Jan van Mill
On nowhere first-countable compact spaces with countable \(\pi \)-weight

Persistent URL: http://dml.cz/dmlcz/144244

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz
On nowhere first-countable compact spaces with countable π-weight

JAN VAN MILL

Abstract. The minimum weight of a nowhere first-countable compact space of countable π-weight is shown to be κ_B, the least cardinal κ for which the real line \mathbb{R} can be covered by κ many nowhere dense sets.

Keywords: π-weight; nowhere first-countable; κ_B; compact space

Classification: 54D35

1. Introduction

All spaces under discussion are Tychonoff.

In [4], the author showed that there is a (naturally defined) compact space X which is (topologically) homogeneous under $\text{MA} + \neg \text{CH}$ but not under CH. This space has countable π-weight, character ω_1 and weight \mathfrak{c}. It is an open problem whether there can be a compact nowhere first-countable homogeneous space of countable π-weight and weight less than \mathfrak{c}. This cannot be done by a straightforward modification of the method in [4] since from Juhász [2, Theorem 5] it follows that under MA, every compact space of countable π-weight and weight less than \mathfrak{c} is somewhere first-countable. Hence a homogeneous compactum of countable π-weight and weight less than \mathfrak{c} is first-countable under MA ([4, Theorem 1.5]). Let λ be the minimum weight of a nowhere first-countable compact space of countable π-weight. Clearly, $\omega_1 \leq \lambda \leq \mathfrak{c}$. The aim of this note is to show that λ is equal to κ_B, the least cardinal κ for which the real line \mathbb{R} can be covered by κ many nowhere dense sets. Hence there exists a nowhere first-countable compact space of weight κ_B and countable π-weight. Whether such a space can be homogeneous while $\kappa_B < \mathfrak{c}$ remains an open problem.

2. Preliminaries

Our basic references are Miller [5], Juhász [1] and Kunen [3].

For every space X, define $\kappa_B(X)$ to be the least cardinal κ such that X can be covered by κ many nowhere dense (in X) subsets of X. In Miller [5, Lemma 1] it is shown that for every crowded Polish space X we have $\kappa_B(X) = \kappa_B$.

DOI 10.14712/1213-7243.2015.121
Let $\text{MA}_\kappa(\text{countable})$ denote the statement that for any countable partial order \mathbb{P} and family \mathcal{F} of dense subsets of \mathbb{P}, if $|\mathcal{F}| < \kappa$, then there exists a \mathbb{P}-generic filter G over \mathcal{F}. It is well-known, see Miller [5, Lemma 2], that κ_B is the greatest κ for which $\text{MA}_\kappa(\text{countable})$ holds.

The proof of the following result is standard and is included for the sake of completeness.

Lemma 2.1 (MA$_{\kappa^+}$(countable)). Let X be a crowded space of weight at most κ and of countable π-weight. Assume that D is a nowhere dense subset of X. Then there exist disjoint open sets U and V in X such that $D \subseteq U \cap V$.

Proof: Let \mathcal{U} be a countable π-base for X. Put

$$ \mathbb{P} = \{ (p, q) : (p, q) \in [\mathcal{U}]^{<\omega}) & (\bigcup p \cap \bigcup q = \emptyset) & (\bigcup p \cup \bigcup q \subseteq X \setminus \overline{D}) \}. $$

Order \mathcal{P} in the natural way by $(p_0, q_0) \leq (p_1, q_1)$ iff $\bigcup p_1 \subseteq \bigcup p_0$ and $\bigcup q_1 \subseteq \bigcup q_0$.

Let \mathcal{V} be an open base for X such that $|\mathcal{V}| \leq \kappa$. Let $\mathcal{W} = \{ V \in \mathcal{V} : V \cap D = \emptyset \}$.

