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SMALL DISCRIMINANTS OF COMPLEX MULTIPLICATION

FIELDS OF ELLIPTIC CURVES OVER FINITE FIELDS

Igor E. Shparlinski, Sydney

(Received March 13, 2014)

Abstract. We obtain a conditional, under the Generalized Riemann Hypothesis, lower
bound on the number of distinct elliptic curves E over a prime finite field Fp of p el-
ements, such that the discriminant D(E) of the quadratic number field containing the
endomorphism ring of E over Fp is small. For almost all primes we also obtain a similar
unconditional bound. These lower bounds complement an upper bound of F. Luca and
I. E. Shparlinski (2007).
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1. Introduction

1.1. Motivation and background. Let p > 3 be prime and let E be an elliptic

curve over the field Fp of p elements given by an affine Weierstrass equation of the

form

(1.1) y2 = x3 + ax+ b,

with coefficients a, b ∈ Fp such that 4a
3+27b2 6= 0. In particular, there are p2+O(p)

suitable equations of the form (1.1). Furthermore, they generate 2p+O(1) distinct

(that is, non-isomorphic over Fp) curves, and for most of the curves there are exactly

(p− 1)/2 distinct equations (1.1), see [6] for a discussion of these properties.

We recall that the set E(Fp) of Fp-rational points on any elliptic curve E forms

an Abelian group (with a point at infinity as the identity element) of order which

satisfies the Hasse-Weil bound

|#E(Fp)− p− 1| 6 2p1/2.

We refer to [10] for these and some other general properties of elliptic curves.
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Moreover, we now define the trace of Frobenius of E as t(E) = p + 1 −#E(Fp).

We recall that the polynomial X2− t(E)X+p is called the characteristic polynomial

of E and plays an important role in the description of various properties of E. For

example, it is also the characteristic polynomial of the Frobenius automorphism

on E; that is, the p-th power automorphism. Furthermore, the quadratic field KE =

Q(
√

t(E)2 − 4p) contains the ring of endomorphisms of E over Fp which is called

the complex multiplication field of E.

In fact, writing

t(E)2 − 4p = −d(E)2D(E)

with some integers d(E) and D(E), where D(E) is square-free, we see that KE =

Q(
√

−D(E)) and one of −D(E) or −4D(E) is the discriminant of KE (see [10]).

Thus both d(E) and D(E) have recently been intensively studied, see [1], [2], [3], [7],

[9] and references therein. For example, let Np(∆) be the number of pairs (a, b) ∈ F2
p

for which d(E) > ∆ for the curve E given by (1.1). It has been shown in [7] that for

any ∆ > (log p)2 we have

(1.2) Np(∆) = O
(p2(log p)2

∆

)

.

1.2. Our results. Here we are interested in obtaining a lower bound onNp(∆). In

fact, for ∆ 6 p1/4 our bounds match (1.2) almost precisely. To derive such a lower

bound for every prime we need to assume the Generalized Riemann Hypothesis

(GRH). However, we obtain a similar unconditional result that holds for almost all

primes.

Throughout the paper, the implied constants in the symbols “O”, “≪” and “≫”

may occasionally depend on the real parameter ε > 0 and are absolute otherwise.

We recall that both A ≪ B and B ≫ A are equivalent to A = O(B).

Theorem 1.1. Assuming the GRH, for any positive ∆ 6 p1/4 we have

Np(∆) ≫
p2

∆ log p log log p
.

Furthermore, for almost all p we obtain an unconditional version of Theorem 1.1.

Theorem 1.2. For a sufficiently large real T > 2 and any real ∆ with 2 6 ∆ 6

T 1/4, for all but O(T∆−1 log∆) primes p 6 T we have

Np(∆) ≫
p2

∆(log p)2
.
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Clearly Theorem 1.2 is nontrivial only if ∆ grows with T and satisfies

∆

logT log log T
→ ∞

as T → ∞.

