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Abstract. In this paper, a high-order iterative scheme is established for a nonlinear Love
equation associated with homogeneous Dirichlet boundary conditions. This is a develop-
ment based on recent results (L.T. P. Ngoc, N.T. Long (2011); L.X.Truong, L.T. P.Ngoc,
N.T. Long (2009)) to get a convergent sequence at a rate of order N > 2 to a local unique
weak solution of the above mentioned equation.
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1. Introduction

In this paper, we consider the following Dirichlet problem for a nonlinear Love

equation

utt − uxx − uxxtt = f(x, t, u), 0 < x < 1, 0 < t < T,(1.1)

u(0, t) = u(1, t) = 0,(1.2)

u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),(1.3)

where ũ0, ũ1, f are given functions.

When f = 0, (1.1) is related to the Love equation

(1.4) utt −
E

̺
uxx − 2µ2k2uxxtt = 0,
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presented by V.Radochová in 1978 (see [17]). This equation describes the vertical

oscillations of a rod, which was established from Euler’s variational equation of an

energy functional

(1.5)

∫ T

0

dt

∫ L

0

[1

2
F̺(u2

t + µ2k2u2
tx)−

1

2
F (Eu2

x + ̺µ2k2uxuxtt)
]

dx.

The parameters in (1.5) have the following meaning: u is the displacement, L is

the length of the rod, F is the area of cross-section, k is the cross-section radius, E is

the Young modulus of the material, and ̺ is the mass density. By using the Fourier

method, Radochová [17] obtained a classical solution of equation (1.4) associated

with the initial condition (1.3) and boundary conditions

u(0, t) = u(L, t) = 0,

or

(1.6)

{

u(0, t) = 0,

εuxtt(L, t) + c2ux(L, t) = 0,

where c2 = E/̺, ε = 2µ2k2.

Equations of Love waves or Love-type waves have been studied by many authors,

we refer to [3], [6], [11], [10], [16], and references therein.

In [10], by combining the linearization method for the nonlinear term, the Faedo-

Galerkin method and the weak compactness method, the existence of a unique weak

solution of a Dirichlet problem for the nonlinear Love equation utt − uxx − uxxtt =

f(x, t, u, ux, ut, uxt) is proved. We note, however, the recurrent sequence obtained

here converges only at a rate of order 1.

It is well known that Newton’s method and its variants are used to solve nonlinear

operator equations or systems of nonlinear equations, see [15] and references therein.

In case lim
n→∞

un = u, one speaks of convergence of order N if |un+1−u| 6 C|un−u|N
for some C > 0 and all largeN. In the special cases N = 1 with C < 1 and N = 2 one

also speaks of linear and quadratic convergence, respectively, see [5]. Based on the

ideas about recurrence relations of these methods, a high-order iterative scheme can

be constructed for solving the nonlinear operator equation, see [13], [12], [19], [20].

In [18], a symmetric version of the regularized long wave equation (SRLWE)

(1.7)

{

uxxt − ut = ̺x + uux,

̺t + ux = 0,
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has been proposed as a model for propagation of weakly nonlinear ion acoustic and

space-charge waves. Obviously, eliminating ̺ from (1.7), we get

(1.8) utt − uxx − uxxtt = −uuxt − uxut.

The SRLWE (1.8) is explicitly symmetric in the x and t derivatives and it is very

similar to the regularized long wave equation which describes shallow water waves

and plasma drift waves [1], [2]. The SRLWE also arises in many other areas of

mathematical physics [4], [9], [14]. Note that (1.8) is a special form of the equation

discussed in [10].

Motivated by results for Love equations in [11], [10], and based on the use of

a high-order iterative scheme in [13], [12], [19], [20], in this note, we will establish

a similar scheme to get the convergence of order N for problem (1.1)–(1.3). To

achieve this purpose, we define a recurrent sequence {um} associated with equation
(1.1) as follows:

∂2um

∂t2
−∂2um

∂x2
− ∂4um

∂t2∂x2
=

N−1
∑

i=0

1

i!

∂if

∂ui
(x, t, um−1)(um−um−1)

i, 0 < x < 1, 0 < t < T,

with um satisfying (1.2), (1.3) and u0 ≡ 0. If f ∈ CN ([0, 1] × R+ × R), we prove

that the sequence {um} converges at a rate of order N to a weak unique solution of
problem (1.1)–(1.3).

