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2-DIMENSIONAL PRIMAL DOMAIN DECOMPOSITION THEORY

IN DETAIL

Dalibor Lukáš, Jiří Bouchala, Petr Vodstrčil, Lukáš Malý, Ostrava

(Received November 5, 2013)

Abstract. We give details of the theory of primal domain decomposition (DD) methods for
a 2-dimensional second order elliptic equation with homogeneous Dirichlet boundary con-
ditions and jumping coefficients. The problem is discretized by the finite element method.
The computational domain is decomposed into triangular subdomains that align with the
coefficients jumps. We prove that the condition number of the vertex-based DD precon-
ditioner is O((1 + log(H/h))2), independently of the coefficient jumps, where H and h
denote the discretization parameters of the coarse and fine triangulations, respectively. Al-
though this preconditioner and its analysis date back to the pioneering work J.H.Bramble,
J. E. Pasciak, A.H. Schatz (1986), and it was revisited and extended by many authors in-
cluding M.Dryja, O.B.Widlund (1990) and A.Toselli, O.B.Widlund (2005), the theory is
hard to understand and some details, to our best knowledge, have never been published. In
this paper we present all the proofs in detail by means of fundamental calculus.

Keywords: domain decomposition method; finite element method; preconditioning

MSC 2010 : 65N55, 65N30, 65F08

1. Introduction

We consider the homogeneous Dirichlet problem for the Poisson equation

− div(̺(x)∇u(x)) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

This work was supported by the IT4Innovations Centre of Excellence project (CZ.1.05/
1.1.00/02.0070) and by the project SPOMECH—Creating a multidisciplinary R&D team
for reliable solution of mechanical problems (CZ.1.07/2.3.00/20.0070) funded by the Eu-
ropean Regional Development Fund and the national budget of the Czech Republic via
the Research and Development for Innovations Operational Programme. The work was
also supported by the Czech Ministry of Education under the project MSM6198910027
and by VŠB—Technical University of Ostrava under the grant SGS SP2013/191.
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where Ω ⊂ R
2 is a bounded polygonal domain with Lipschitz boundary, f ∈ L2(Ω),

and ̺ ∈ L∞(Ω) is a positive piecewise constant material function. The domain Ω

is decomposed into N nonoverlapping open triangular subdomains Ωi by means of

a conforming finite element (FE) discretization Ω =
N⋃
i=1

Ωi. This is referred to as the

coarse discretization or the domain decomposition (DD). The decomposition aligns

with jumps of the material function so that ̺(x) = ̺i > 0 for x ∈ Ωi. We denote

by Γ :=
M⋃
i=1

Ei the skeleton of the decomposition, where Ei is the interior of an

edge apart from ∂Ω, see Figure 1. We denote the coarse discretization parameter by

H := max
i=1,...,N

diam(Ωi).

≈ H

≈ h

Figure 1. Decomposition of Ω into N = 10 subdomains with nV = 2 vertices xVi (marked
by squares); dashed-line depicts ∂Ω; solid-bold-lines denote Γ decomposed into
M = 11 edges with edge nodes xEi,j (marked by circles); solid-thin-lines denote
the fine triangulation with n = 65 nodes; diamonds depict interior nodes xIi,j .

The related weak formulation

find u ∈ H1
0 (Ω):

N∑

i=1

̺i

∫

Ωi

∇u(x)∇v(x) dx

︸ ︷︷ ︸
=:a(u,v)

=

∫

Ω

f(x)v(x) dx

︸ ︷︷ ︸
=:b(v)

∀ v ∈ H1
0 (Ω)

is discretized by the conforming finite element (FE) method on a subspace V :=

V h := 〈ϕ1(x), . . . , ϕn(x)〉 ⊂ H1
0 (Ω), where (ϕi)

n
i=1 denote the linear Lagrange basis

functions related to the nodes depicted in Figure 1. The underlying fine triangulation

aligns with the domain decomposition. We arrive at the linear system

(1.1) Au = b,

where (A)i,j := a(ϕi, ϕj), (b)i := b(ϕi), and uh(x) :=
n∑

j=1

(u)jϕj(x) approximates

u(x). By h we denote the fine discretization parameter, which is the maximal fine-

triangle diameter.
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Primal DD-methods rely on re-sorting the basis functions (ϕi)
n
i=1 into N sets of

functions (ϕI
i,j)

nI
i

j=1, i = 1, . . . , N , related to the subdomain interior nodes xI
i,j ∈ Ωi,

see Figure 1, and a set of functions (ϕΓ
k )

nΓ

k=1 related to the skeleton nodes x
Γ
k ∈ Γ\∂Ω,

each of which either belongs to an edge Ei, x
Γ
k = xE

i,j , or is a subdomain (coarse)

vertex xΓ
k = xV

i , see Figure 1. This translates (1.1) into the saddle-point system

(1.2)




A
I,I
1 0 . . . 0 A

I,Γ
1

0 A
I,I
2 . . . 0 A

I,Γ
2

...
...

. . .
...

...

0 0 . . . A
I,I
N A

I,Γ
N

A
Γ,I
1 A

Γ,I
2 . . . A

Γ,I
N A

Γ,Γ







u
I
1

u
I
2
...

u
I
N

u
Γ




=




b
I
1

b
I
2
...

b
I
N

b
Γ




,

where (AI,I
k )i,j := a(ϕI

k,i, ϕ
I
k,j), (A

I,Γ
k )i,j = (AΓ,I

k )j,i := a(ϕI
k,i, ϕ

Γ
k,j), (b

I
k)i := b(ϕI

k,i),

and (bΓ)i := b(ϕΓ
i ). Using a particular-solution approach, (1.2) can be solved in three

steps:

1. Solve N independent systems AI,I
i v

I
i = b

I
i, which are FE-counterparts of

−̺i△vIi(x) = f(x), x ∈ Ωi,

vIi(x) = 0, x ∈ ∂Ωi,

on subspaces Vi := V h
i := 〈ϕI

i,1, . . . , ϕ
I
i,nI

i

〉.

