Takao Ohno; Tetsu Shimomura
Musielak-Orlicz-Sobolev spaces on metric measure spaces

Persistent URL: http://dml.cz/dmlcz/144281

Terms of use:

© Institute of Mathematics AS CR, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz
MUSIELAK-ORLICZ-SOBOLEV SPACES
ON METRIC MEASURE SPACES

TAKAO OHNO, Ōita, TETSU SHIMOMURA, Hiroshima

(Received April 11, 2014)

Abstract. Our aim in this paper is to study Musielak-Orlicz-Sobolev spaces on metric measure spaces. We consider a Hajłasz-type condition and a Newtonian condition. We prove that Lipschitz continuous functions are dense, as well as other basic properties. We study the relationship between these spaces, and discuss the Lebesgue point theorem in these spaces. We also deal with the boundedness of the Hardy-Littlewood maximal operator on Musielak-Orlicz spaces. As an application of the boundedness of the Hardy-Littlewood maximal operator, we establish a generalization of Sobolev’s inequality for Sobolev functions in Musielak-Orlicz-Hajłasz-Sobolev spaces.

Keywords: Sobolev space; metric measure space; Sobolev’s inequality; Hajłasz-Sobolev space; Newton-Sobolev space; Musielak-Orlicz space; capacity; variable exponent

MSC 2010: 46E35, 31B15

1. Introduction

Sobolev spaces on metric measure spaces have been studied during the last two decades, see e.g. [6], [21], [23], [33], [51]. The theory was generalized to Orlicz-Sobolev spaces on metric measure spaces in [4], [5], [53]. We refer to [2], [3], [15], [54] for Sobolev spaces on \mathbb{R}^N, [9], [14] for variable exponent Sobolev spaces, [50] for Musielak-Orlicz spaces, [16] for the study of differential equations of divergence form in Musielak-Sobolev spaces and [17] for the study of uniform convexity of Musielak-Orlicz-Sobolev spaces and its applications to variational problems. In the last decade, variable exponent Sobolev spaces on metric measure spaces have been developed, see

The first author was partially supported by Grant-in-Aid for Young Scientists (B), No. 23740108, Japan Society for the Promotion of Science. The second author was partially supported by Grant-in-Aid for Scientific Research (C), No. 24540174, Japan Society for the Promotion of Science.
The purpose of this paper is to define Musielak-Orlicz-Sobolev spaces on metric measure spaces and prove the basic properties of such spaces.

There are two ways to define first order Sobolev spaces on metric measure spaces. Hajłasz [21] showed that a p-integrable function u, $1 < p < \infty$, belongs to $W^{1,p}(\mathbb{R}^N)$ if and only if there exists a nonnegative p-integrable function g such that

$$\left| u(x) - u(y) \right| \leq |x - y|(g(x) + g(y))$$

for almost every $x, y \in \mathbb{R}^N$. If we replace $|x - y|$ by the distance of the points x and y, (1.1) can be stated in metric measure spaces. Spaces defined using (1.1) are called Hajłasz-Sobolev spaces. See also [23], [33]. The theory was generalized to Orlicz-Sobolev spaces by Aissaoui (see [4], [5]). For the Sobolev capacity on Hajłasz-Sobolev spaces, see [38]. By the classical Lebesgue differentiation theorem, almost every point is a Lebesgue point for a locally integrable function. For the Lebesgue point theorem in Hajłasz-Sobolev spaces, we refer the reader to [36].

Another way is to use weak upper gradients. A nonnegative Borel measurable function h is said to be an upper gradient of u if

$$\left| u(x) - u(y) \right| \leq \int_{\gamma} h \, ds$$

for every x, y and every curve γ connecting x to y. Upper gradients were introduced by Heinonen and Koskela [34] as a tool to study quasiconformal maps. If (1.2) holds for a function u on every curve not belonging to an exceptional family of p-modulus zero in metric measure spaces, we call h a weak upper gradient of u. We call these spaces Newtonian spaces or Newton-Sobolev spaces. The study of Newton-Sobolev spaces was initiated by Shanmugalingam [51]. See also [6]. The theory was generalized to Orlicz-Sobolev spaces by Tuominen [53].

