 Byl 2|1+2 max K Z Bi.i
2 (1 + 2maxse 1,0y Ki 0, ﬁj,i) ie{l, =

1
X (s, u(s ds+2[1+2 max K; Bii | Ki
JRECTCERIE) max ;

1
x/ hi(s,u1(s ..,un(s))ds]
0

>y Bang
2 (1 + 2maxse 1,0y Ki 0, ﬁj,i) ie{l, '

< [ el uls)u(s)) ds -+ 2K

0 0
o 2 5=1 B.imyi
T2 (1 +2maxieqr, . ny Ki Yy ﬂm‘)

>«

hi(s,u(5), .. . un(s)) ds]

175 (1) [l oo
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Then for all i € {1,...,n}

D1 Bi,inji
te[a,1] ) (1 + 2max;e(1,....n} K; 2;)21 ﬁj,i)

min T(u) (t) > o T3 (u)' o

Then for all ¢ € {1,...,n},

a® 30 By
min (T;(u)(t) + Ti(u) (t)) > Z]_1 Bj,in;,
t€a,1] 2 (1 +2maxieqr,... 0y Ki Z§:1 Bji

=2 ()| Ta(w)],

;0]
)

and we deduce that

n

min > 7(Ti(u) () + >Z% T

te[a,l]izl
> ; T
Jef??’f}[%( X || (w)]
el 1) e 10

This implies that for all j € {1,...,n},

n

i Tz t le ! t)) > 7 T} .
in z’:l( (u)(t) + Ti(u) (t)) > Ze{ml’a)fn}’y( a) X [|Tj(u)||
Then
< maX;e(1,....n} Vi()
min 3 (L)1) + Ti(w) () 2 leet) 2T ()
=1
=y()||T(u)] £
The proof is complete. ([

Step 2. Let i € {1,...,n} and we have

fi(t,u,v)

im in o = o,
lull ol —0 tefo] JJully + o]l

Then for all M > 0 there exists R; 1 > 0 such that min,eo 1] fi(t, u,v) > M(||ull1+
[lvll1), for ||ull1 + ||v|l1 < Rii. This implies that for all M > 0, there exists
R; 1 > 0 such that for all t € [0,1], fi(t,u,v) > minep 1] fi(t, u,v) > M(||lully +
lv|l1) for ||u|lx + [Jv]|1 < Rsi1. We choose

1

a) f; ©(s)ds

M=
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Let ©Q; be an open bounded set in E defined by Q3 = {u € FE, |ullg <
min;es1,.. oy Ri}. Then for all u € Con(a) N 0Qy, it yields for all s € [a, 1],

n

Z(uz(s) +uj(s)) >~v(a) min R;;.

i=1
Then for all ¢ € {1,...,n}, for all s € [a, 1],

fils,u(s),u'(s)) = M(|lu(s)lly + [|v/(s)[1) = My(er) min Ry
This implies that, for all i € {1,...,n}, for all t € [0, 1],

|T; |>M/ s)dsy(e) min  R;4
lE{l,...,n}

and for all ¢ € {1,...,n}, we have

mlnie{l VVVVV

1T ()] = |1 T5(w)[oo =

‘We deduce that
|T(u)|lp > min Rz =|ulg.
i€l }

EEREE)

Step 3. Now, let i € {1,...,n} and we have

fi(tauav) _

lim max ————— —
l[ull+llvll—+oo te[0,1] [Jullr + [|v]l1

Then for all € > 0, there exists R}’ > 0 such that maxyeo,1) fi(t, u,v) < e||ull1 +
[v]|1) for |[ully + ||v]ly = RY. This implies that, for all € > 0 there exists R} >0
such that for all ¢ € [0, 1], fi(t,u,v) < maxseo,1] fi(t, u,v) < e(|lully + [Jv]|1), for
lully + Iloll > R
We choose
1

4n (1 + 2K; Z?:l 6]1) fol @(s)ds

From (H3), for all i € {1,...,n} there exist M; > 0 such that 0 < h;(s, u1(s),...,
un(s)) < M, for all s € [0,1], u € Ej.
Let

E =

Rgmax{Q min  R;;, max Rg”,2n< max KZ-MZ-Jrl),
i€q ic{1,....,n} ie{

2n<2 max K;M; +1)}

ie{l,...,n}
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and let Q5 be an open bounded set in F defined by Qs = {u € E, |lu|]|g < R2}.
Then for all u € K(a) N9, we have for all i € {1,...,n} and for all s € [0,1]

fils,u(s),u'(s)) < max fils, u(s), u'(s)) < e(fuls)l1 + ' (s)]h) < eha.