2. Solve SuΓ = b
Γ −

N∑
i=1

A
Γ,I
i v

I
i, where

(1.3) S := A
Γ,Γ −

N∑

i=1

A
Γ,I
i (AI,I

i )−1
A

I,Γ
i .

3. Solve N concurrent systems AI,I
i w

I
i = −A

I,Γ
i u

Γ, which are FE-counterparts of

−̺i△wI
i(x) = 0, x ∈ Ωi,

wI
i(x) = uΓ(x), x ∈ ∂Ωi ∩ Γ,

wI
i(x) = 0, x ∈ ∂Ωi ∩ ∂Ω,

and set uI
i := v

I
i +w

I
i.

The method can be also viewed in terms of the block LDLT -factorization

A =

(
I
I

0

A
Γ,I(AI,I)−1

I
Γ

)(
A

I,I
0

0 S

)(
I
I (AI,I)−1

A
I,Γ

0 I
Γ

)
,
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where II, IΓ denote the identity matrices, AI,I and A
I,Γ = (AΓ,I)T are the upper-

block-diagonal and off-diagonal part of A, respectively.

The idea of primal DD-preconditioners is to replace the Schur complement S

in Step 2 by an approximation Ŝ, which is cheap to invert, the condition number

κ(Ŝ−1
S) increases modestly with H/h and is independent of (̺i)

N
i=1.

The primal DD-methods can be viewed as a block Gauss elimination combined

with preconditioned Krylov space methods. The idea of re-ordering the nodes dates

back to the nested-dissection sparse direct solver developed by George [5]. The

base for the analysis of DD-preconditioners was given in a famous series of papers

by Bramble, Pasciak, and Schatz, cf. [1]. Analysis in the Schwarz framework was

presented by Dryja, Smith, and Widlund [2]. Let us mention at least two other

important DD-methods such as balancing DD proposed and analyzed by Mandel

and Brezina [6], or finite element tearing and interconnecting proposed by Farhat

and Roux [4] and analyzed by Mandel and Tezaur [7]. We refer to the monograph

by Toselli and Widlund [9] for a more comprehensive overview.

The aim of this paper is to present a complete theory for the vertex-based DD-

preconditioner in 2 dimensions by means of simple calculus. Although many other

DD-preconditioners rely on this theory, to our best knowledge it has never been

presented in a single paper or a monograph without external references. Neither

have we found a complete proof of the 2-dimensional counterpart of the edge lemma,

a brief sketch of which is given in [3]. Moreover, we found and corrected an inaccuracy

in the proof [1] of a frequently-used discrete Sobolev inequality. We hope that our

effort will be of some help to researchers, at a position similar to ours, who need to

get a deeper understanding of the theory in order to develop their novel DD-methods.

The rest of the paper is organized as follows: In Section 2, we give the construction

of the preconditioner. In Section 3, we present the analysis of the condition number

of the DD-preconditioned algebraic system.

2. Vertex-based preconditioner

In Section 1, we re-ordered the basis functions (ϕi)
n
i=1 into N sets of interior

functions and a set of skeleton functions, which arrived at (1.2). Similarly we shall

now re-order the set of skeleton basis functions (ϕΓ
i )

nΓ

i=1 intoM , the number of edges,

sets of functions (ϕE
i,j)

nE
i

j=1, i = 1, . . . ,M , related to the nodes xE
i,j ∈ Ei, see Figure 1,

and into a set of functions (ϕV
i )

nV

i=1 related to the subdomain vertices x
V
i ∈ Γ. This

re-ordering induces a permutation of the Schur complement (1.3), still denoted by S,

(2.1) S =

(
S
E,E

S
E,V

S
V,E

S
V,V

)
,
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where the E-blocks of rows or columns are associated with the edge functions ϕE
i,j

and the V-blocks are associated with the vertex functions ϕV
i . The matrix S

E,E

admits the block structure

(2.2) S
E,E =




S
E,E
1,1 . . . S

E,E
1,M

...
. . .

...

S
E,E
M,1 . . . S

E,E
M,M


 ,

where (SE,E
i,j )k,l is related to the interaction of the basis functions ϕE

i,k and ϕE
j,l.

From (1.3) we can see that the block structure is sparse, since SE,E
i,j is zero if there

is no subdomain adjacent to both Ei and Ej .

Denote the overall number of interior edge nodes by nE :=
M∑
i=1

nE
i . We introduce

the matrix

R
E = (RE

1 , . . . ,R
E
M ) ∈ R

nV×nE

, R
E
i ∈ R

nV×nE
i ,

the transpose of which linearly interpolates the function values from the coarse ver-

tices xV
k into interior nodes x

E
i,j of an associated edge Ei. That means the entries of

R
E are given by the values of the coarse-space basis functions

(2.3) (RE
i )k,j = ϕH

k (xE
i,j),

where (ϕH
i )n

V

i=1 are the FE-functions uniquely defined by the values at the vertices

xV
i of the domain decomposition. We change the base (ϕ

V
i )

nV

i=1 to (ϕ
H
i )n

V

i=1 so that

(2.4) S =

(
I
E

0

−R
E

I
V

)(
S
E,E

S̃
E,V

S̃
V,E

S̃
V,V

)(
I
E −(RE)T

0 I
V

)
,

where I
E, IV are the identity matrices. Now the block A

H := S̃
V,V is the FE-

discretization of the bilinear form a(u, v) in the coarse base.

