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Abstract. Let G be a finite group and H a subgroup. Denote by D(G;H) (or D(G)) the
crossed product of C(G) and CH (or CG) with respect to the adjoint action of the latter
on the former. Consider the algebra 〈D(G), e〉 generated by D(G) and e, where we regard
E as an idempotent operator e on D(G) for a certain conditional expectation E of D(G)
onto D(G;H). Let us call 〈D(G), e〉 the basic construction from the conditional expectation
E : D(G)→ D(G;H). The paper constructs a crossed product algebra C(G/H×G)⋊CG,
and proves that there is an algebra isomorphism between 〈D(G), e〉 and C(G/H×G)⋊CG.
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1. Introduction

Index theory for subfactors started with the breakthrough achieved by Jones ([8]).

This theory was developed first for subfactors of type II1, i.e., those possessing a faith-

ful normal tracial state. Jones’ index theory has found important applications in

conformal field theory and quantum field theory ([10], [12]) and in the study of the

tensor categories arising from compact groups and quantum groups. For a nontech-

nical but broad overview of the subject including a lot of important connections with

other areas, the reader can refer to [7].

Let M be a factor of type II1 on the Hilbert space H, and let N (contained in M)
be a subfactor. By dimM (H) we denote the coupling constant ofM on H. The Jones

This work has been supported by National Science Foundation of China (Nos. 10971011,
11371222).
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index [M : N ], as defined by Jones, is

[M : N ] =
dimN (H)

dimM (H)

if N ′, the set of all bounded operators on H commuting with every operator in H,
is finite. In particular, if G is an infinite conjugacy class group, namely, a discrete

group all of whose conjugacy classes are infinite except that of the identity, and

H 6 G, then the Jones index is exactly [G : H ], the index of H in G. Surprisingly,

Jones answers this question: what are the possible values of the index [M : N ] for

subfactors? The answer is {4 cos2 π/n : n > 3} ∪ [4,∞]. The values [4,∞] can be

easily obtained. However, the situation between 1 and 4 is more difficult. In this

case, what is called the basic construction plays an important role in constructing

subfactors. More precisely, one can identifyM with the algebra of left multiplication

operators on L2(M, tr) and consider the extension eN to L
2(M, tr) of the conditional

expectation onto N , where “tr” is the faithful normal normalized trace and L2(M, tr)

denotes the Hilbert space completion ofM with respect to the inner product 〈a, b〉 =
tr(b∗a) coming from the Gelfand-Naimark-Segal (G.N.S.) construction. One defines

M1 , 〈M, eN〉 to be the von Neumann algebra generated by M and eN , the Jones

projection, on L2(M, tr) (this is called the basic construction). Subsequently, Jones

used the basic construction to obtain an increasing sequence of type II1 factors,

N ⊆ M ⊆ M1 ⊆ M2 ⊆ M3 ⊆ . . ., which is called the Jones tower, iteratively, by

adding the Jones projections {en : n > 1, e1 = eN}, which satisfy the Temperley-
Lieb relations. Eventually Jones used this structure to construct examples such that

the values of the index can exhaust the set {4 cos2 π/n : n > 3}. Let J denote
the ∗-operation in L2(M, tr), regarded as an isometric conjugate linear operator,

i.e. Jx = x∗ for x ∈ L2(M, tr); then 〈M, eN〉 = JN ′J , which is a very elegant

result.

Jones’ index theory for subfactors of type II1 has been generalized to general

inclusions of factors by Kosaki ([11]) and Longo ([13]). Based on the work of Jones,

Kosaki and Longo, Watatani ([16]) investigated Index Γ for a conditional expectation

Γ: B → A of a C∗-algebraB onto a C∗-subalgebraA, and introduced the C∗-algebra

basic construction C∗〈B, γA〉 as follows: one can view B as a pre-Hilbert module

over A by defining the A-valued inner product 〈x, y〉 = Γ(x∗y). Denote by B the

completion of B with respect to ‖·‖B, where ‖x‖B = 〈x, x〉1/2 for x ∈ B. Then B is

a Hilbert C∗-module over A. Denote by End∗A(B) the set of all adjointable operators

from B to B. It is a C∗-algebra. In such a case, one can identify B with the algebra

of left multiplication operators on B. The conditional expectation Γ can be extended

to a projection γ
A
on B via γ

A
(x) = Γ(x) for x ∈ B. The C∗-algebra C∗〈B, γ

A
〉 is

generated by {xγ
A
y : x, y ∈ B}.
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However, in contrast to the basic construction for type II1 factors, the C
∗-algebra

C∗〈B, γ
A
〉 does not have the concrete form, such as 〈M, eN 〉 = JN ′J , where M is

a factor of type II1 and N ⊆ M is a subfactor. The reason for this phenomenon

is that any factor of type II1 admits a faithful trace which is a state, for which the

G.N.S. construction may be performed, while for general algebras, the existence of

such a functional is uncertain.