Note that, if equation (1.1) does not contain the term uxxtt, a solution u of

problem (1.1)–(1.3) can be found in the space S1 = {u ∈ L∞(0, T ;H1
0 ∩ H2) :

ut ∈ L∞(0, T ;H1
0 ), utt ∈ L∞(0, T ;L2)}, whereas adding the term uxxtt yields

u ∈ S = {u ∈ L∞(0, T ;H1
0 ∩H2) : ut, utt ∈ L∞(0, T ;H1

0 ∩H2)}. Since S ⊂ S1, it

means that the regularity of solutions improves.

2. A high-order iterative scheme

First, we put Ω = (0, 1) and denote the usual function spaces used in this paper

by Lp = Lp(Ω), Hm = Hm(Ω). Let 〈·, ·〉 be either the scalar product in L2 or the

dual pairing of a continuous linear functional and an element of a function space.

The notation ‖·‖ stands for the norm in L2 and we denote by ‖·‖X the norm in the
Banach space X . We call X ′ the dual space of X .

Let u(t), u′(t) = ut(t) = u̇(t), u′′(t) = utt(t) = ü(t), ux(t) = ∇u(t), uxx(t) =

∆u(t), denote u(x, t), (∂u/∂t)(x, t), (∂2u/∂t2)(x, t), (∂u/∂x)(x, t), (∂2u/∂x2)(x, t),

respectively.
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Next, we will define the following norms on appropriate spaces. This functional

setting allows us to make precise the concept of a weak solution of problem (1.1)–

(1.3) used in this note. We will use the norm ‖v‖H1 = (‖v‖2+‖vx‖2)1/2 on H1. It is

known that the imbedding H1 →֒ C0([0, 1]) is compact and ‖v‖C0([0,1]) 6
√
2‖v‖H1 ,

for all v ∈ H1. Furthermore, on H1
0 = {u ∈ H1 : u(0) = u(1) = 0}, the two

norms v 7→ ‖v‖H1 and v 7→ ‖vx‖ are equivalent and ‖v‖C0([0,1]) 6 ‖vx‖ for all
v ∈ H1

0 . Finally, on H1
0 ∩ H2 = {v ∈ H2 : v(0) = v(1) = 0}, we will use the norm

‖v‖H1

0
∩H2 =

√

‖vx‖2 + ‖vxx‖2.

Definition. We say that u is a weak solution of problem (1.1)–(1.3) if

u ∈ L∞(0, T ;H1
0 ∩H2), u̇, ü ∈ L∞(0, T ;H1

0 ∩H2),

and u satisfies the following variational equation:

〈ü(t), w〉 + 〈ux(t) + üx(t), wx〉 = 〈f(x, t, u), w〉

for all w ∈ H1
0 and a.e. t ∈ (0, T ), together with the initial conditions

u(0) = ũ0, u̇(0) = ũ1.

Now, we make the following assumptions:

(A1) ũ0, ũ1 ∈ H1
0 ∩H2,

(A2) f ∈ C1([0, 1]× R+ × R) such that

(i) ∂if/∂ui ∈ C1([0, 1]× R+ × R), 0 6 i 6 N − 1,

(ii) ∂Nf/∂uN ∈ C0([0, 1]× R+ × R),

(iii) f(0, t, 0) = f(1, t, 0) = 0 for all t > 0.

Fix T ∗ > 0. For each M > 0 given, we set the constants K0(M, f), K1(M, f),

KM (f) as follows:































K0(M, f) = sup{|f(x, t, u)| : 0 6 x 6 1, 0 6 t 6 T ∗, |u| 6 M},

K1(M, f) = K0(M, f) +K0

(

M,
∂f

∂x

)

+K0

(

M,
∂f

∂t

)

+K0

(

M,
∂f

∂u

)

,

KM (f) =
N−1
∑

i=0

K1

(

M,
∂if

∂ui

)

+K0

(

M,
∂Nf

∂uN

)

.