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to discuss nonlinear partial differential equations with non-standard growth conditions (see [9], [14]). See also [24], [27]. Harjulehto, Hästö and Pere [31] studied basic properties of the variable exponent Hajłasz-Sobolev space and the variable exponent Newton-Sobolev space. For the Lebesgue point theorem in variable exponent spaces, see e.g. [25].

The Hardy-Littlewood maximal operator is a classical tool in harmonic analysis and the study of Sobolev functions and partial differential equations, and plays a central role in the study of differentiation, singular integrals, smoothness of functions and so on (see e.g. [7], [35], [41], [52]). It is well known that the Hardy-Littlewood maximal operator is bounded on the Lebesgue space $L^p(\mathbb{R}^N)$ if $p > 1$ (see [52]).
See e.g. [8] for Orlicz spaces, [10], [12] for variable exponent Lebesgue spaces $L^{p(\cdot)}$, [42], [47] for the two variable exponents spaces $L^{p(\cdot)(\log L)^{q(\cdot)}}$. These spaces are special cases of so-called Musielak-Orlicz spaces [44], [50]. For general Musielak-Orlicz spaces, see [11]. In bounded doubling metric measure spaces, the boundedness of the Hardy-Littlewood maximal operator on variable exponent Lebesgue spaces $L^{p(\cdot)}$ was studied in [20], [32]. See also [1].

One of the important applications of the boundedness of the Hardy-Littlewood maximal operator is Sobolev’s inequality; in the classical case,
\[
\|I_\alpha \ast f\|_{L^{p^*}(\mathbb{R}^N)} \leq C \|f\|_{L^p(\mathbb{R}^N)}
\]
for $f \in L^p(\mathbb{R}^N)$, $0 < \alpha < N$ and $1 < p < N/\alpha$, where I_α is the Riesz kernel of order α and $1/p^* = 1/p - \alpha/N$ (see e.g. [2], Theorem 3.1.4). This result was extended to Orlicz spaces in [8], [48]. In Euclidean setting, variable exponent versions were discussed e.g. in [13], [39], [40], [44], [47]. For variable exponent versions on metric measure spaces, see e.g. [20], [28].

In this paper, we define Musielak-Orlicz-Newton-Sobolev spaces as well as Musielak-Orlicz-Hajłasz-Sobolev spaces on metric measure spaces and prove the basic properties of such spaces.

The paper is organized as follows. In Section 2, we define Musielak-Orlicz spaces on metric measure spaces.

In Section 3, we study basic properties of Musielak-Orlicz-Hajłasz-Sobolev spaces. We show that Lipschitz continuous functions are dense and study a related Sobolev-type capacity. We prove that every point except for a small set is a Lebesgue point for Sobolev functions in Musielak-Orlicz-Hajłasz-Sobolev spaces.

In Section 4, we study basic properties of Musielak-Orlicz-Newton-Sobolev spaces. We show that Lipschitz continuous functions are dense if the measure is doubling and study a related Sobolev-type capacity. We discuss the Lebesgue point theorem in Musielak-Orlicz-Newton-Sobolev spaces.

In Section 5, we study the relationship between Musielak-Orlicz-Hajłasz-Sobolev spaces and Musielak-Orlicz-Newton-Sobolev spaces in a metric measure space (see Theorem 5.4).

In Section 6, we show that the Hardy-Littlewood maximal operator is bounded on Musielak-Orlicz spaces in our setting (see Theorem 6.3).

In Section 7, as an application of the boundedness of the Hardy-Littlewood maximal operator, we give a general version of Sobolev’s inequality for Sobolev functions in Musielak-Orlicz-Hajłasz-Sobolev spaces (see Theorem 7.7). In such a general setting, we can obtain new results (e.g., Corollaries 7.6 and 7.8).

In Section 8, we discuss Fuglede’s theorem for Musielak-Orlicz-Sobolev spaces in Euclidean setting.
2. Musielak-Orlicz spaces

Throughout this paper, let C denote positive constant independent of the variables in question.