In this paper, we think about the basic construction for special algebras. Let

G be a finite group and H a subgroup of G, denoted by H 6 G. Then D(G;H)

is defined as the crossed product of C(G), the algebra of complex functions on G,

and the group algebra CH with respect to the adjoint action of the latter on the

former. In particular, if H = G, then D(G;H) , D(G) is the quantum double

of G. Then we consider the conditional expectation E : D(G) → D(G;H) defined

in a natural way and give an appropriate form of the basic construction. In detail,

considering the algebra 〈D(G), e〉 generated by {(g, h) : g, h ∈ G} and e, where we

regard E as an idempotent operator e on D(G), one finds that the algebra 〈D(G), e〉
is isomorphic to the crossed product algebra C(G/H × G) ⋊ CG. Moreover, by

constructing a conditional expectation Ẽ : 〈D(G), e〉 → D(G) of index-finite type,

which is called the dual conditional expectation of E : D(G) → D(G;H), one finds

that the index of Ẽ is exactly the index of E.

2. The basic construction for the quantum double

of a finite group

2.1. Conditional expectations between algebras. At the beginning of this

section, we first briefly review some known results we will need later. Suppose that

B is an algebra over C and A a subalgebra with a common identity element 1. These

definitions can be found in [16].

Definition 2.1. A linear map Γ: B → A is called a conditional expectation if

it satisfies the following conditions: for all a ∈ A, b ∈ B,

(1) Γ(1) = 1;

(2) (bimodular property)

Γ(ab) = aΓ(b), Γ(ba) = Γ(b)a.

Moreover, we say Γ is non-degenerate if E(Bb) = 0 or E(bB) = 0 implies b = 0 for

b ∈ B.

Remark 2.2. If B is a C∗-algebra with a C∗-subalgebra A of B with a common

identity element, we always assume that Γ is positive, i.e., Γ(b∗b) is a positive element

in A for any b ∈ B. Actually, Γ is a projection of norm one ([2]).

349



Definition 2.3. A finite family {(ui, vi) : i = 1, 2, . . . , n} ⊆ B × B is called

a quasi-basis for Γ if for all x ∈ B,

n∑

i=1

uiΓ(vix) = x =

n∑

i=1

Γ(xui)vi.

Furthermore, if there exists a quasi-basis for Γ, we say Γ is of index-finite type. In

this case we define the index of Γ by

Index Γ =

n∑

i=1

uivi.

Remark 2.4. (1) If Γ is of index-finite type, then Index Γ is in the center of B

and does not depend on the choice of the quasi-basis. In fact, for any b ∈ B,

(Index Γ)b =

n∑

i=1

uivib =

n∑

i=1

ui

( n∑

j=1

Γ(vibuj)vj

)

=

n∑

j=1

( n∑

i=1

uiΓ(vibuj)

)
vj =

n∑

j=1

bujvj = b(Index Γ).

This means Index Γ is in the center of B. Let {(sj , tj) : j = 1, 2, . . . , n} be another
quasi-basis for Γ, then

n∑

i=1

uivi =

n∑

i=1

( n∑

j=1

sjΓ(tjui)

)
vi =

n∑

j=1

sj

( n∑

i=1

Γ(tjui)vi

)
=

n∑

j=1

sjtj,

which shows that the value Index Γ does not depend on the choice of the quasi-basis.

(2) The existence of a quasi-basis guarantees that Γ is non-degenerate ([16]).

2.2. The quantum double and the basic construction. Suppose that G is

a finite group with a unit u, and that H is a subgroup of G. Let t1 = u, t2, . . . , tk

be a left coset representation of H in G, namely G =
k⋃

i=1

tiH and i 6= j induces that

tiH ∩ tjH = ∅. Let us begin with the following definitions.