The primal, so-called vertex-based DD-preconditioner is constructed by neglecting

S̃
E,V, S̃V,E, and by skipping the off-diagonal blocks in (2.2), i.e.

Ŝ =

(
I
E

0

−R
E

I
V

)(
S
E,E

0

0 A
H

)(
I
E −(RE)T

0 I
V

)
,

where S
E,E

:= diag(SE,E
1,1 , . . . ,SE,E

M,M ).

In each iteration of, e.g., the preconditioned conjugate gradient method an action

of Ŝ−1 is required. We have the formula

(2.5) Ŝ
−1 =

(
I
E (RE)T

0 I
V

)(
(S

E,E
)−1

0

0 (AH)−1

)(
I
E

0

R
E

I
V

)

=

M∑

i=1

(
I
E
i

0

)
(SE,E

i,i )−1(IEi ,0) +

(
(RE)T

I
V

)
(AH)−1 (RE, IV)︸ ︷︷ ︸

=:RH

.
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This results in a modification of Step 2 of the three-steps method.

2a. Set

c
Γ :=

(
c
E

c
V

)
:= b

Γ −A
Γ,I

v
I.

2b. Solve M independent local systems SE,E
i,i w

E
i = c

E
i .

2c. Solve the global coarse system A
H
w

H = c
V +R

E
c
E.

2d. Set

û
Γ :=

(
w

E + (RE)TwH

w
H

)
.

The action of Ŝ−1 comprises the solution to a global system with the coarse matrix

A
H and the solution to M local edge problems with matrices SE,E

i,i , which are local

Schur complements related to the systems




A
I,I
j 0 A

I,E
j,i

0 A
I,I
k A

I,E
k,i

A
E,I
i,j A

E,I
i,k A

E,E
i







w
I
j

w
I
k

w
E
i


 =




0

0

c
E
i


 ,

where the relation of i, j, and k is such that the domains Ωj and Ωk are connected

via the edge Ei. We solve the system for w
E
i . It is an FE-discretization on the space

Vj + Vk + V E
i , where V

E
i := 〈ϕE

i,l〉
nE
i

l=1, of the following problem solved over the patch

Ωj ∪ Ωk:

−̺j△wI
j(x) = 0, x ∈ Ωj ,

wI
j(x) = 0, x ∈ ∂Ωj \ Ei,

−̺k△wI
k(x) = 0, x ∈ Ωk,

wI
k(x) = 0, x ∈ ∂Ωk \ Ei,

wE
i (x) := wI

j(x) = wI
k(x), x ∈ Ei,

̺j
dwI

j

dnj
(x) + ̺k

dwI
k

dnk
(x) = cEi (x), x ∈ Ei,

where nj and nk denote the outward unit normals to Ωj and Ωk, respectively.

The resulting preconditioner admits the factorization

(2.6) Â =

(
I
I

0

A
Γ,I(AI,I)−1

I
Γ

)(
A

I,I
0

0 Ŝ

)(
I
I (AI,I)−1

A
I,Γ

0 I
Γ

)
.
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3. Analysis of the condition number

We shall analyze the condition number κ(Â−1
A) by means of finding spectral

bounds λmin > 0 and λmax > 0 such that

∀u ∈ V : λminâ(u, u) 6 a(u, u) 6 λmaxâ(u, u),

where â(u, u) is the quadratic form related to Â. It will turn out that under shape-

regularity and quasi-uniformity of both the coarse and fine discretizations the condi-

tion number κ is bounded by C(1 + ln(H/h))2 from above. The constant C as well

as all the other generic constants that appear in the theory below are independent

of H , h, and (̺i)
N
i=1.

3.1. Orthogonal space splitting. Let us re-visit the algebraic construction of Â.

First we re-sorted the basis functions according to the interior and skeleton nodes.

This leads to

V = (V1 ⊕a . . .⊕a VN ) + V Γ,

where V Γ := 〈ϕΓ
1 , . . . , ϕ

Γ
nΓ〉 and where the a-orthogonality of Vi and Vj , for i 6= j,

follows from Ωi ∩ Ωj = ∅.
Now we take into account the transformation of the base determined by the right

factor of (2.6). It transforms the basis functions ϕΓ
i to their discrete harmonic ex-

tensions ϕ̃Γ
i := H(ϕΓ

i ). Recall that the discrete harmonic extension ũΓ of uΓ ∈ V Γ

is the solution to the problem

find ũΓ ∈ V : ũΓ(x) = uΓ(x) on Γ and ∀ j ∀ v ∈ Vj : a(ũΓ, v) = 0.

Note that ũΓ|Ωj
, j = 1, . . . , N , is an FE-counterpart of

−△ũΓ(x) = 0, x ∈ Ωj ,

ũΓ(x) = uΓ(x), x ∈ Γ ∩ ∂Ωj ,

ũΓ(x) = 0, x ∈ ∂Ω ∩ ∂Ωj .

Denoting Ṽ Γ := H(V Γ) we arrive at the a-orthogonal decomposition

V = V1 ⊕a . . .⊕a VN ⊕a Ṽ
Γ.