Using Lemma 3.1 we have for all i € {1,...,n}, for all ¢ € [0, 1],

ITi(w)(#)] < / Hi(t,8) fi(s, uls),u/(s)) ds + Pi(t)

p 1
S ERQ 1 + QKZ E 6]'11' / QO(S) ds + _eglax }KzMz -+ 1
0 1e11,... n

j=1

T o)< [ P s ()6 ds + P

P 1
<2:hy 14260 050 | [ plo)f(suts)ul(9)ds
0

j=1
4+2 max K;M;+1
i€{l,...,n}
<R Ry Ry
—2n  2n n

Then for all i € {1,...,n},

Ry
T% ! o] < —.
ITi(u) oo < 2
Therefore
Ry
Ti(u)| < =2 .
ITiw)] <

‘We deduce that
[T(w)|e < R = |lullg.

Step 4. Let u € Q; then |jul| < minge(1,.. n) i1 < 2mingeq,
This implies that [ju|| < Ra, then u € Qy. We deduce that Q; C Q. By
Theorem 3.7, T has at least one fixed point in K (a) N (Q2\Q1). Then (1.1)—(1.2)
has at least one nonnegative solution w.
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Theorem 3.9. Under assumptions of Theorem 3.8 and adding the following
condition:

(3.3) Forall i€ {1,...,n},there exist to,; €]0,1[ such that f;(to:,z,y) >0

for all x € R, for all y € R™. Then the problem (1.1)-(1.2) has at least one
positive solution.

PRrROOF: Consider the nonnegative solution u for problem (1.1)—(1.2) whose exis-
tence is guaranteed by Theorem 3.8. Notice that u; satisfies for all i € {1,...,n},

fo i(t,8) fi(s,u(s),u'(s))ds + Pi(t). From (H2) and condition (3.3),
there exists to,z € [az,ﬁz] CJO,1[ such that for all ¢ € [a;, 3] and z € R,
y € R, fi(t,z,y) > 0. Then for all i€{l,...,n} and for all ¢ €]0,1[, u;(t) =

fol H;(t,8) fi(s,u(s),u'(s))ds + P;(t) > f67 i(t,8) fi(s,u(s),u'(s))ds > 0. The
proof is complete. O

4. Nonexistence of positive solutions

In this section, we give some sufficient conditions for the nonexistence of posi-
tive solutions. Define the following constants:

Bi=(1+ 2Kizﬁj’i)/o ©(s)ds and C(a) = / ©(s)ds.

Theorem 4.1. Suppose that (H2) holds and there exists ig € {1,...,n} such
that for all t € [0,1], for all x;, €]0,+o0], for all i € {1,...,n}\{io}, =i, y: € R

(1) Kiohio(t,l'l,...,IL'Z'O,...,IL'n)<I;”,
(2) Biufio(t;l‘la--'7xi07"'7xn7y17"'7yn) 10
Then the problem (1.1)—(1.2) has no positive solution.

PROOF: Assume, to the contrary, that u(t) is a positive solution of (1.1)—(1.2). We
denote by u(s) = (u1(s), ..., ui,(8), ..., un(s)) and u'(s) = (uy(s),...,u; (s),...,
ul,(s)). Then for all s €]0,1[ we have

fio (B u(s),u/(s)) < uiU(S)B-*l.
Then for all ¢ € [0,1] and for all s €]0, 1] we have

) ) ’ ] Uig (S)B;ol
H'LO (tﬂ S)fzo (Sa U(S)a U (5)) < H'LO (tﬂ S)f :

Multiplying this by H;, (¢, s) and integrating over [0, 1] we obtain
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1 o uzo s)ds
/0 H;, (t,8) fio (5,u(s),u'(s)) ds < B;, fo 2 (s)

1
- fo wi, (s) ds
— 2 .