Definition 2.5 ([5], [4]). D(G;H) is the crossed product of C(G) and the group

algebra CH , where C(G) denotes the set of complex functions on G, with respect to

the adjoint action of the latter on the former.
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In particular, if H = G, then D(G;H) , D(G) is the quantum double of G. For

more information about D(G), one can refer to [1], [3], [9]. The main difference

between D(G) and D(G;H) is that the former is a quasi-triangular Hopf algebra

while the latter is not ([14]).

It is easy to see that
∑
g∈G

(g, u) , I is the unit of D(G;H), where u is the unit

of G. There is a unique element zH = |H |−1 ∑
h∈H

(e, h), called a cointegral, satisfying

azH = zHa = ε(a)zH , a ∈ D(G;H), and ε(zH) = 1.

As a result, D(G;H) is a semisimple finite dimensional algebra with a natural

∗-structure ([15]). Consequently, it can be a C∗-algebra.

In [6], the authors investigate the index of conditional expectation of index-finite

type from D(G) onto the subalgebra D(G;H). Consider

E : D(G) → D(G;H)
∑

g,h∈G

λg,h(g, h) 7→
∑

g∈G,h∈H

λg,h(g, h)

where λg,h ∈ C, and set ui =
∑
α∈G

(α, ti) and vi =
∑
β∈G

(β, t−1
i ). Then {(ui, vi) : i =

1, 2, . . . , k} is a quasi-basis for E, and therefore Index E = kI.

In the sequel we will consider the basic construction from the conditional expec-

tation E : D(G) → D(G;H).

Recall that a homomorphic map T : D(G) → D(G) is said to be a right D(G;H)-

module homomorphism if T (xy) = T (x)y for x ∈ D(G), y ∈ D(G;H). Denote by

EndD(G;H)D(G) the set of all right D(G;H)-module homomorphisms from D(G)

to D(G). Then it is a nonzero algebra. In such a case, one can regard D(G) as the

algebra of left multiplication operators on D(G), while the conditional expectation

E as an idempotent operator on D(G), denoted by e.

Lemma 2.6. As operators on D(G), e and (g, h) ∈ D(G) satisfy the following

covariant relations:

(1) e(g, h)e = E(g, h)e;

(2) h ∈ H if and only if e(g, h) = (g, h)e.

P r o o f. To prove the first part, just observe that for (m,n) ∈ D(G),

(e(g, h)e)(m,n) = e((g, h)E(m,n)) = E(g, h)E(m,n) = (E(g, h)e)(m,n).

For the second part, assume that h ∈ H , then

(e(g, h))(m,n) = E((g, h)(m,n)) = (g, h)E(m,n) = ((g, h)e)(m,n)
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for (m,n) ∈ D(G). Thus (g, h) commutes with e. Conversely, if (g, h) ∈ D(G) and

e(g, h) = (g, h)e, then

(g, h) = (g, h)e
∑

α∈G

(α, u) = e(g, h)
∑

α∈G

(α, u) = E(g, h),

which shows that h ∈ H . �

Definition 2.7. Let 〈D(G), e〉 be the subalgebra of EndD(G;H)D(G) generated

by {(g, h) : g, h ∈ G} and e. We call it the basic construction from the conditional

expectation E : D(G) → D(G;H).

Remark 2.8. The set {(g1, h1)e(g2, h2) : gi, hi ∈ G, i = 1, 2} can generate the
algebra 〈D(G), e〉. Clearly, e =

∑
α,β∈G

(α, u)e(β, u). And for (g, h) ∈ D(G), we have

that

k∑

i=1

(g, ti)e(t
−1
i gti, t

−1
i h)(m,n) = δgh,hm

k∑

i=1

(g, ti)E(t−1
i gti, t

−1
i hn)

= δgh,hm(g, ti0)(t
−1
i0

gti0 , t
−1
i0

hn)

= δgh,hm(g, hn)

= (g, h)(m,n),

where in the second equation we use the fact that for hn ∈ G, there exists ti0 such that

hn ∈ ti0H . This implies that (g, h) =
k∑

i=1

(g, ti)e(t
−1
i gti, t

−1
i h), and that the element

of D(G) can be linearly expressed by {(g1, h1)e(g2, h2) : gi, hi ∈ G, i = 1, 2}.