For every T ∈ (0, T ∗] and M > 0, we put























W (M,T ) = {v ∈ L∞(0, T ;H1
0 ∩H2) : vt ∈ L∞(0, T ;H1

0 ∩H2),

vtt ∈ L∞(0, T ;H1
0), with ‖v‖L∞(0,T ;H1

0
∩H2),

‖vt‖L∞(0,T ;H1

0
∩H2), ‖vtt‖L∞(0,T ;H1

0
) 6 M},

W1(M,T ) = {v ∈ W (M,T ) : vtt ∈ L∞(0, T ;H1
0 ∩H2)}.
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In the following, we will establish the recurrent sequence {um} via a high-order
iterative scheme.

Theorem 2.1. Suppose that the assumptions (A1), (A2) are fulfilled. Then there

exist positive constants M,T and a sequence {um} ⊂ W1(M,T ) defined as follows:

(i) the first term is u0 = 0;

(ii) with each given term

(2.1) um−1 ∈ W1(M,T ),

there exists um ∈ W1(M,T ) (m > 1) satisfying

(2.2)

{

〈üm(t), w〉 + 〈umx(t) + ümx(t), wx〉 = 〈Fm(t), w〉 ∀w ∈ H1
0 ,

um(0) = ũ0, u̇m(0) = ũ1,

in which

(2.3) Fm(x, t) =

N−1
∑

i=0

1

i!

∂if

∂ui
(x, t, um−1)(um − um−1)

i.

P r o o f. Approximating solutions. To prove this theorem, we use the Faedo-

Galerkin method.

Consider a special orthonormal basis {wj} on H1
0 : wj(x) =

√
2 sin(jπx), j =

1, 2, . . ., formed by the eigenfunctions of the Laplacian −∆ = −∂2/∂x2. It is clear

that wj satisfies

−∆wj = λjwj , wj ∈ H1
0 ∩H2, λj = (jπ)2, j = 1, 2, . . .

If

u(k)
m (t) =

k
∑

j=1

c
(k)
mj(t)wj

is a solution of the system

(2.4)

{

〈ü(k)
m (t), wj〉+ 〈u(k)

mx(t) + ü
(k)
mx(t), wjx〉 = 〈F (k)

m (t), wj〉, j = 1, 2, . . . , k,

u
(k)
m (0) = ũ0k, u̇

(k)
m (0) = ũ1k,

with

(2.5)



























ũ0k =

k
∑

j=1

α
(k)
j wj −→ ũ0 strongly in H1

0 ∩H2,

ũ1k =

k
∑

j=1

β
(k)
j wj −→ ũ1 strongly in H1

0 ∩H2,
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and

(2.6)



















































F (k)
m (x, t) =

N−1
∑

i=0

1

i!

∂if

∂ui
(x, t, um−1)(u

(k)
m − um−1)

i

=

N−1
∑

j=0

Ψj(x, t, um−1)(u
(k)
m )j ,

Ψj(x, t, um−1) =

N−1
∑

i=j

(−1)i−j

j!(i − j)!

∂if

∂ui
(x, t, um−1)u

i−j
m−1,

then c
(k)
mj satisfies the following system of nonlinear ordinary differential equations:

(2.7)

{

c̈
(k)
mj(t) + µ2

jc
(k)
mj(t) = f

(k)
mj (t),

c
(k)
mj(0) = α

(k)
j , ċ

(k)
mj(0) = β

(k)
j , 1 6 j 6 k,

where

f
(k)
mj (t) =

1

1 + λj
〈F (k)

m (t), wj〉, µ2
j =

λj

1 + λj
, λj = (jπ)2, 1 6 j 6 k.

Using Banach’s contraction principle, it is not difficult to show that (2.7) has

a unique solution c
(k)
mj(t) in [0, T

(k)
m ], with certain T

(k)
m ∈ (0, T ] (see [12]). Therefore,

(2.4) has a unique solution u
(k)
m (t) in [0, T

(k)
m ].

The following estimates allow one to take T
(k)
m = T independent of m and k.

By such a priori estimates of u
(k)
m (t), it can be extended outside [0, T

(k)
m ] and then,

a solution defined in [0, T ] will be obtained.

Estimates. Multiply (2.4)1 by ċ
(k)
mj(t) and sum over j. After that, integrating with

respect to the time variable from 0 to t, we have

(2.8) p(k)m (t) ≡ ‖u̇(k)
m (t)‖2 + ‖u(k)

mx(t)‖2 + ‖u̇(k)
mx(t)‖2

= p(k)m (0) + 2

∫ t

0

〈F (k)
m (s), u̇(k)

m (s)〉ds.