The Schur complement S is the FE-discretization of the bilinear form

s(uΓ, vΓ) := a(H(uΓ),H(vΓ)), uΓ, vΓ ∈ V Γ,
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in the base (ϕΓ
i )

nΓ

i=1. The latter can be deduced from

S = (−A
Γ,I(AI,I)−1

I
Γ )

(
A

I,I
A

I,Γ

A
Γ,I

A
Γ,Γ

)(−(AI,I)−1
A

I,Γ

I
Γ

)
,

where the transformation factors consist of the nodal coordinates of (ϕ̃Γ
i )

nΓ

i=1.

Finally, we take a closer look at the last transformation determined by the factor

R
H in (2.5). It transforms functions to the linear interpolation from its vertex values

along all the skeleton edges. We denote this interpolation operator by IH : C0(Ω) →

C0(Ω), I
H(v)(x) :=

nV∑
i=1

v(xV
i )ϕ

H
i (x). In particular, IH(ϕV

i ) = ϕH
i , see (2.3). Since

the latter are discrete harmonics, we end up with the decomposition

(3.1) V = V1 ⊕a . . .⊕a VN︸ ︷︷ ︸
=:V I

⊕a (Ṽ
E + V H)︸ ︷︷ ︸
=Ṽ Γ

,

where V H := IH(V ), Ṽ E := H(V − V H) = H
( M∑
i=1

V E
i

)
. Therefore, every u =

uI + uE + uV ∈ V admits the unique decomposition

u = ũI ⊕a (ũ
E + uH),

where uH := IH(u), ũE = H(u − uH), and ũI := u− ũE − uH . The quadratic forms

now read as follows:

a(u, u) =

N∑

i=1

a(ũI
i, ũ

I
i)

︸ ︷︷ ︸
=a(ũI,ũI)

+

M∑

i,j=1

a(ũE
i , ũ

E
j )

︸ ︷︷ ︸
=a(ũE,ũE)

+2a(ũE, uH) + a(uH , uH),(3.2)

â(u, u) =

N∑

i=1

a(ũI
i, ũ

I
i) +

M∑

i=1

a(ũE
i , ũ

E
i ) + a(uH , uH)(3.3)

with ũI =
N∑
i=1

ũI
i, ũ

I
i ∈ Vi and ũE =

M∑
i=1

ũE
i , ũ

E
i ∈ H(V E

i ).

3.2. Upper bound

Theorem 3.1. For all u ∈ V we have

a(u, u) 6 10â(u, u),

i.e., λmax := 10.
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P r o o f. Let us take an arbitrary u ∈ V and its unique splitting u = uI ⊕a

(ũE + uH). For each skeleton edge Ei we define its edge-neighbourhood

Ni := {j ∈ {1, . . . ,M} : i 6= j and ∃k ∈ {1, . . . , N} : Ei, Ej ⊂ ∂Ωk}.

Since |Ni| 6 4, as each skeleton edge Ei is associated with at most four other edges

via two subdomains, and j ∈ Ni ⇔ i ∈ Nj, using 2a(v, w) 6 a(v, v) + a(w,w),

a(ũE, ũE) =

M∑

i=1

M∑

j=1

a(ũE
i , ũ

E
j ) =

M∑

i=1

{
a(ũE

i , ũ
E
i ) +

∑

j∈Ni

a(ũE
i , ũ

E
j )

}

6

M∑

i=1

{
a(ũE

i , ũ
E
i ) +

∑

j∈Ni

1

2
[a(ũE

i , ũ
E
i ) + a(ũE

j , ũ
E
j )]

}

6

(
1 +

4

2

) M∑

i=1

a(ũE
i , ũ

E
i ) +

4

2

M∑

j=1

a(ũE
j , ũ

E
j ) = 5

M∑

i=1

a(ũE
i , ũ

E
i ).

Using the latter estimate, the mixed term is estimated as follows:

a(ũE, uH) 6
1

2
[a(ũE, ũE) + a(uH , uH)] 6

5

2

M∑

i=1

a(ũE
i , ũ

E
i ) +

1

2
a(uH , uH).

Combining the estimates completes the proof with λmax := 10,

a(u, u) 6 a(ũI, ũI) + 10

M∑

i=1

a(ũE
i , ũ

E
i ) + 2a(uH , uH) 6 10â(u, u).

�

3.3. Shape-regular quasi-uniform triangulations

Assumption 3.1. Let us assume that the fine triangulation is from a family

of shape-regular discretizations by which we mean that there exists αmin ∈ (0, π/3〉
independent of h such that every angle in the FE-triangulation, thus also in the

domain decomposition, is bounded by αmin from below. Shape-regularity guarantees

the angles to be bounded from above by αmax := π − 2αmin. From the law of sines

we have a uniform upper bound on the ratio between the largest and shortest edge

of a triangle Ti or a subdomain Ωi, i.e.,

(3.4)
hi
max

hi
min

,
Hi

max

Hi
min

∈
〈
1,

1

sinαmin

〉
.

For the sake of simplicity we assume that to each xV
k being a corner of Ωi there is

exactly one adjacent triangle T such that T ⊂ Ωi.

273



Assumption 3.2. Let us further assume that both the fine and coarse triangula-

tions are from families of quasi-uniform discretizations by which we mean that there

exists a common constant CA2 ∈ (0, 1〉 independent of h and H such that for every

triangle Ti and every subdomain Ωi the diameters h
i
max and Hi

max, respectively, are

bounded by

(3.5) hi
max > CA2h, Hi

max > CA2H.