3. The construction of the crossed product algebra

and the isomorphism theorem

Let us continue to assume that G is a finite group with a subgroup H . Denote by

G/H the set of all left cosets of H , i.e. G/H = {[t1], [t2], . . . , [tk]}. Let C(G/H ×G)

and CG be the algebra of complex functions on G/H×G and the group algebra over

the C, respectively.

The set {χ[ti] : i = 1, 2, . . . , k} is a linear basis of C(G/H) where

χ[ti][tj ] =

{
1 if j = i,

0 if j 6= i,
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while the set {Fg : g ∈ G} is a linear basis of C(G) where

Fg(h) =

{
1 if h = g,

0 if h 6= g.

Since G is a finite group and C(G/H ×G) ∼= C(G/H)⊗C(G), hence {(ti, g) : i =

1, 2, . . . , k; g ∈ G} can be viewed as a linear basis of C(G/H×G), where we use (ti, g)

in place of (χ[ti], Fg) for notational convenience. The map σ : CG×C(G/H ×G) →
C(G/H ×G) given on the basis elements of C(G/H ×G) as

σ(h× (ti, g)) = (hti, hgh
−1)

for h, g ∈ G, can be linearly extended both to CG and C(G/H ×G). One can show

that σ defines an automorphic action of CG on C(G/H × G). Here and from now

on, by h(ti, g) we always denote σ(h× (ti, g)).

Definition 3.1. The associative algebra generated by {(ti, g), α : g, α ∈ G; i =

1, 2, . . . , k} is called the crossed product of C(G/H × G) by CG with respect to σ,

and we denote it by C(G/H ×G)⋊σ CG or C(G/H ×G)⋊CG for convenience.

Using the linear basis elements (ti, g;α) of C(G/H × G) ⋊ CG, the product is

defined as

(ti, g;α)(tj , h;β) = δ[ti],[αtj ]δgα,αh(ti, g;αβ),

where δζ,η =

{
1 if ζ = η,

0 if ζ 6= η.

It is clear that the element
∑
g∈G

k∑
i=1

(ti, g;u) is the unit of C(G/H×G)⋊CG, where

u is a unit of G. Moreover, if H is a normal subgroup of G, then C(G/H×G)⋊CG is

a coalgebra. In fact, the coproduct △ and counit ε are defined on the basis elements
as

△(ti, g;α) =

k∑

j=1

∑

h∈G

(tj , h;α)⊗ (t−1
j ti, h

−1g;α),

ε(ti, g;α) = δ[ti],[t1]δg,u

and are linearly extended to C(G/H × G) ⋊ CG. Since ε is not an algebra homo-

morphism, C(G/H ×G)⋊CG is not a bialgebra. Naturally, a question may emerge:

in what case C(G/H ×G)⋊CG can be a bialgebra. However, this is unknown.
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Lemma 3.2. The elements
k∑

i=1

(ti, g;α) and
∑
h∈G

(t1, h;u) satisfy the following

covariant relations:

(1)
∑
h∈G

(t1, h;u)
k∑

i=1

(ti, g;α)
∑
h∈G

(t1, h;u) = δ[u],[α]
k∑

i=1

(ti, g;α)
∑
h∈G

(t1, h;u);

(2)
∑
h∈G

(t1, h;u) is an idempotent element in C(G/H ×G)⋊CG, that is

(∑

h∈G

(t1, h;u)

)2
=

∑

h∈G

(t1, h;u).

P r o o f. (1) Notice that

∑

h∈G

(t1, h;u)
k∑

i=1

(ti, g;α)
∑

h∈G

(t1, h;u)

=
∑

h∈G

(t1, h;u)
k∑

i=1

∑

h∈G

δ[ti],[α]δgα,αh(ti, g;α)

=
∑

h∈G

(t1, h;u)(α, g;α) =
∑

h∈G

δ[u],[α]δh,g(t1, g;α)

= δ[u],[α](t1, g;α),

which together with
k∑

i=1

(ti, g;α)
∑
h∈G

(t1, h;u) = (α, g;α) completes the proof.

(2)
( ∑
h∈G

(t1, h;u)
)2

=
∑
h∈G

∑
g∈G

(t1, h;u)(t1, g;u) =
∑
h∈G

∑
g∈G

δg,h(t1, h;u) =
∑
h∈G

(t1, h;u). �

Now we give the main theorem of this paper.