Replacing wj in (2.4)1 by −wjxx/λj , and integrating by parts, we obtain

〈ü(k)
mx(t), wjx〉+ 〈u(k)

mxx(t) + ü(k)
mxx(t), wjxx〉 = 〈F (k)

mx(t), wjx〉, 1 6 j 6 k,

therefore, in the same way as (2.8),

(2.9) q(k)m (t) ≡ ‖u̇(k)
mx(t)‖2 + ‖u(k)

mxx(t)‖2 + ‖u̇(k)
mxx(t)‖2

= q(k)m (0) + 2

∫ t

0

〈F (k)
mx(s), u̇

(k)
mx(s)〉ds.
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Furthermore, because c
(k)
mj(t) is a solution of the system (2.7), both

...
c
(k)
mj(t) and

...
u
(k)
m (t) =

k
∑

j=1

...
c
(k)
mj(t)wj are defined. Hence, we can take the derivative with respect

to t of (2.4)1 and then

(2.10) 〈...u(k)
m (t), wj〉+ 〈u̇(k)

mx(t) +
...
u(k)
mx(t), wjx〉 = 〈Ḟ (k)

m (t), wj〉,

for all 1 6 j 6 m. Multiplying (2.10) by c̈mj(t), summing over j and integrating

from 0 to t implies

(2.11) r(k)m (t) = ‖ü(k)
m (t)‖2 + ‖u̇(k)

mx(t)‖2 + ‖ü(k)
mx(t)‖2

= r(k)m (0) + 2

∫ t

0

〈Ḟ (k)
m (s), ü(k)

m (s)〉ds.

Combining (2.8), (2.9), and (2.11) leads to

(2.12) S(k)
m (t) = p(k)m (t) + q(k)m (t) + r(k)m (t)

= S(k)
m (0) + 2

∫ t

0

〈F (k)
m (s), u̇(k)

m (s)〉ds

+ 2

∫ t

0

〈F (k)
mx(s), u̇

(k)
mx(s)〉ds+ 2

∫ t

0

〈Ḟ (k)
m (s), ü(k)

m (s)〉ds

≡ S(k)
m (0) +

3
∑

j=1

Ij .

Letting t → 0+ in (2.4)1 and multiplying the result obtained by c̈
(k)
mj(0), we get

‖ü(k)
m (0)‖2 + ‖ü(k)

mx(0)‖2 + 〈u(k)
mx(0), ü

(k)
mx(0)〉 = 〈F (k)

m (0), ü(k)
m (0)〉.

Consequently,

ξ(k)m = ‖ü(k)
m (0)‖2 + ‖ü(k)

mx(0)‖2

6 ‖u(k)
mx(0)‖‖ü(k)

mx(0)‖+ ‖F (k)
m (0)‖‖ü(k)

m (0)‖

6 ‖u(k)
mx(0)‖

√

ξ
(k)
m + ‖F (k)

m (0)‖
√

ξ
(k)
m

6
1

2
ξ(k)m +

1

2
(‖u(k)

mx(0)‖+ ‖F (k)
m (0)‖)2

=
1

2
ξ(k)m +

1

2

(

‖ũ0kx‖+
∥

∥

∥

∥

N−1
∑

i=0

1

i!

∂if

∂ui
(x, t, ũ0)(ũ0k − ũ0)

i

∥

∥

∥

∥

)2

=
1

2
ξ(k)m +

1

2

(

‖ũ0kx‖+
N−1
∑

i=0

(‖ũ0kx‖+ ‖ũ0x‖)i
i!

sup
06x61, 06t6T∗,

|z|6‖ũ0x‖

∣

∣

∣

∂if

∂ui
(x, t, z)

∣

∣

∣

)2

,
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which gives that for all m, k ∈ N,

(2.13) ξ(k)m 6

(

‖ũ0kx‖+
N−1
∑

i=0

(‖ũ0kx‖+ ‖ũ0x‖)i
i!

sup
06x61, 06t6T∗,

|z|6‖ũ0x‖

∣

∣

∣

∂if

∂ui
f(x, t, z)

∣

∣

∣

)2

.