2. Preliminaries

2.1. Bounds of character sums. Let, as usual, Λ(v) denote the von Mangoldt

function given by

Λ(v) =

{

log l if v is a power of a prime l,

0 if v is not a prime power.

We start with the following bound of Legendre symbols, which can be found in [8],

Chapter 13.

Lemma 2.1. Assuming the GRH, for any real L > 1 we have

∑

v∈[L,2L]

(

1−
v

L

)

Λ(v)
(p

v

)

= O(L1/2 log p).

Note that the sum of Lemma 2.1 slightly differs from the traditional sum with

the Legendre symbols (v/p). However, it is easy to see that (p/v) is multiplicative

character modulo 4p.

A simple combinatorial argument now implies the following statement:

Corollary 2.2. Assuming the GRH, there are absolute constants C, c > 0 that

for L > C(log p)2 there are at least cL/ logL primes l ∈ [L, 2L] with

(p

l

)

= 1.

The following statement is well-known and follows immediately from the Pólya-

Vinogradov inequality, see [4], Theorem 12.5. As usual, we use π(x) to denote the

number of primes p 6 x.
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Lemma 2.3. Let T > 2L > 1 be sufficiently large real numbers. For all but

O(TL−1 logL + L logL) primes p ∈ [T, 2T ], there are at least 1
3L logL primes l ∈

[L, 2L] with
(p

l

)

= 1.

P r o o f. Let L be the set of primes l ∈ [L, 2L] and let P be the set of primes

p ∈ [T, 2T ] such that
(p

l

)

= 1, l ∈ L

for less than 1
3L logL primes l ∈ [L, 2L].

Note that the sets P and L are disjoint. Hence, by the prime number theorem,

for every p ∈ P ,

∑

l∈L

(p

l

)

6 −
(

#L −
L

3
logL

)

+
L

3
logL 6

(1

3
+O(1)

)

#L

as L → ∞. So, for the double sum

W 6
∑

p∈P

∣

∣

∣

∣

∑

l∈L

(p

l

)

∣

∣

∣

∣

we have

(2.1) W >
1

4
#L#P ,

provided L is large enough.

Using the Cauchy inequality and expanding the summation to all integers k ∈

[T, 2T ] we derive

(2.2) |W |2 6 #P
∑

p∈P

∣

∣

∣

∣

∑

l∈L

(p

l

)

∣

∣

∣

∣

2

6 #P
∑

k∈[T,2T ]

∣

∣

∣

∣

∑

l∈L

(k

l

)

∣

∣

∣

∣

2

.

Now squaring out and changing the order of summations, we obtain

W 2 6 #P
∑

l1,l2∈L

∑

k∈[T,2T ]

( k

l1l2

)

.

Finally, estimating the inner sum trivially for l1 = l2 and using the Pólya-Vinogradov

inequality for l1 6= l2, see [4], Theorem 12.5, we derive

(2.3) W 2 ≪ #P(#LT +#L2L logL).

Comparing (2.1) and (2.3) and using the prime number theorem, we obtain

(#L#P)2 ≪ #P(#LT +#L2L logL).

So the desired result follows. �
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Note that using the Burgess bound, see [4], Theorem 12.6, in the proof of

Lemma 2.3 one can obtain a series of other estimates. See also the comments

in Section 4.

2.2. Hilbert class numbers and the distribution of the number of Fq

rational points on elliptic curves. We recall that two elliptic curves are isogenous

over Fp if they have the same number of Fp-rational points and thus have the same

trace of Frobenius.

We need bounds of Lenstra [6] on the number of curves (1.1) in the same isogeny

class over Fp, which we formulate in the following form convenient for our applica-

tions.

For a set of integers N we use Mp(N ) to denote the number of pairs (a, b) ∈ F2
p

such that for the corresponding curve (1.1) we have #E(Fp) ∈ N .

The following two statements are direct combinations of the arguments of Len-

stra [6], Sections 1.6 and 1.9.

Lemma 2.4. Assuming the GRH, for any set of integers N ⊆ [p− p1/2, p+ p1/2]

we have

Mp(N ) ≫
#Np3/2

log log p
.