Theorem 3.3. There is an isomorphism of algebras

〈D(G), e〉 ∼= C(G/H ×G)⋊CG.

P r o o f. Let π : 〈D(G), e〉 → C(G/H ×G)⋊CG be a map with

(g, α) 7→
k∑

i=1

(ti, g;α)

e 7→
∑

g∈G

(t1, g;u).
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First, π is a well-defined map and can be linearly extended to 〈D(G), e〉 preserving
algebraic structure. Indeed, by Lemma 2.6 and Lemma 3.2 we obtain that

π(e(g, α)e) = π(e)π(g, α)π(e) = π(E(g, α)e).

And we have

π(g, α)π(h, β) =

k∑

i=1

(ti, g;α)

k∑

j=1

(tj , h;β) =

k∑

i=1

k∑

j=1

δ[ti],[αtj]δgα,αh(ti, g;αβ)

= δgα,αh

k∑

i=1

(ti, g, αβ) = π(δgα,αh(g, αβ))

= π((g, α)(h, β)).

Thus, π is an algebra homomorphism.

In order to complete the proof of the theorem we need to show that π is bijec-

tive. Indeed, for any (ti, g;α) ∈ C(G/H × G) ⋊ CG, choose (g, ti)e(t
−1
i gti, t

−1
i α) ∈

〈D(G), e〉 such that
π((g, ti)e(t

−1
i gti, t

−1
i α)) = (ti, g;α),

which implies that π is surjective, and then dim 〈D(G), e〉 > k|G|2. From the follow-
ing relations, we know that every element (g, h)e(α, β) in 〈D(G), e〉 can be linearly
expressed by {(g, ti)e(t−1

i gti, t
−1
i h) : g, h ∈ G; i = 1, 2, . . . , k}. For (m,n) ∈ D(G),

(g, h)e(α, β)(m,n) = (g, h)e(δαβ,βm(α, βn))

= δ[βn],[u]δαβ,βm(g, h)(α, βn)

= δ[βn],[u]δgh,hαδαβ,βm(g, hβn),

which yields induce that

(g, h)e(h−1gh, β)(m,n) = δ[βn],[u]δh−1gh,βmβ−1(g, hβn).

And for h ∈ H , there exists ti such that h ∈ tiH , that is t
−1
i h ∈ H . Then

(g, ti)e(t
−1
i gti, t

−1
i hβ)(m,n) = δt−1

i ghβ,t−1

i hβm(g, ti)e(t
−1
i gti, t

−1
i hβn)

= δh−1gh,βmβ−1(g, ti)E(t−1
i gti, t

−1
i hβn)

= δ[βn],[u]δh−1gh,βmβ−1(g, ti)(t
−1
i gti, t

−1
i hβn)

= δ[βn],[u]δh−1gh,βmβ−1(g, hβn).

From the above, π is surjective and {(g, ti)e(t−1
i gti, t

−1
i h) : g, h ∈ G; i = 1,

2, . . . , k} is a linear basis of 〈D(G), e〉, which mean π is bijective. �
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Remark 3.4. The basic constructions do not depend on the choice of conditional

expectations (see Proposition 2.10.11 in [16]), which, together with Theorem 3.3,

implies that the crossed product does not depend on the choice of a conditional

expectation.

Example 3.5. (1) Consider the basic construction from the conditional expecta-

tion Φ: CG → CH defined by

Φ

(∑

g∈G

λgg

)
=

∑

h∈H

λhh

where λg ∈ C for g ∈ G. Let τ : CG → Aut C(G/H) be the action induced

by translation from the left, where Aut C(G/H) stands for the collection of all

automorphisms on C(G/H). There is an inclusion i : CG → D(G) given by i(g) =∑
f∈G

(f, g), which together with Theorem 3.3 yields that 〈CG,ϕ〉 is algebra isomorphic

to C(G/H)⋊τCG, where we view Φ as an idempotent operator on CG, denoted by ϕ.

(2) If G is an Abelian finite group, then D(G) reduces to a symmetry group

Ĝ × G, where Ĝ denotes the Pontryagin dual of G (the group of characters of G).

Let E : Ĝ×G → Ĝ×H be a conditional expectation such that

E

( ∑

g,h∈G

λg,h(g, h)

)
=

∑

g∈G,h∈H

λg,h(g, h).

