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Abstract. We present simple proofs that spaces of homogeneous polynomials on Lp[0, 1]
and ℓp provide plenty of natural examples of Banach spaces without the approximation
property. By giving necessary and sufficient conditions, our results bring to completion,
at least for an important collection of Banach spaces, a circle of results begun in 1976 by
R.Aron and M. Schottenloher (1976).
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1. Introduction

The approximation property was introduced by Grothendieck [18]. Enflo [14]

gave the first example of a Banach space without the approximation property.

Enflo’s counterexample is an artificially constructed Banach space. The first nat-

urally defined Banach space without the approximation property was given by

Szankowski [27], who proved that the space L(ℓ2; ℓ2) of continuous linear opera-

tors on ℓ2 does not have the approximation property. More recently Godefroy and

Saphar [17] proved that, if LK(ℓ2; ℓ2) denotes the subspace of all compact members

of L(ℓ2; ℓ2), then the quotient L(ℓ2; ℓ2)/LK(ℓ2; ℓ2) does not have the approximation

property.

There was a widespread belief that almost all Banach spaces without the approxi-

mation property are artificially constructed. See for instance the comments of Defant

and Floret in [6], page 59, and Pietsch in [25], page 283.
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Nevertheless, in this paper we present simple proofs that spaces of homogeneous

polynomials on Lp[0, 1] and ℓp provide plenty of natural examples of Banach spaces

without the approximation property.

This paper is organized as follows. Section 2, of preparatory character, is de-

voted to the study of spaces of linear operators. There we observe that the space

L(Lp[0, 1];Lq[0, 1]) does not have the approximation property whenever 1 < p,

q < ∞, whereas the space L(ℓp; ℓq) does not have the approximation property when-

ever 1 < p 6 q < ∞.

Section 3, devoted to the study of spaces of homogeneous polynomials, contains

our main results. There we show that the space P(nLp[0, 1]) does not have the

approximation property whenever 1 < p < ∞ and n > 2, whereas the space P(nℓp)

does not have the approximation property whenever 1 < p < ∞ and n > p.

Finally, Section 4 is devoted to the study of spaces of holomorphic functions.

There we show that neither the space (H(U), τω) nor the space (H(U), τδ) have the

approximation property when U is an open subset of Lp[0, 1] or of ℓp, with 1 < p < ∞.

Our proofs are based on important results of several authors. Among them we

mention Szankowski’s famous counterexample [27], the complementation properties

of Lp spaces established by Pe lczyński [23], the isomorphisms between spaces of

operators on Lp spaces and spaces of operators on ℓp spaces discovered by Arias

and Farmer [2], the isomorphisms between spaces of multilinear forms and spaces

of symmetric multilinear forms on stable Banach spaces discovered by Diaz and

Dineen [7], the complementation properties of spaces of homogeneous polynomials

obtained by Aron and Schottenloher [3], and the complementation properties of

tensor products of ℓp spaces, obtained also by Arias and Farmer [2]. These results

play a key role in our proofs, and some of them are applied several times.

2. Spaces of linear operators

Let E, F , G, Ej , Fj denote Banach spaces over K, where K is R or C. Let E′

denote the dual of E, and let L(E;F ) denote the Banach space of all continuous

linear operators from E into F . If T ∈ L(E;F ), then T ′ ∈ L(F ′;E′) denotes the

dual operator.

Let L(E1, . . . , En;F ) denote the Banach space of all continuous n-linear mappings

from E1× . . . ×En into F . We omit F when F = K. When E1 = . . . = En = E, we

write L(nE;F ) instead of L(E, (n). . . , E;F ). Let E1⊗̂π . . . ⊗̂πEn denote the complete

projective tensor product of E1, . . . , En. We have the canonical isomorphisms

L(E1⊗̂π . . . ⊗̂πEn;F ) = L(E1, . . . , En;F ) = L(E1;L(E2, . . . , En;F )).
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In particular

(E1⊗̂πE2)
′ = L(E1, E2) = L(E1;E

′

2).

Let us recall that E is said to have the approximation property if given K ⊂ E

compact and ε > 0, there is a finite rank operator T ∈ L(E;E) such that ‖Tx−x‖ < ε

for every x ∈ K. If E has the approximation property, then every complemented

subspace of E also has the approximation property.