Lemma 2.5. For any set of integersN ⊆ [p−p1/2, p+p1/2] of cardinality#N > 3

we have

Mp(N ) ≫
#Np3/2

log p
.

3. Proofs of the main results

P r o o f of Theorem 1.1. By Corollary 2.2, we can find a set R of at least #R ≫

∆/ log∆ primes l ∈ [∆, 2∆] for which p is a quadratic residue. Thus the congru-

ence 4p ≡ u2 (mod l) has a solution u. Using the Hensel lifting, we can now find

a solution s, 0 6 s 6 l2 − 1, to the congruence 4p ≡ s2 (mod l2). So, provided that

∆ 6 p1/4, there are

(3.1)
2p1/2

l2
+O(1) ≫ p1/2∆−2

integers N ∈ [p− p1/2, p+ p1/2] that satisfy the congruences

N − p− 1 ≡ s (mod l2).
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Clearly the number N ∈ [p− p1/2, p+ p1/2] may come from at most

(3.2) M ≪
log p

log∆

distinct primes l ∈ R. Thus, the bounds (3.1) and (3.2) imply that the above

construction produces a set N of integers N ∈ [p− p1/2, p+ p1/2] of cardinality

#N ≫ #RM−1p1/2∆−2 ≫
p1/2

∆ log p

such that for t = N − p− 1 we have

(3.3) t2 − 4p ≡ s2 − 4p ≡ 0 (mod l2).

By Lemma 2.4, this leads to

#Np3/2

log log p
≫

p2

∆ log p log log p

non-isomorphic curves E over Fp with p+ 1 − t(E) ∈ N and thus by (3.3) we have

d(E) > ∆. �

P r o o f of Theorem 1.2. We first discard

O(T∆−1 log∆ +∆ log∆) = O(T∆−1 log∆)

(as ∆ 6 T 1/4) primes p 6 T , described in Lemma 2.3.

After this the proof is identical to that of Theorem 1.1, except that we use the

unconditional bound of Lemma 2.5. This leads to

#Np3/2

log p
≫

p2

∆(log p)2

non-isomorphic curves E over Fp with #E(Fp) ∈ N and thus by (3.3) we have

d(E) > ∆. �
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4. Remarks

Note that the bound with d(E) > ∆ immediately implies the upper bound on

D(E) ≪ p/∆2. Curves with small Frobenius discriminants can be of interest because

the degree and the height of the coefficients of the Hilbert class polynomial HD(E)(Z)

are smaller than their “generic values”. Counting such curves can be of independent

interest. Note that one of the approaches is to try to make the value of |t(E)2 − 4p|

small. For this one can take values of t close to 2p1/2. For instance, if |2p1/2 −

t(E)| 6 h then D(E) 6 |t(E)2 − 4p| ≪ hp1/2. However, this approach seems to

produce fewer curves than that based on Theorems 1.1 and 1.2. This is because

there are very few curves in isogeny classes with traces close to 2p1/2 (or to −2p1/2).

Actually this is exactly the reason why in Lemmas 2.4 and 2.5 only the middle half

of the Hasse-Weil interval [p− 2p1/2, p+ 2p1/2] is considered.

Unfortunately, our approach does not work for ∆ > p1/4 and it is certainly inter-

esting to obtain a lower bound on Np(∆) for larger values of ∆, preferably all the

way up its natural limit ∆ 6 2p1/2.

As we have mentioned, Theorem 1.2 is nontrivial only if ∆ is of order at least

logT log logT . It is quite plausible that using the ideas of Konyagin and Shparlin-

ski [5], one can lower this limit. The idea is, instead of extending the summation to all

integers k ∈ [T, 2T ] in (2.2), we extend it only to a sparse set of integers k ∈ [T, 2T ],

free of small prime divisors. Then sieving arguments are used to estimate nontrivial

character sums along these integers, while the trivial sums are now smaller (as the

set of k is now smaller as well).
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