For the sake of simplicity we assume that H > 2h.

We will need a discrete Sobolev inequality for the FE-functions.

Lemma 3.1. Given a linear function v on a triangle with vertices A,B,C and an

angle α at A, we have

‖∇v‖2 6
2[(v(B) − v(A))2 + (v(C)− v(A))2]

min{‖B −A‖2, ‖C −A‖2} sin2 α .

P r o o f. We introduce the coordinate system such that A is at the origin and

the line segment AB is the x1-axis; then

∂v

∂x1
=

v(B) − v(A)

‖B −A‖ , cosα
∂v

∂x1
+ sinα

∂v

∂x2
=

v(C) − v(A)

‖C −A‖ =:
dv

ds
.

The assertion follows from the following manipulations:

‖∇v‖2 =
( ∂v

∂x1

)2
+

1

sin2 α

(dv
ds

− cosα
∂v

∂x1

)2

6
1

sin2 α

[
sin2 α

( ∂v

∂x1

)2
+ 2

(dv
ds

)2
+ 2 cos2 α

( ∂v

∂x1

)2]

6
2

sin2 α

[( ∂v

∂x1

)2
+
(dv
ds

)2]
.

�

Corollary 3.1. Under Assumptions 3.1 and 3.2 there exists CC1 > 0 such that

(3.6) ∀ i ∈ {1, . . . , N} ∀u ∈ V : h‖∇u‖L∞(Ωi) 6 CC1‖u‖L∞(Ωi).

P r o o f. For x ∈ Tj ⊂ Ωi with vertices A, B, C, Assumption 3.1 and Lemma 3.1

yield

‖∇u(x)‖ 6

√
2

hj
min sinαmin

√
4u(A)2 + 2u(B)2 + 2u(C)2 6

4‖u‖L∞(Ωi)

hj
min sinαmin

.
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The assertion follows from (3.4) and (3.5):

‖∇u(x)‖ 6
4‖u‖L∞(Ωi)

hj
max sin

2 αmin

6
1

h

4

CA2 sin
2 αmin︸ ︷︷ ︸

=:CC1

‖u‖L∞(Ωi).

�

3.4. Stability of the coarse space. The next lemma is crucial for the stability

of the coarse space in the energy norm. We are inspired by the proof of Bramble,

Pasciak, and Schatz in [1], L.3.3.

Lemma 3.2. Under Assumptions 3.1 and 3.2 there exists CL2 > 0 such that for

all i ∈ {1, . . . , N}

∀u ∈ V : ‖u‖2L∞(Ωi)
6 CL2

(
1 + ln

H

h

)( 1

H2
‖u‖2L2(Ωi)

+ |u|2H1(Ωi)

)
.

P r o o f. Without loss of generality, assume that ‖u‖L∞(Ωi) = |u(0)|. We shall
find an open cone Λ0,KH,γ ⊂ Ωi with the vertex at the origin 0, the radius KH

and the angle γ := αmin with K independent of H . For the construction of Λ0,KH,γ

we refer to Figure 2 and the following description. Denote by da, db, and dc the

distances of the origin to the prolongations of the sides of Ωi with lengths a, b, and c,

respectively, and assume that da is the largest distance. We choose K̃H := da. We

take the open cone ΛA,K̃H,α ⊂ Ωi at the vertex A of Ωi that is opposite to the side a,

where α denotes the angle at A. By moving ΛA,K̃H,α to the origin, we get the cone

Λ0,K̃H,α ⊂ Ωi. It remains to find K > 0 independent of H such that K 6 K̃. The

area |Ωi| can be estimated as

|Ωi| =
ada + bdb + cdc

2
6

a+ b+ c

2
K̃H.

By (3.5) and (3.4) we have an H-independent estimate for the constant K̃:

K̃ > 2
1
2H

i
maxH

i
min sinαmin

3Hi
maxH

>
CA2

3

Hi
min sinαmin

Hi
max

>
CA2

3
sin2 αmin =: K.

The construction of Λ0,KH,γ is completed by shortening the radius and diminishing

the angle of Λ0,K̃H,α.
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Ωi

A

B
C

0

a

b

c da

db

dc
α

γ Λ
A,K̃H,α

Λ
0,K̃H,α

Λ0,KH,γ

y1 y2

Figure 2. Construction of Λ0,KH,γ .

We consider the coordinate system according to a side of Λ0,KH,γ . For y(̺, ϑ) =

̺(cosϑ, sinϑ) ∈ Λ0,KH,γ the fundamental theorem of calculus gives

u(0) = u(y(̺, ϑ))−
∫ ̺

0

∇u(y(t, ϑ))(cosϑ, sinϑ)︸ ︷︷ ︸
=:u′

t(t,ϑ)

dt.

Integrating ϑ from 0 to γ and applying the triangle inequality, we get

(3.7) γ|u(0)| 6
∣∣∣∣
∫ γ

0

u(y(̺, ϑ)) dϑ

∣∣∣∣+
∣∣∣∣
∫ γ

0

∫ ̺

0

u′
t(t, ϑ) dt dϑ

∣∣∣∣.

Choose, independently of h and H , δ := min{(
√
2 − 1)/(

√
2CC1),K}, where CC1 is

the constant in (3.6). We shall consider two cases. First, if δh < ̺, the Cauchy-

Schwarz and triangle inequalities yield

(3.8) γ|u(0)| 6 √
γ

√∫ γ

0

u2(y(̺, ϑ)) dϑ+

∣∣∣∣
∫ γ

0

∫ δh

0

u′
t(t, ϑ) dt dϑ

∣∣∣∣

+

∣∣∣∣
∫ γ

0

∫ ̺

δh

u′
t(t, ϑ) dt dϑ

∣∣∣∣.