E is isomorphic to a complemented subspace of F if and only if there are A ∈

L(E;F ) and B ∈ L(F ;E) such that B◦A = I. If E is isomorphic to a complemented

subspace of F , and F is isomorphic to a complemented subspace of G, then E is

isomorphic to a complemented subspace of G. If E is isomorphic to a complemented

subspace of F , then E′ is isomorphic to a complemented subspace of F ′. If Ej is

isomorphic to a complemented subspace of Fj for j = 1, 2, then E1⊗̂πE2 is isomorphic

to a complemented subspace of F1⊗̂πF2. These simple remarks will be repeatedly

used throughout this paper.

Proposition 2.1. If 1 < p, q < ∞, then L(Lp[0, 1];Lq[0, 1]) contains a comple-

mented subspace isomorphic to L(ℓ2; ℓ2). In particular L(Lp[0, 1];Lq[0, 1]) does not

have the approximation property.

P r o o f. Let 1 < p < ∞. By a result of Pe lczyński (see [23], Proposition 5, or [8],

page 13) Lp[0, 1] contains a complemented subspace isomorphic to ℓ2. Hence there

are Ap ∈ L(ℓ2;Lp[0, 1]) and Bp ∈ L(Lp[0, 1]; ℓ2) such that Bp ◦Ap = I. Given 1 < p,

q < ∞, we define

Cpq : S ∈ L(ℓ2; ℓ2) → Aq ◦ S ◦Bp ∈ L(Lp[0, 1];Lq[0, 1])

and

Dpq : T ∈ L(Lp[0, 1];Lq[0, 1]) → Bq ◦ T ◦Ap ∈ L(ℓ2; ℓ2),

then Dpq ◦ Cpq = I and the desired conclusion follows. �

Proposition 2.2. If 1 < p 6 q < ∞, then L(ℓp; ℓq) contains a complemented

subspace isomorphic to L(ℓ2; ℓ2). In particular L(ℓp; ℓq) does not have the approxi-

mation property.

P r o o f. By a result of Arias and Farmer [2], Theorem 2.1, L(ℓp; ℓq) is isomorphic

to L(Lp[0, 1];Lq[0, 1]). Then the desired conclusion follows from Theorem 2.1. �

Remark 2.3. If 1 < q < p < ∞, then L(ℓp; ℓq) is a reflexive Banach space with

a Schauder basis. In particular the restriction p 6 q in Theorem 2.2 cannot be

deleted. Indeed, if 1/q + 1/q′ = 1, then

L(ℓp; ℓq) = L(ℓp, ℓq′) = (ℓp⊕̂πℓq′)
′.
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The space ℓp⊗̂πℓq′ has a Schauder basis, by a result of Gelbaum and Gil de Lamadrid

[16], and L(ℓp; ℓq′) is reflexive, by [9], page 248, Corollary 5. It follows that L(ℓp; ℓq)

has a Schauder basis as well.

Propositions 2.1 and 2.2 extend results of Pisier [26], page 316, and Arias and

Farmer [2], page 17, respectively, and play a key role in the proofs of our main

results, namely Theorems 3.1 and 3.2.

The proof of Proposition 2.1 can be easily adapted to prove the following more

general result. We leave the details to the reader.

Proposition 2.4.

(a) If E and F contain complemented subspaces isomorphic to ℓ2, then L(E;F ) con-

tains a complemented subspace isomorphic to L(ℓ2; ℓ2). In particular, L(E;F )

does not have the approximation property.

(b) If E contains a complemented subspace isomorphic to ℓ2, then L(E;E′) contains

a complemented subspace isomorphic to L(ℓ2; ℓ2). In particular, L(E;E′) does

not have the approximation property.

3. Spaces of homogeneous polynomials

Let Ls(nE;F ) denote the subspace of all symmetric members of L(nE;F ), and

let P(nE;F ) denote the Banach space of all continuous n-homogeneous polynomials

from E into F . We omit F when F = K. We have the canonical isomorphism

P(nE;F ) = Ls(nE;F ). We refer to [10] or [19] for background information on the

theory of polynomials on Banach spaces.

It follows from a result of Diaz and Dineen [7], Theorem 3, that if E is stable, that

is if E is isomorphic to its square, then Ls(nE) is isomorphic to L(nE) for every

n ∈ N. That ℓp and Lp[0, 1] are stable was already known to Banach [4], page 182.