By (2.5) and (2.13), we can deduce that there exists a constantM > 0, independent

of k and m, such that

(2.14) S(k)
m (0) = ‖ũ1k‖2 + ‖ũ0k‖2 + 3‖ũ1kx‖2 + ‖ũ0kxx‖2 + ‖ũ1kxx‖2 + ξ(k)m

6
M2

4
∀m, k ∈ N.

In order to continue the proof, we will state the following properties of F
(k)
m (t),

F
(k)
mx(t), Ḟ

(k)
m (t). Their proof is analogous to [12], Lemma 3.3.

(i) ‖F (k)
m (t)‖ 6 b̃M

[

1 +
(

√

S
(k)
m (t)

)N−1]

,(2.15)

(ii) ‖F (k)
mx(t)‖ 6 b̃M

[

1 +
(

√

S
(k)
m (t)

)N−1]

,

(iii) ‖Ḟ (k)
m (t)‖ 6 b̃M

[

1 +
(

√

S
(k)
m (t)

)N−1]

,

where b̃M = (M + N)KM (f)
N−1
∑

i=0

ãi and ã0 = 1 +
N−1
∑

i=1

2i−1M i/i!, ãi = 2i−1/i!,

i = 1, 2, . . . , N − 1.

Using (2.15)(i), we have

(2.16) I1 = 2

∫ t

0

〈F (k)
m (s), u̇(k)

m (s)〉ds 6 2

∫ t

0

‖F (k)
m (s)‖‖u̇(k)

m (s)‖ ds

6 2b̃M

∫ t

0

[

1 +
(

√

S
(k)
m (s)

)N−1]
√

S
(k)
m (s) ds 6 4b̃M

[

T +

∫ t

0

(S(k)
m (s))N ds

]

,

and, similarly,

I2 6 4b̃M

[

T +

∫ t

0

(S(k)
m (s))N ds

]

,(2.17)

I3 6 4b̃M

[

T +

∫ t

0

(S(k)
m (s))N ds

]

.(2.18)

Combining (2.12), (2.14), (2.16)–(2.18), it follows that

(2.19) S(k)
m (t) 6

M2

4
+ 12T b̃M + 12b̃M

∫ t

0

(S(k)
m (s))N ds, 0 6 t 6 T.
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Then, by solving a nonlinear Volterra integral equation (based on the methods in

[7]), it follows that there exists a constant T > 0 independent of k and m such that

(2.20) S(k)
m (t) 6 M2 ∀ t ∈ [0, T ], ∀ k,m ∈ N.

Therefore, we can take constant T
(k)
m = T for all m and k. Thus,

(2.21) u(k)
m ∈ W (M,T ) for all m and k.

Convergence. Thanks to (2.21), there exists a subsequence of {u(k)
m }, denoted by

the same symbol, such that

(2.22)























u
(k)
m → um in L∞(0, T ;H1

0 ∩H2) weakly*,

u̇
(k)
m → u̇m in L∞(0, T ;H1

0 ∩H2) weakly*,

ü
(k)
m → üm in L∞(0, T ;H1

0) weakly*,

um ∈ W (M,T ).

Applying the compactness lemma of Lions ([8], page 57) and the Riesz-Fischer

theorem, from (2.22), there exists a subsequence of {u(k)
m }, also denoted by the same

symbol, satisfying

(2.23)

{

u
(k)
m → um strongly in L2(0, T ;H1

0 ) and a.e. in QT ,

u̇
(k)
m → u̇m strongly in L2(0, T ;H1

0 ) and a.e. in QT .

On the other hand, by L∞(0, T ;H1
0 ∩H2) →֒ L∞(QT ) and the inequality

|aj − bj | 6 jM j−1|a− b| ∀ a, b ∈ [−M,M ], ∀M > 0, ∀ j ∈ N,

we deduce from (2.20) that

(2.24) |(u(k)
m )j − (um)j | 6 jM j−1|u(k)

m − um|, j = 0, . . . , N − 1.

Therefore, (2.23) and (2.24) give

(2.25) (u(k)
m )j → (um)j strongly in L2(QT ).