The second and third terms in (3.8) can be estimated as follows:

∣∣∣∣
∫ γ

0

∫ δh

0

u′
t(t, ϑ) dt dϑ

∣∣∣∣ 6 γδh‖∇u‖L∞(Ωi) 6 γδCC1|u(0)|,
∣∣∣∣
∫ γ

0

∫ ̺

δh

u′
t(t, ϑ) dt dϑ

∣∣∣∣ =
∣∣∣∣
∫

Λ0,̺,γ\Λ0,δh,γ

∇u(y)
y

‖y‖2 dy
∣∣∣∣

6 ‖∇u‖L2(Ωi)
√
γ

√
ln

̺

δh
.

Using the estimates, moving the second term from the right-hand side of (3.8) to the

left, squaring the inequality and dividing by γ2, we have

(3.9)
1

2
|u(0)|2 6 (1− δCC1)

2|u(0)|2 6
2

γ

{∫ γ

0

u2(y(̺, ϑ)) dϑ+ ln
̺

δh
‖∇u‖2L2(Ωi)

}
.
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In the second case, δh > ̺, we estimate the first term on the right-hand side of (3.7)

by the Cauchy-Schwarz inequality and the second term by γδCC1|u(0)|, which leads
to

(3.10)
1

2
|u(0)|2 6 (1− δCC1)

2|u(0)|2 6
2

γ

∫ γ

0

u2(y(̺, ϑ)) dϑ.

Multiplying (3.9) and (3.10) by 2̺, integrating ̺ from δh to KH and from 0 to δh,

respectively, and summing up the resulting inequalities yields

(KH)2

2
|u(0)|2 6

4

γ

{∫ KH

0

∫ γ

0

̺u2(y(̺, ϑ)) dϑ d̺

+ ‖∇u‖2L2(Ωi)

∫ KH

δh

̺ ln
̺

δh
d̺

}
.

By estimating the second term on the right-hand side we complete the proof

|u(0)|2 6
4

γ

{ 2

(KH)2
‖u‖2L2(Ωi)

+
(
ln

K

δ
+ ln

H

h

)
|u|2H1(Ωi)

}

6
4

γ
max

{
1,

2

K2
, ln

K

δ

}

︸ ︷︷ ︸
=:CL2

(
1 + ln

H

h

){ 1

H2
‖u‖2L2(Ωi)

+ |u|2H1(Ωi)

}
.

�

Corollary 3.2. Under Assumptions 3.1 and 3.2 there exists CC2 > 0 such that

for all i ∈ {1, . . . , N}

∀u ∈ V : ‖u− ui‖2L∞(Ωi)
6 CC2

(
1 + ln

H

h

)
|u|2H1(Ωi)

,

where ui := |Ωi|−1
∫
Ωi

u(x) dx with |Ωi| being the area of Ωi.

P r o o f. Combining the previous lemma and the Poincaré inequality [8], we

obtain

‖u− ui‖2L2(Ωi)
6 CPH

2|u|2H1(Ωi)
,

where CP := 1/π
2, and the assertion follows with CC2 := CL2(1 + CP). �

The next lemma gives stability of the coarse space. It can be found in [9], L.4.12.
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Lemma 3.3. Under Assumptions 3.1 and 3.2 there exists CL3 > 0 such that for

all i ∈ {1, . . . , N}

∀u ∈ V : |IH(u)|2H1(Ωi)
6 CL3

(
1 + ln

H

h

)
|u|2H1(Ωi)

,

as a consequence of which

∀u ∈ V : a(uH , uH) 6 CL3

(
1 + ln

H

h

)
a(u, u).

P r o o f. Denote by P1, P2, and P3 the vertices of a subdomain Ωi. We have

(3.11) |IH(u)|2H1(Ωi)
= |IH(u)− ui|2H1(Ωi)

=

∣∣∣∣
3∑

j=1

(u(Pj)− ui)ϕ
H
j

∣∣∣∣
2

H1(Ωi)

.

For j ∈ {1, 2, 3} and the remaining indices k and l we employ Lemma 3.1 with

A := Pk, α := αk the angle at Pk, B := Pj , and C := Pl. Using (3.4) we conclude

|ϕH
j |2H1(Ωi)

= ‖∇ϕH
j ‖2|Ωi| 6

2 · 1
2‖Pj − Pk‖‖Pl − Pk‖ sinαk

min{‖Pj − Pk‖2, ‖Pl − Pk‖2} sin2 αk

6
Hi

max

Hi
min sinαk

6
1

sin2 αmin

=: c̃,

where |Ωi| denotes the area of Ωi. By (3.11) and Corollary 3.2 we have

|IH(u)|2H1(Ωi)
6 3

3∑

j=1

|u(Pj)− ui|2|ϕH
j |2H1(Ωi)

6 9c̃CC2

(
1 + ln

H

h

)
|u|2H1(Ωi)

,

which completes the proof with CL3 := 9c̃CC2. �

3.5. Stability of the edge space. To find λmin it remains to estimate the edge-

term in (3.3) by (3.2) from above. Being inspired by [9], L.4.23 we introduce a system

of edge-based functions (θi(x))
M
i=1 ⊂ C(Ω̃), where Ω̃ := Ω\{xV

j : j = 1, . . . , nV}. For
the construction we refer to Figure 3 and the following paragraph.