For every $W \in \mathcal{W}$, put

$$ W^* = \{ (p, q) \in \mathcal{P} : (\bigcup p \cap W \neq \emptyset) & (\bigcup q \cap W \neq \emptyset) \}. $$

We claim that W^* is dense in \mathcal{P}. To prove this, take an arbitrary $(p, q) \in \mathcal{P}$. By assumption, $(\bigcup p \cup \bigcup q) \cap \overline{D} = \emptyset$ and $W \cap D \neq \emptyset$. Since X is crowded, there exist $U, V \in \mathcal{U}$ such that

$$ \overline{U} \cup \overline{V} \subseteq W \setminus (\overline{D} \cup \overline{p} \cup \overline{q}). $$

Hence $p' = p \cup U$ and $q' = q \cup V$ belong to \mathcal{P} and, clearly, $(p', q') \leq (p, q)$. By our assumptions, there is a filter F in \mathbb{P} such that for every $W \in \mathcal{W}$ we have $W^* \cap F \neq \emptyset$. Put

$$ U = \bigcup \{ p : (\exists q \in \mathcal{W}^{<\omega})(\langle p, q \rangle \in F) \}, $$

and

$$ V = \bigcup \{ q : (\exists p \in \mathcal{W}^{<\omega})(\langle p, q \rangle \in F) \}, $$

respectively. Then U and V are clearly as required. \qed

It was shown in Miller [5, Theorem 1] that κ_B has uncountable cofinality. (Interestingly, Shelah [6] showed that the measure analogue of this may fail.)

3. Proofs

Theorem 5 and Lemma 4 in Juhász [2] imply that if X is countably compact, nowhere first-countable, and has a dense set of points of countable π-character, then $w(X) \geq \kappa_B$. For completeness sake, we include a simple proof of a weaker result which suffices for our purposes.
Lemma 3.1 (Juhász [2]). Let κ be a cardinal for which there exists a compact nowhere first-countable space X with countable π-weight and weight κ. Then $\kappa_B \leq \kappa$.

PROOF: Let \mathcal{B} be an open base for X such that $|\mathcal{B}| = \kappa$. Moreover, let \mathcal{U} be a countable π-base for X. For every $B \in \mathcal{B}$, put

$$S(B) = \overline{B} \setminus \bigcup \{U \in \mathcal{U} : U \subseteq B\}.$$

Since \mathcal{U} is a π-base, it is clear that for every $B \in \mathcal{B}$ the set $S(B)$ is a nowhere dense closed subset of X.

We claim that $\bigcup_{B \in \mathcal{B}} S(B) = X$. To this end, pick an arbitrary $x \in X$. The collection $\mathcal{V} = \{U \in \mathcal{U} : x \in U\}$ is countable. Since $\chi(x, X) > \omega$, there exists $B \in \mathcal{B}$ which contains no $U \in \mathcal{V}$. Hence for every $U \in \mathcal{U}$ which is contained in B it follows that $x \notin U$, i.e., $x \in S(B)$.

There is an irreducible continuous surjection $f : X \to Y$, where the weight of Y is countable. Hence Y is covered by the collection of nowhere dense closed sets

$$\{f(S(B)) : B \in \mathcal{B}\}.$$

Clearly Y is crowded since X is. From this we conclude that $\kappa_B \leq \kappa$, as required.

If X is a compact space and A and B are closed subsets of X such that $A \cup B = X$, then $X(A, B)$ denotes the topological sum $(\{0\} \times A) \cup (\{1\} \times B)$ of A and B and $\pi_{A,B} : X(A, B) \to X$ is defined by

$$\pi_{A,B}(t) = \begin{cases}
 a & (t = (0, a), a \in A), \\
 b & (t = (1, b), b \in B).
\end{cases}$$

Observe that $t \in A \cap B$ if and only if $|\pi_{A,B}^{-1}(\{t\})| \geq 2$ if and only if $|\pi_{A,B}^{-1}(\{t\})| = 2$.

Lemma 3.2. $\pi_{A,B} : X(A, B) \to X$ is irreducible if and only if $A \setminus B$ is dense in A and $B \setminus A$ is dense in B.

PROOF: It will be convenient to denote $\{0\} \times A$ and $\{1\} \times B$ by A' and B', respectively. Assume first that $C \subseteq X(A, B)$ is a proper closed set such that $\pi_{A,B}(C) = X$. We may assume without loss of generality that $U = A' \setminus C$ is nonempty. Put $V = \pi_{A,B}(U)$. Then V is a nonempty relatively open subset of A. Moreover, if $x \in V$, then there exists $(1, b) \in B'$ such that $B \ni b = \pi_{A,B}((1, b)) = x$. As a consequence, $V \subseteq B$. There is an open subset W in X such that $W \cap A = V$. Since $V \subseteq B$, obviously $W \subseteq B$. Hence $A \setminus B$ is not dense in A.