Note that

(2.26) ‖F (k)
m − Fm‖L2(QT ) 6

N−1
∑

j=0

‖Ψj(·, ·, um−1)‖L∞(QT )‖(u(k)
m )j − (um)j‖L2(QT )

6 KM (f)

N−1
∑

j=0

N−1
∑

i=j

M i−j

j! (i− j)!
‖(u(k)

m )j − (um)j‖L2(QT ),

so (2.25) leads to

(2.27) F (k)
m → Fm strongly in L2(QT ).
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Passing to limit in (2.4), (2.5), we have um satisfying (2.2), (2.3) in L2(0, T ).

On the other hand, it follows from (2.2)1 and (2.22)4 that

∂2

∂x2
(üm(t) + um(t)) = üm(t)− Fm(t) ∈ L∞(0, T ;H1

0 ).

Consequently,

üm(t) + um(t) = Φ ∈ L∞(0, T ;H1
0 ∩H2),

and then

üm(t) = Φ− um(t) ∈ L∞(0, T ;H1
0 ∩H2).

Hence, um ∈ W1(M,T ) and Theorem 2.1 is proved. �

Next, we set

W1(T ) = {v ∈ L∞(0, T ;H1
0 ) : v̇ ∈ L∞(0, T ;H1

0 )}.

Then W1(T ) is a Banach space with respect to the norm

‖v‖W1(T ) = ‖v‖L∞(0,T ;H1

0
) + ‖v̇‖L∞(0,T ;H1

0
).

Theorem 2.2. Suppose that the assumptions (A1), (A2) are fulfilled. Then

(i) problem (1.1)–(1.3) has a unique weak solution u ∈ W1(M,T ), where the con-

stants M > 0 and T > 0 are chosen as in (2.14), (2.20).

Furthermore,

(ii) the recurrent sequence {um}, defined by (2.1)–(2.3), converges at a rate of

order N to the solution u strongly in the space W1(T ) in the sense

(2.28) ‖um − u‖W1(T ) 6 C‖um−1 − u‖NW1(T ),

for all m > 1, where C is a suitable constant. On the other hand, the estimate

is fulfilled

(2.29) ‖um − u‖W1(T ) 6 CT (βT )
Nm ∀m ∈ N,

where CT and βT < 1 are constants depending only on ũ0, ũ1, f , and T .

P r o o f. In the sequel, we will prove Theorem 2.2 only with N > 2.

Existence. We can prove that {um} is a Cauchy sequence in W1(T ).

Indeed, let wm = um+1 − um. Then wm satisfies the variational problem

(2.30)

{

〈ẅm(t), w〉 + 〈wmx(t) + ẅmx(t), wx〉 = 〈Fm+1(t)− Fm(t), w〉 ∀w ∈ H1
0 ,

wm(0) = ẇm(0) = 0.
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Taking w = ẇm in (2.30), after integrating in t, we get

(2.31) Zm(t) = 2

∫ t

0

〈Fm+1(s)− Fm(s), ẇm(s)〉ds,

where

(2.32) Zm(t) = ‖ẇm(t)‖2 + ‖wmx(t)‖2 + ‖ẇmx(t)‖2.

Using Taylor’s expansion of the function f(x, t, um) around the point um−1 up to

order N , we obtain

(2.33) f(x, t, um)− f(x, t, um−1)

=

N−1
∑

i=1

1

i!

∂if

∂ui
(x, t, um−1)w

i
m−1 +

1

N !

∂Nf

∂uN
(x, t, λ̄m)wN

m−1,

where λ̄m = λ̄m(x, t) = um−1 + θ1(um − um−1), 0 < θ1 < 1.

Hence, it follows from (2.3) and (2.33) that

Fm+1(x, t)− Fm(x, t) = f(x, t, um)− f(x, t, um−1)

+
N−1
∑

i=1

1

i!

∂if

∂ui
(x, t, um)wi

m −
N−1
∑

i=1

1

i!

∂if

∂ui
(x, t, um−1)w

i
m−1

=

N−1
∑

i=1

1

i!

∂if

∂ui
(x, t, um)wi

m +
1

N !

∂Nf

∂uN
(x, t, λ̄m)wN

m−1.

Thus, we have

(2.34) ‖Fm+1(t)− Fm(t)‖ 6 KM (f)

N
∑

i=1

1

i!
‖wmx(t)‖i +

1

N !
KM (f)‖wm−1 x(t)‖N

6 γ
(1)
T

√

Zm(t) + γ
(2)
T

(
√

Zm−1(t)
)N

,

where

γ
(1)
T = KM (f)

N
∑

i=1

1

i!
M i−1, γ

(2)
T =

1

N !
KM (f).