We decompose each subdomain Ωj , j ∈ {1, 2, . . . , N}, with all three edges being
parts of the skeleton, i.e., Ej1 , Ej2 , Ej3 ⊂ Γ, into six triangles ωk. Without loss of

generality we take x ∈ ω1 \ {P1} and introduce local coordinates x = (x1, x2). We

denote the angle at P1 by α1 and define the related edge functions θj1 , θj2 , and θj3
in ω1 by

(3.12) θj1(x) := 1− 2

3 tan(12α1)

x1

x2
, θj2(x) = θj3(x) :=

1

3 tan(12α1)

x1

x2
.
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The edge functions are analogously defined in ω2, . . . , ω6. For a subdomain Ωj with

only one or two edges assigned to the skeleton the construction of the related edge

functions is similar. Note that the system completed by edge-functions assigned to

∂Ω forms a partition of unity on Ω̃.

Ej1

Ej2

Ej3

ω1

ω2
ω3

ω4

ω5

ω6

x

x1

x2

P1

P2

P3

α1
α1/2

α2

α2/2

α3

α3/2

Figure 3. Decomposition of Ωj used for the construction of θj1 , θj2 , and θj3 .

Lemma 3.4. Under Assumption 3.1 there exists CL4 > 0 such that for all i ∈
{1, . . . ,M}

‖∇θi(x)‖ 6 CL4/r
H(x) almost everywhere in Ω̃,

where, for x ∈ Ωj with the vertices P1, P2, and P3, r
H(x) := min

k=1,2,3
‖x− Pk‖.

P r o o f. The assertion follows from the construction above. For x ∈ ω1 we have

‖∇θj1(x)‖ =
2

3 tan(12α1)

√
(x1)2 + (x2)2

(x2)2

6
2

3 tan(12αmin) cos2(
1
2αmax)︸ ︷︷ ︸

=:CL4

1√
(x1)2 + (x2)2︸ ︷︷ ︸
61/rH(x)

by Assumption 3.1. The estimate holds true for ‖∇θj2(x)‖ and ‖∇θj3(x)‖. The other
cases, x ∈ ωk, are analogous. �

Similarly to replacing the FE-projection by interpolation when estimating the

FE-approximation error, we will estimate the energy of the FE-interpolation of
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θi(u − uH), rather than the energy of ũE
i . We need the so-called edge lemma, the

proof of which is sketched in [3].

Lemma 3.5. Under Assumptions 3.1 and 3.2 there exists CL5 > 0 such that for

all edges Ei, i ∈ {1, . . . ,M} and both the adjacent domains Ωj , Ei ⊂ ∂Ωj , we have

(3.13) ∀u ∈ V : |Ih(θiw)|2H1(Ωj)
6 CL5

{(
1 + ln

H

h

)
‖w‖2L∞(Ωj)

+ |w|2H1(Ωj)

}
,

where w := u − uH and Ih : C0(Ω) → V is the FE-interpolation operator, i.e.,

Ih(v)(x) :=
n∑

i=1

v(xi)ϕi(x), where xi is the node related to ϕi.

P r o o f. Let us take an edge Ei and an adjacent domain Ωj. By Assumption 3.1

with each coarse vertex Pk, k = 1, 2, 3, of Ωj an exactly one fine triangle T with

vertices A = Pk, B, and C is associated. In the case that none of B and C lies on

Ei, I
h(θiw) vanishes on T . We are left to analyze the other two triangles, for both of

which we can consider C ∈ Ei. The contribution of such a triangle to |Ih(θiw)|2H1(Ωj)

is, due to (3.4), as follows:

(3.14) |Ih(θiw)|2H1(T ) =
w2(C)

‖C −A‖2 sin2 α
‖B −A‖‖C −A‖ sinα

2

6
hT
max

2hT
min sinαmin

w2(C) 6
1

2 sin2 αmin︸ ︷︷ ︸
=:k̃1

‖w‖2L∞(Ωj)
.

In case of a triangle T ⊂ Ωj such that none of its vertices A, B, and C is a vertex

of Ωj, Lemma 3.1 yields

‖∇Ih(θiw)‖2 6
2{[(θiw)(B) − (θiw)(A)]

2 + [(θiw)(C) − (θiw)(A)]
2}

min{‖B −A‖2, ‖C −A‖2} sin2 α ,

where α denotes the angle at A. Since θiw is piecewise differentiable along the line

segments AB and AC, we can adopt the Lagrange mean value theorem. The latter

combined with (3.4), the construction (3.12), and Lemma 3.4 yield

‖∇Ih(θiw)‖2 6
2‖∇(θiw)‖2L∞(T )

sin2 α

‖B −A‖2 + ‖C −A‖2
min{‖B −A‖2, ‖C −A‖2}︸ ︷︷ ︸

61+(hT
max/h

T
min)

2

6
4
(
1 + 1/ sin2 αmin

)

sin2 αmin︸ ︷︷ ︸
=:k̃2

{‖∇θi‖2L∞(T )‖w‖2L∞(T ) + ‖θi‖2L∞(T )‖∇w‖2L∞(T )}

6 k̃2{(CL4/r
H,h(x))2‖w‖2L∞(T ) + ‖∇w‖2L∞(T )},
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where ‖∇f‖L∞(T ) := ess sup
x∈T

‖∇f(x)‖ and rH,h(x) := dist(T (x), {P1, P2, P3}), where
T (x) is the open triangle containing x, which is a well-defined function up to the in-

terfaces between fine triangles. Denote by Ω̃j the union of such non-corner triangles.