Hence it follows that

P(2ℓ2) = Ls(2ℓ2) = L(2ℓ2) = L(ℓ2; ℓ
′

2) = L(ℓ2; ℓ2)

does not have the approximation property. A result of Aron and Schottenloher [3],

Proposition 5.3, asserts that P(mE) is isomorphic to a complemented subspace of

P(nE) whenever m 6 n. Hence it follows that P(nℓ2) does not have the approxi-

mation property for every n > 2. This result is due to Floret (see [15], page 173, or

[10], page 467), and was the initial motivation of this paper.
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Theorem 3.1. If 1 < p < ∞ and n > 2, then P(nLp[0, 1]) contains a comple-

mented subspace isomorphic to L(ℓ2; ℓ2). In particular, P(nLp[0, 1]) does not have

the approximation property.

P r o o f. If 1/p+ 1/p′ = 1, then

P(2Lp[0, 1]) = Ls(2Lp[0, 1]) = L(2Lp[0, 1]) = L(Lp[0, 1];Lp′[0, 1]).

It follows from Proposition 2.1 that P(2Lp[0, 1]) contains a complemented subspace

isomorphic to L(ℓ2; ℓ2). Hence P(nLp[0, 1]) contains a complemented subspace iso-

morphic to L(ℓ2; ℓ2) for every n > 2. �

Theorem 3.2. If 1 < p < ∞ and n > p, then P(nℓp) contains a complemented

subspace isomorphic to L(ℓ2; ℓ2). In particular, P(nℓp) does not have the approxi-

mation property.

P r o o f. If 1 < p < ∞, then k < p 6 k + 1 for a unique k ∈ N. Let

E = ℓp⊗̂π
(k). . . ⊗̂πℓp,

and let r = p/k. Then 1 < r 6 p/(p− 1) and another result of Arias and Farmer [2],

Theorem 1.3, implies that E contains a complemented subspace isomorphic to ℓr.

Hence it follows that

E⊗̂πℓp = ℓp⊗̂π
(k+1). . . ⊗̂πℓp

contains a complemented subspace isomorphic to ℓr⊗̂πℓp. Hence it follows that

(ℓp⊗̂π
(k+1). . . ⊗̂πℓp)

′ = L(k+1ℓp) = Ls(k+1ℓp) = P(k+1ℓp)

contains a complemented subspace isomorphic to

(ℓr⊗̂πℓp)
′ = L(ℓr, ℓp) = L(ℓr; ℓp′).

Since r 6 p/(p − 1) = p′, it follows from Proposition 2.2 that L(ℓr; ℓp′) contains

a complemented subspace isomorphic to L(ℓ2; ℓ2). Hence P(k+1ℓp) contains a com-

plemented subspace isomorphic to L(ℓ2; ℓ2). Hence P(nℓp) contains a complemented

subspace isomorphic to L(ℓ2; ℓ2) for every n > k + 1, and therefore for every n > p.

�

Remark 3.3. As pointed out by the second author in [20], page 25, if 1 < p < ∞

and n < p, then P(nℓp) is a reflexive Banach space with a Schauder basis. In

particular, the restriction n > p in Theorem 3.2 cannot be deleted. Indeed, every

P ∈ P(nℓp) is weakly sequentially continuous, by [24], page 178. Hence P(nℓp) is

reflexive, by [10], Proposition 2.30, and has a Schauder basis, by [1], Theorem 8.
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Theorem 3.2 proves a conjecture of the second author in [20], page 25.

By using Proposition 2.3 instead of Proposition 2.1 the proof of Theorem 3.1 can

be easily adapted to prove the following more general result. We leave the details to

the reader.

Theorem 3.4. If E is stable and contains a complemented subspace isomorphic

to ℓ2, then P(nE) contains a complemented subspace isomorphic to L(ℓ2; ℓ2) for

every n > 2. In particular, P(nE) does not have the approximation property for

every n > 2.

4. Spaces of holomorphic functions

Let H(U) denote the vector space of all complex-valued holomorphic functions on

an open subset U of a complex Banach space E. Let τ0 denote the compact-open

topology, let τω denote the compact-ported topology introduced by Nachbin [22],

and let τδ denote the bornological topology introduced independently by Coeuré [5]

and Nachbin [21]. We refer to [10] for background information on these topologies.

The study of the approximation property on (H(U), τ0), (H(U), τω) and (H(U), τδ)

was initiated in 1976 by Aron and Schottenloher [3]. They restricted mainly to the

case where U = E or where U is a balanced open set. In the articles [11], [12] and

[13] Dineen and Mujica extended some of the results of Aron and Schottenloher to

the case where U is an arbitrary open set, or where U is at least pseudoconvex. In

particular, Dineen and Mujica have given sufficient conditions on E and U for the

spaces (H(U), τ0), (H(U), τω) and (H(U), τδ) to have the approximation property.

