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Abstract. The imbalance of an edge e = {u, v} in a graph is defined as i(e) = |d(u)−d(v)|,
where d(·) is the vertex degree. The irregularity I(G) of G is then defined as the sum of
imbalances over all edges of G. This concept was introduced by Albertson who proved that
I(G) 6 4n3/27 (where n = |V (G)|) and obtained stronger bounds for bipartite and triangle-
free graphs. Since then a number of additional bounds were given by various authors. In
this paper we prove a new upper bound, which improves a bound found by Zhou and Luo
in 2008. Our bound involves the Laplacian spectral radius λ.
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1. Introduction

Albertson [2] has defined the irregularity of a graph G as:

I(G) =
∑

(u,v)∈E(G)

|d(u)− d(v)|,

where d(u) is the degree of vertex u. Clearly I(G) is zero if and only if G is regular

and for non-regular graphs I(G) is a measure of the defect of regularity. Albertson

proved the following upper bound:

(1.1) I(G) 6
4n3

27
.

Abdo, Cohen and Dimitrov [1] improved Albertson’s bound:

(1.2) I(G) 6
⌊n

3

⌋⌈2n

3

⌉(⌈2n

3

⌉

− 1
)

.
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Additional upper bounds on I(G) have been given by various authors: Hansen

and Mélot [5], Henning and Rautenbach [6], Zhou and Luo [10], and Fath-Tabar [3].

These bounds are, strictly speaking, noncomparable but the bound of Zhou and Luo

seems to be much sharper than the others for most graphs. We obtain here a new

upper bound which is always less than the Zhou-Luo bound or equal to it.

To state the results, let us define the quantity ZG =
∑

u∈V (G)

d(u)2. It is sometimes

called the first Zagreb index of G (cf. [3]).

Theorem 1.1 ([10], Theorem 1). Let G be a graph on n vertices and with m

edges. Then:

I(G) 6
√

m(nZG − 4m2).

Let us now recall the definition of the Laplacian matrix L of the graph G = (V,E)

whose vertices are labelled {1, 2, . . . , n}:

Lij =















−1 if (i, j) ∈ E,

0 if (i, j) /∈ E and i 6= j,

− ∑

k 6=i

Lik if i = j.

It is obvious from the definition that L is a positive semidefinite matrix. Surveys

of its variegated and fascinating properties can be found in [8], [9]. One simple fact

will be germane to us here: the largest eigenvalue λmax of L satisfies λmax 6 n.

We can now state our new result which is clearly an improvement upon the Zhou-

Luo bound:

Theorem 1.2. Let G be a graph on n vertices and with m edges. Then:

(1.3) I(G) 6
√

m(nZG − 4m2)(λmax/n).

2. Proof of the main result

The quadratic form defined by L has the following useful expression (where we

identify the vector x ∈ R
n with a function x : V (G) → R):

(2.1) xTLx =
∑

(u,v)∈E(G)

(x(u)− x(v))2.

We also need Fiedler’s [4] well-known characterization of λmax:
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Lemma 2.1.

λmax = 2nmax
x

∑

(u,v)∈E(G)

(x(u) − x(v))2

∑

u∈V (G)

∑

v∈V (G)

(x(u)− x(v))2
,

where x is a nonconstant vector.

P r o o f of Theorem 1.2. The first step is to apply the Cauchy-Schwarz inequality:

(2.2) I(G) =
∑

(u,v)∈E(G)

|d(u)− d(v)| 6
√
m

√

∑

(u,v)∈E(G)

(d(u)− d(v))2.

In light of (2.1) we have:

I(G) 6
√

m
√

dTLd.

We now turn to estimate dTLd using Lemma 2.1 and Lagrange’s identity:

dTLd 6
λmax

2n

∑

u∈V (G)

∑

v∈V (G)

(d(u)− d(v))2

=
λmax

n

[

n
∑

v∈V (G)

d(u)2 −
(

∑

v∈V (G)

d(v)

)2]

.

Clearly, the latter expression is equal to

λmax

n
(nZG − 4m2).

�

3. An example

Consider the yoke graph G = Yn1,n2
which consists of two cycles of lengths n1

and n2 (n1 + n2 = n), connected by an edge. It is not hard to see that in this case

I(G) = 4.

Figure 1. The graph Y7,5.
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In order to compare the bounds given by Theorems 1.1 and 1.2 we observe that:

m = n+ 1, ZG = 4n+ 10.

Therefore, the bound given by Theorem 1.1 is:

(3.1) I(G) 6
√

2(n+ 1)(n− 2) = Θ(n).

To estimate λmax we can use a result due to Merris [7]. To state it, we define m(v)

to be the average degree of the neighbours of a vertex v.

Lemma 3.1 ([7]). λmax 6 max{d(v) +m(v); v ∈ V (G)}.

Using this lemma we obtain that λmax 6 16/3 for any yoke graph and therefore

the bound of Theorem 1.2 is at least as good as:

(3.2) I(G) 6

√

32

3

(n+ 1)(n− 2)

n
= Θ(

√
n).

Obviously, (3.2) is much nearer to the true value of I(G) than (3.1), although it

still leaves something to be desired.

4. Another example—trees

We wish now to compare Theorem 1.2 to a specialized result of Zhou and Luo

which gives a diffferent and very interesting bound for trees.

Theorem 4.1 ([10], Theorem 4). Let T be a tree with p pendant vertices. Then

I(G) 6 p(p− 1).

Before reporting a comparison between the two bounds, we wish to point out

that by an observation of Albertson ([2], Corollary 5) I(G) must be an even integer.

Therefore, any upper bound on I(G) can be replaced by the largest even integer not

exceeding it.

We have computed the bounds of Theorem 1.2 (truncated to an even integer, as

explained above) and of Theorem 4.1 (which always produces even integers) for the

106 non-isomorphic trees on ten vertices. The summary of the results is:

⊲ For 46 trees Theorem 1.2 is better than Theorem 4.1.

⊲ For 18 trees both bounds agree.

⊲ For 42 trees Theorem 4.1 is better than Theorem 1.2.
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To take some specific examples, consider first the tree in Figure 2. It is easy to

compute that I(T15) = 22. Since the graph has 7 pendant vertices, Theorem 4.1

yields the estimate I(T15) 6 42. On the other hand, the right-hand side of (1.3) is

27.8614 and so Theorem 1.2 gives us the estimate I(G) 6 26.

Figure 2. The tree T15.

On the other hand, if we take the path Pn on n vertices, then I(G) = 2 and this

value coincides with the bound of Theorem 4.1 since p = 2 in this case. However,

Theorem 1.2 gives a poor estimate in this case—we have m = n− 1, ZG = 4n− 6,

and λmax = 2(1+cos (π/n)). Since λmax tends to 4 as n grows, we can calculate that

the right-hand side of (1.3) tends to
√

8(n− 1)(n− 2)/n = Θ(
√
n).
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