Then we deduce from (2.31), (2.32), and (2.34) that

Zm(t) 6 2

∫ t

0

‖Fm+1(s)− Fm(s)‖‖ẇm(s)‖ ds(2.35)

6 2

∫ t

0

[γ
(1)
T

√

Zm(s) + γ
(2)
T (

√

Zm−1(s))
N ]

√

Zm(s) ds
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6 γ
(2)
T

∫ T

0

ZN
m−1(s) ds+ (2γ

(1)
T + γ

(2)
T )

∫ t

0

Zm(s) ds

6 Tγ
(2)
T ‖wm−1‖2NW1(T ) + (2γ

(1)
T + γ

(2)
T )

∫ t

0

Zm(s) ds.

Using Gronwall’s lemma, (2.35) leads to

(2.36) ‖wm‖W1(T ) 6 µT ‖wm−1‖NW1(T ),

where µT = 2

√

γ
(2)
T T exp((2γ

(1)
T + γ

(2)
T )T ).

Choosing T small enough such that

‖u1 − u0‖W1(T )µ
1/(N−1)
T = ‖u1‖W1(T )µ

1/(N−1)
T 6 Mµ

1/(N−1)
T ≡ βT < 1,

it follows from (2.36) that for all m and p,

(2.37) ‖um − um+p‖W1(T ) 6 (1− ‖u1 − u0‖W1(T )µ
1/(N−1)
T )−1(µT )

−1/(N−1)

× (‖u1 − u0‖W1(T )µ
1/(N−1)
T )N

m

6 (1− βT )
−1(µT )

−1/(N−1)(βT )
Nm

.

Hence, {um} is a Cauchy sequence in W1(T ). Then there exists u ∈ W1(T ) such

that

(2.38) um → u strongly in W1(T ).

Note that since um ∈ W1(M,T ), there exists a subsequence {umj
} of {um} such

that

(2.39)























umj
→ u in L∞(0, T ;H1

0 ∩H2) weakly*,

u̇mj
→ u̇ in L∞(0, T ;H1

0 ∩H2) weakly*,

ümj
→ ü in L∞(0, T ;H1

0 ) weakly*,

u ∈ W1(M,T ).

We have

(2.40) ‖Fm(·, t)− f(·, t, u(t))‖ =

∥

∥

∥

∥

N−1
∑

i=1

1

i!

∂if

∂ui
(x, t, um−1)(um − um−1)

i

∥

∥

∥

∥

6 KM (f)

N−1
∑

i=1

1

i!
‖um − um−1‖iW1(T ).
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Hence, (2.38) and (2.40) imply that

Fm(t) → f(·, t, u(t)) strongly in L∞(0, T ;L2).

Finally, passing to limit in (2.2) and (2.3) as m = mj → ∞, there exists u ∈
W (M,T ) satisfying the equation

〈ü(t), w〉+ 〈ux(t) + üx(t), wx〉 = 〈f(·, t, u(t)), w〉,

for all w ∈ H1
0 and the initial condition

u(0) = ũ0, u̇(0) = ũ1.

Uniqueness. Applying a similar argument as used in the proof of Theorem 2.1,

u ∈ W1(M,T ) is the local unique weak solution of problem (1.1)–(1.3).

Passing to the limit in (2.37) as p → ∞ for fixed m, we get (2.29). In the same

way as (2.29), (2.28) follows. Theorem 2.2 is proved completely. �

R em a r k. (i) If the convergence of {um} is only at a rate of order 1, it follows
from (2.29) that the error at the m-th step is CT (βT )

m with 0 < βT = µT < 1 (T is

small enough). If the convergence of {um} is at a rate of order N > 2, this error is

CT (βT )
Nm

and thus converges more rapidly, where 0 < βT = Mµ
1/(N−1)
T < 1 and

T is also small enough.

(ii) In constructing a N -order iterative scheme, the function f has to satisfy (A2).

This condition can be relaxed if we only consider the existence of a solution, see

[10]–[13], [14], [17], [18].

A c k n ow l e d g em e n t s. The authors wish to express their sincere thanks to

the referees for the suggestions and valuable comments. Their comments uncovered
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