Set ς : CG×C(G/H×G) → C(G/H×G) given on the basis elements of C(G/H×G)

as

σ(h× (ti, g)) = (hti, g) for h, g ∈ G.

One can prove that ς defines an automorphic action of CG on C(G/H ×G). Then,

〈Ĝ×G, e〉 is algebra isomorphic to C(G/H×G)⋊ςCG. Moreover, there is an algebra

isomorphism between 〈Ĝ × G, e〉 and Ĝ × (C(G/H) ⋊τ CG), where τ is defined as

above.

Finally, we consider the conditional expectation from 〈D(G), e〉 onto D(G).

Theorem 3.6. The map Ẽ : 〈D(G), e〉 → D(G) defined on the basis elements of

〈D(G), e〉 by
Ẽ((g, ti)e(t

−1
i gti, t

−1
i h)) =

1

k
(g, h)

for g, h ∈ G and i = 1, 2, . . . , k, linearly extended to 〈D(G), e〉, is a conditional
expectation of index-finite type, and we call it the dual conditional expectation of

E : D(G) → D(G;H). More precisely, let wi =
√
k

∑
α,β∈G

(α, ti)e(β, u) and zi =
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√
k

∑
η,ξ∈G

(η, u)e(ξ, t−1
i ), then {(wi, zi) : i = 1, 2, . . . , k} is a quasi-basis for Ẽ and

Index Ẽ = Index E.

P r o o f. Since
∑
g∈G

k∑
i=1

(g, ti)e(t
−1
i gti, t

−1
i ) and I are the units of 〈D(G), e〉 and

D(G), respectively, we have

Ẽ

(∑

g∈G

k∑

i=1

(g, ti)e(t
−1
i gti, t

−1
i )

)
=

1

k

∑

g∈G

k∑

i=1

(g, u) =
∑

g∈G

(g, u) = I.

Since Index E = kI is in the center of D(G), Ẽ is a D(G)-bimodule homomorphism.

For g, h ∈ G and tj , j = 1, 2, . . . , k, we have that

k∑

i=1

wiẼ(zi(g, tj)e(t
−1
j gtj, tjh))

=
√
k

k∑

i=1

wiẼ

( ∑

η,ξ∈G

(η, u)e(ξ, t−1
i )(g, tj)e(t

−1
j gtj, tjh)

)

=
√
k

k∑

i=1

wiẼ

(∑

η∈G

(η, u)E(t−1
i gti, t

−1
i tj)e(t

−1
j gtj , tjh)

)

=
1√
k

k∑

i=1

wiE(t−1
i gti, t

−1
i tj)(t

−1
j gtj, tjh)

=
1√
k
wj(t

−1
j gtj , u)(t

−1
j gtj , tjh)

=
∑

α∈G

(α, tj)e(t
−1
j gtj , u)(t

−1
j gtj, tjh)

=
∑

α∈G

(α, tj)(t
−1
j gtj , u)e(t

−1
j gtj, tjh)

= (g, tj)e(t
−1
j gtj, tjh)

and similarly

k∑

i=1

Ẽ((g, tj)e(t
−1
j gtj, tjh)wi)zi = (g, tj)e(t

−1
j gtj, tjh).
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This shows that {(wi, zi) : i = 1, 2, . . . , k} is a quasi-basis for Ẽ. Hence Ẽ is of

index-finite type and

Index Ẽ =

k∑

i=1

wizi = k

k∑

i=1

∑

α,β,ξ,η∈G

(α, ti)e(β, u)(η, u)e(ξ, t
−1
i )

= k

k∑

i=1

∑

α,β,ξ∈G

(α, ti)E(β, u)e(ξ, t−1
i )

= k

k∑

i=1

∑

α,ξ∈G

(α, ti)e(ξ, t
−1
i ) = k

∑

γ∈G

(γ, u)

= Index E.

Here we use the properties that
{( ∑

α∈G

(α, ti),
∑
ξ∈G

(ξ, t−1
i )

)
: i = 1, 2, . . . , k

}
is

a quasi-basis for E, and the unit I =
∑
γ∈G

(γ, u) of D(G) can be expressed as

k∑
i=1

∑
α,ξ∈G

(α, ti)e(ξ, t
−1
i ). �
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