Km/ hio (s,u(s))ds

fo ug, (8) ds
T

Since, for all ¢t € [0, 1], we have

Pio (t)

IN

Then for all ¢ € [0, 1],

1 1 1 ; d 1
gy () < —/ Uiy () ds + M = / Ui, (8) ds.
2Jo 2 0

By mean value theorem there exists so €]0,1[ such that fol Ui (8) ds = w4y (s0)
which is a contradiction. The proof is complete. (I

Theorem 4.2. Suppose that (H2) holds, there exist a €]0, 1] and ig € {1,...,n}
such that for all t € [0,1], for all z;, €]0, +oc, for alli € {1,...,n}\{io}, zs, y; €
R, we have

(4.1) C(a) fio (B Ty e o s Tigy e ooy Ty Yy e v+ s Yn) > Lig -
Then the problem (1.1)—(1.2) has no positive solution.
PROOF: Assume, to the contrary, that u(t) is a positive solution of (1.1)—(1.2). We
denote by u(s) = (u1(s),...,uiy(s),...,un(s)) and u'(s) = (ui(s),...,uj (s),...,
ul (s)). Then for all s €]0, 1] we have

Fio(5,u1(8), oy ig(8), - o oy un(s),u)(8), ... ul(s)) > uiy(s)C(a)™?
Then for all ¢ € [a, 1] and for all s €]0, 1[ we have

Hiy (8, 8) i (5, 0(5), /() > Hiy (1, et (5)Ca) .

Multiplying this by H;, (¢, s) and integrating over [0, 1] we obtain

/ Hi, (t, ) fio(s,u(s),u'(s))ds > Cla / H;,(t, s)ui, (s) ds
0

> / iy (5) ds.
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Then for all ¢ € [a, 1]
wot) = [ )i s u). 0 (5) ds + P 1)
/ o (L, 8) fio (s, u(s),u'(s)) ds

> /0 wi () ds.

By mean value theorem there exists sg €]a, 1] such that fol iy (8) ds = ui,(So),
which is a contradiction. The proof is complete.

Example 4.3. Consider the following system of boundary value problem:

an 341 —u2(t) — ()
'O+ oo e
2/6) + e Tur O] T + e~ = 0
(4.2) u1(0) = uj(0) = u2(0) =uy(0) =0
wj (1) = 2u4 (3) + 3u '1 +f0 #(H)u)l()ld
/ _ /(1 / u (s
u5(1) = 2u5(5) + 3u5(5) + fy o) e
Let
31
filt,z1, 22, y1,Y2) = ———= + € ™2,
Vi
fo(t,z1, 22, y1,92) TV ]+ || + e,
x2
ha(t, z1, -2
o) = g Tl
and
hQ(taxlaxQ) == |x1|

V1422 + x|
We can easily show that conditions (H2), (H3) and condition (3.3) are satisfied.
Hence, by Theorem 3.9, this problem has at least one positive solution.

Example 4.4. Consider the following system of boundary value problem:

W () + (1 + 28O 4 (1) + (uf (1) = 0
///(t) te 2u1 (t) 4 |u ( )|3 =0

(13) 3 (0) = u3(0) = i (0) = 4(0) =0
(1): (?)+3u1(%)+1
us(1) = 2uy(g) + 3ui(5)-

We denote by fi(t,z1,22,y1,92) = (14 2e™)? + |z2| + 93, a = §, Cla) =

128 o1 2
J,, wls)ds = 155 and C(a) fu(t, 551,562791,?/2) A 12)8+|I2|+y1 > @1

205
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By using Theorem 4.2, the problem (4.3) has no positive solution.

Acknowledgments. The authors thank the reviewers for their constructive re-
marks leading to improve the original manuscript.
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