In this section we give some counterexamples to the approximation property for the

spaces (H(U), τω) and (H(U), τδ). Indeed, since P(nE) is a complemented subspace

of (H(U), τω) and (H(U), τδ), Theorems 3.1 and 3.2 immediately imply the following

theorems.

Theorem 4.1. If U ⊂ Lp[0, 1], where 1 < p < ∞, then neither (H(U), τω) nor

(H(U), τδ) have the approximation property.

Theorem 4.2. If U ⊂ ℓp, where 1 < p < ∞, then neither (H(U), τω) nor

(H(U), τδ) have the approximation property.

Acknowledgement. The authors are indebted to Geraldo Botelho, José Ansemil

and Socorro Ponte for several helpful comments.

372



References

[1] R. Alencar: On reflexivity and basis for P (mE). Proc. R. Ir. Acad., Sect. A 85 (1985),
131–138.

[2] A. Arias, J. D. Farmer: On the structure of tensor products of lp-spaces. Pac. J. Math.
175 (1996), 13–37.

[3] R. M. Aron, M. Schottenloher: Compact holomorphic mappings on Banach spaces and
the approximation property. J. Funct. Anal. 21 (1976), 7–30.

[4] S. Banach: Théorie des Opérations Linéaires. Chelsea Publishing Co., New York, 1955.
(In French.)

[5] G. Coeuré: Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et
applications a l’étude des fonctions analytiques. Ann. Inst. Fourier 20 (1970), 361–432.
(In French.)

[6] A. Defant, K. Floret: Tensor Norms and Operator Ideals. North-Holland Mathematics
Studies 176, North-Holland, Amsterdam, 1993.

[7] J. C. Díaz, S. Dineen: Polynomials on stable spaces. Ark. Mat. 36 (1998), 87–96.
[8] J. Diestel, H. Jarchow, A. Tonge: Absolutely Summing Operators. Cambridge Studies in
Advanced Mathematics 43, Cambridge Univ. Press, Cambridge, 1995.

[9] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15, American Mathe-
matical Society, Providence, 1977.

[10] S. Dineen: Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in
Mathematics, Springer, London, 1999.

[11] S. Dineen, J. Mujica: The approximation property for spaces of holomorphic functions
on infinite dimensional spaces. III. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat.,
RACSAM 106 (2012), 457–469.

[12] S. Dineen, J. Mujica: The approximation property for spaces of holomorphic functions
on infinite dimensional spaces. II. J. Funct. Anal. 259 (2010), 545–560.

[13] S. Dineen, J. Mujica: The approximation property for spaces of holomorphic functions
on infinite-dimensional spaces. I. J. Approx. Theory 126 (2004), 141–156.

[14] P. Enflo: A counterexample to the approximation problem in Banach spaces. Acta Math.
130 (1973), 309–317.

[15] K. Floret: Natural norms on symmetric tensor products of normed spaces. Proceedings
of the Second International Workshop on Functional Analysis, Trier, 1997. Note Mat. 17

(1997), 153–188.
[16] B. R. Gelbaum, J. G. de Lamadrid: Bases of tensor products of Banach spaces. Pac.

J. Math. 11 (1961), 1281–1286.
[17] G. Godefroy, P. D. Saphar : Three-space problems for the approximation properties.

Proc. Am. Math. Soc. 105 (1989), 70–75.
[18] A. Grothendieck: Produits Tensoriels Topologiques et Espaces Nucléaires. Mem. Am.

Math. Soc. 16 (1955), 140 pages. (In French.)
[19] J. Mujica: Complex Analysis in Banach Spaces. Holomorphic Functions and Domains of

Holomorphy in Finite and Infinite Dimensions. North-Holland Math. Stud. 120. Notas
de Matemática 107, North-Holland, Amsterdam, 1986.

[20] J. Mujica: Spaces of holomorphic functions and the approximation property. Lecture
Notes, Universidad Complutense de Madrid, 2009.

[21] L. Nachbin: Sur les espaces vectoriels topologiques d’applications continues. C. R. Acad.
Sci., Paris, Sér. A 271 (1970), 596–598. (In French.)

[22] L. Nachbin: On the topology of the space of all holomorphic functions on a given open
subset. Nederl. Akad. Wet., Proc., Ser. A 70, Indag. Math. 29 (1967), 366–368.
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