They contribute to |Ih(θiw)|2H1(Ωj)
as follows:

(3.15) |Ih(θiw)|2H1(Ω̃j)
6 k̃2

{
‖w‖2L∞(Ωj)

(CL4)
2

∫

Ω̃j

(1/rH,h(x))2 dx+ |w|2
H1(Ω̃j)

}
.

It remains to estimate the integral. We have

(3.16)

∫

Ω̃j

1

(rH,h(x))2
dx 6

3∑

k=1

∫

Ω̃j

1

inf
y∈T (x)

‖y − Pk‖2
dx.

Let us introduce three systems of local polar coordinates each of which has its origin

at a coarse vertex Pk, its x1-axis coincides with an edge of Ωj , and Ωj lies in the

upper half-space. We denote by vTmin the smallest height of a triangle T . The law of

sines, Assumptions 3.1 and 3.2 yield

vTmin > hT
min sinαmin > hT

max sin
2 αmin > CA2h sin

2 αmin.

Thus, by choosing c := CA2 sin
2 αmin the domain

Λ := {x = (x1, x2) = ̺(cosα, sinα) ∈ R
2 : ch 6 ̺ 6 H and 0 6 α 6 αmax}

covers Ω̃j with respect to each of the coordinate systems. Let us denote the respective

counterparts of Λ associated with P1, P2, and P3 by Λ1, Λ2, and Λ3. Let us adopt

the k-th local polar coordinates x(̺, α) and note that

inf
y∈T (x(̺,α))

‖y − Pk‖ > max{ch, ̺− h}.

We have the estimate

∫

Ω̃j

1

inf
y∈T (x)

‖y − Pk‖2
dx 6

∫ αmax

0

∫ H

ch

̺

(max{ch, (̺− h)})2 d̺ dα

= αmax

(2c+ 1

2c2
+ ln

H − h

ch
+

h

ch
− h

H − h

)
6 αmax

( 4c+ 1

2c2︸ ︷︷ ︸
=:c̃

+ ln
H

ch

)
,

where we used H > 2h from Assumption 3.2. Using the latter and (3.16), (3.15) is

estimated by

|Ih(θiw)|2H1(Ω̃j)
6 k̃2

{
‖w‖2L∞(Ωj)

(CL4)
23αmax

[
c̃+ ln

H

ch

]
+ |w|2

H1(Ω̃j)

}
.
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After adding the two contributions (3.14), the assertion follows with

CL5 := max{3k̃2(CL4)
2αmax(c̃− ln c) + 2k̃1, 3k̃2(CL4)

2αmax, k̃2}.

�

Now we can analyze the stability of the edge space. The following lemma is proved

in [9].

Lemma 3.6. Under Assumptions 3.1 and 3.2 there exists CL6 > 0 such that

∀u ∈ V :
M∑

i=1

a(ũE
i , ũ

E
i ) 6 CL6

(
1 + ln

H

h

)2
a(u, u).

P r o o f. Denote by Ωi1 and Ωi2 the domains adjacent to Ei and by {Eji}
Mj

i=1,

Mj 6 3, the edges adjacent to Ωj . Recall that w := u − IH(u) and ũE
i := H(wE

i ),

where wE
i := w on Ei and wE

i := 0 elsewhere on Γ ∪ ∂Ω. The discrete harmonicity

of ũE
i and Lemma 3.5 yield

M∑

i=1

a(ũE
i , ũ

E
i ) =

M∑

i=1

2∑

j=1

̺ij |ũE
i |2H1(Ωij

) 6

M∑

i=1

2∑

j=1

̺ij |Ih(θiw)|2H1(Ωij
)

=

N∑

j=1

̺j

Mj∑

i=1

|Ih(θjiw)|2H1(Ωj)

6

N∑

j=1

̺j3CL5

{(
1 + ln

H

h

)
‖w‖2L∞(Ωj)

+ |w|2H1(Ωj)

}
.

Now (α+ β)2 6 2(α2 + β2) and Corollary 3.2 give

‖w‖2L∞(Ωj)
= ‖(u− uj)− (IH(u)− uj)‖2L∞(Ωj)

6 2(‖u− uj‖2L∞(Ωj)
+ ‖IH(u)− uj‖2L∞(Ωj)︸ ︷︷ ︸

6‖u−uj‖2
L∞(Ωj )

) 6 4CC2

(
1 + ln

H

h

)
|u|2H1(Ωj)

.

Similarly, Lemma 3.3 gives

|w|2H1(Ωj)
= |u− IH(u)|2H1(Ωj)

6 2(|u|2H1(Ωj)
+ |IH(u)|2H1(Ωj)

)

6 2(1 + CL3)
(
1 + ln

H

h

)
|u|2H1(Ωj)

.

Combining the estimates yields CL6 := 3CL5[4CC2 + 2(1 + CL3)]. �
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3.6. Lower bound

Theorem 3.2. Under Assumptions 3.1 and 3.2 there exists C > 0 such that

∀u ∈ V : â(u, u) 6 C
(
1 + ln

H

h

)2

︸ ︷︷ ︸
=1/λmin(H,h)

a(u, u).

P r o o f. Comparing (3.2) and (3.3), the assertion is a consequence of Lemma 3.3

and 3.6 with C := 1 + CL3 + CL6. �

We conclude with an estimate of the condition number:

κ(Â−1
A) 6 10C

(
1 + ln

H

h

)2

with C > 0 independent of H , h, and (̺i)
N
i=1 in a family of shape-regular quasi-

uniform triangulations.
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