For the converse implication, assume without loss of generality that $A \setminus B$ is not dense in A. Then $(\{0\} \times A \setminus \overline{B}) \cup (\{1\} \times B)$ is a proper closed subset of $X_{A,B}$ which is mapped onto X by $\pi_{A,B}$.
Lemma 3.3. There is a nowhere first-countable compact space of weight κ_B and countable π-weight.

Proof: Let $\tau: \kappa_B \to \kappa_B$ be a surjection every fiber of which has size κ_B. Moreover, let $\{D_\alpha : \alpha < \kappa_B\}$ be a family of closed and nowhere dense subsets of 2^ω covering 2^ω. Our space will be the inverse limit X_{κ_B} of a continuous inverse system $\{X_\alpha, \beta \leq \alpha < \kappa_B, f^\alpha_\beta\}$ such that $X_0 = 2^\omega$ and for every $\alpha < \kappa_B$ and $\beta \leq \alpha$,

1. X_α is a compact space of weight at most $|\alpha| \cdot \omega$,
2. $f^\alpha_\beta: X_\alpha \to X_\beta$ is a continuous, irreducible surjection,
3. there are closed sets A_α and B_α in X_α such that
 a. $A_\alpha \cup B_\alpha = X_\alpha$,
 b. $A_\alpha \cap B_\alpha \supseteq (f^\alpha_0)^{-1}(D_{\tau(\alpha)})$,
 c. $A_\alpha \setminus B_\alpha$ and $B_\alpha \setminus A_\alpha$ are dense in A_α respectively B_α,
 d. $X_{\alpha+1} = X_\alpha(A_\alpha, B_\alpha)$ and $f_\alpha^{\alpha+1} = \pi_{A_\alpha, B_\alpha}$.

The construction of this inverse sequence is a triviality by a repeated application of Lemmas 2.1 and 3.2. The only thing left to verify is that X_{κ_B} has weight κ_B and is nowhere first-countable.

Striving for a contradiction, assume that X_{κ_B} is first-countable at t. Since κ_B has uncountable cofinality (see §2), there exists $\beta < \kappa_B$ such that

(†) $$(f^\kappa_B)^{-1}(\{f^{\kappa_B}_\beta(t)\}) = \{t\}. $$

Let $\xi < \kappa_B$ be such that $f^\kappa_B(\xi) \in D_\xi$. Pick $\alpha > \beta$ so large that $\tau(\alpha) = \xi$. Then clearly

$$|(f^{\alpha+1}_\alpha)^{-1}(\{f^{\kappa_B}_\alpha(t)\})| = 2,$$

which contradicts (†).

That the weight of X_{κ_B} is at most κ_B follows by construction. And that it has weight at least κ_B is a consequence of Lemma 3.1 and the fact that it is nowhere first-countable. Observe that X_0 has countable weight, and that X_{κ_B} admits a continuous, irreducible map onto X_0. Hence X_{κ_B} has countable π-weight. □

4. Questions

1. Is there in ZFC a homogeneous nowhere first-countable compact space of countable π-weight and weight κ_B?
2. What are the cardinals of the form $w(X)$, where X is a nowhere first-countable compactum of countable π-weight?
 (Let Π denote this set of cardinals. We showed that $\kappa_B \in \Pi$. Moreover, $\mathfrak{c} \in \Pi$. To check this, let X be the absolute of the unit interval. Then X has countable π-weight, is nowhere first-countable, and has weight \mathfrak{c} (since it contains a copy of $\beta \omega$). We do not know whether there can be a cardinal $\kappa \in \Pi \setminus \{\kappa_B, \mathfrak{c}\}$.)
A natural question is whether there can be a κ in Π of countable cofinality. This question may have a very simple answer. Indeed, assume that there is a sequence

$$\kappa_0 < \kappa_1 < \cdots < \kappa_n < \cdots$$

in Π. For every n let X_n be a witness of the fact that $\kappa_n \in \Pi$. Then $X = \prod_{n<\omega} X_n$ is a witness that $\kappa = \sup_{n<\omega} \kappa_n \in \Pi$.

REFERENCES

KdV Institute for Mathematics, University of Amsterdam, Science Park 904, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands

E-mail: j.vanMill@uva.nl

URL: http://staff.fnwi.uva.nl/j.vanmill/

(Received January 27, 2015)