We denote by (X, d, μ) a metric measure space, where X is a set, d is a metric on X and μ is a nonnegative complete Borel regular outer measure on X which is finite in every bounded set. For simplicity, we often write X instead of (X, d, μ). For $x \in X$ and $r > 0$, we denote by $B(x, r)$ the open ball centered at x with radius r, and $d_{\Omega} = \sup \{d(x, y) : x, y \in \Omega\}$ for a set $\Omega \subset X$.

For a measurable function $Q(\cdot)$ satisfying

$$0 < Q^- := \inf_{x \in X} Q(x) \leq \sup_{x \in X} Q(x) =: Q^+ < \infty,$$

we say that a measure μ is lower Ahlfors $Q(x)$-regular if there exists a constant $c_0 > 0$ such that

$$\mu(B(x, r)) \geq c_0 r^{Q(x)}$$

for all $x \in X$ and $0 < r < d_X$. Further, μ is Ahlfors $Q(x)$-regular if there exists a constant $c_1 > 0$ such that

$$c_1^{-1} r^{Q(x)} \leq \mu(B(x, r)) \leq c_1 r^{Q(x)}$$

for all $x \in X$ and $0 < r < d_X$. We say that the measure μ is a doubling measure, if there exists a constant $c_2 > 0$ such that $\mu(B(x, 2r)) \leq c_2 \mu(B(x, r))$ for every $x \in X$ and $0 < r < d_X$. We say that X is a doubling space if μ is a doubling measure.

We consider a function $\Phi(\cdot)$ satisfying

$$\Phi(x, t) = t\phi(x, t) : X \times [0, \infty) \to [0, \infty)$$

satisfying the following conditions (Φ1)–(Φ4):

(Φ1) $\phi(\cdot, t)$ is measurable on X for each $t \geq 0$ and $\phi(x, \cdot)$ is continuous on $[0, \infty)$ for each $x \in X$;
(Φ2) there exists a constant $A_1 \geq 1$ such that $A_1^{-1} \leq \phi(x, 1) \leq A_1$ for all $x \in X$;
(Φ3) $\phi(x, \cdot)$ is uniformly almost increasing, namely, there exists a constant $A_2 \geq 1$ such that $\phi(x, t) \leq A_2 \phi(x, s)$ for all $x \in X$ whenever $0 \leq t < s$;
(Φ4) there exists a constant $A_3 > 1$ such that $\phi(x, 2t) \leq A_3 \phi(x, t)$ for all $x \in X$ and $t > 0$.

Note that (Φ2), (Φ3) and (Φ4) imply $0 < \inf_{x \in X} \phi(x, t) \leq \sup_{x \in X} \phi(x, t) < \infty$ for each $t > 0$. 438
Let $\bar{\phi}(x,t) = \sup_{0 \leq s \leq t} \phi(x,s)$ and
\[
\Phi(x,t) = \int_0^t \bar{\phi}(x,r) \, dr
\]
for $x \in X$ and $t \geq 0$. Then $\Phi(x, \cdot)$ is convex and
\[
(2.1) \quad \frac{1}{2A_3} \Phi(x,t) \leq \Phi(x,t) \leq A_2 \Phi(x,t)
\]
for all $x \in X$ and $t \geq 0$.

By (Φ3), we see that
\[
(2.2) \quad \Phi(x,at) = \begin{cases}
A_2 a \Phi(x,t) & \text{if } 0 \leq a \leq 1, \\
A_2^{-1} a \Phi(x,t) & \text{if } a \geq 1.
\end{cases}
\]

We shall also consider the following conditions:

(Φ5) for every $\gamma_1, \gamma_2 > 0$, there exists a constant $B_{\gamma_1, \gamma_2} \geq 1$ such that $\phi(x,t) \leq B_{\gamma_1, \gamma_2} \phi(y,t)$, whenever $d(x,y) \leq \gamma_1 t^{-1/\gamma_2}$ and $t \geq 1$;

(Φ6) there exist $x_0 \in X$, a function $g \in L^1(X)$ and a constant $B_\infty \geq 1$ such that $0 \leq g(x) < 1$ for all $x \in X$ and $B_\infty^{-1} \Phi(x,t) \leq \Phi(x',t) \leq B_\infty \Phi(x,t)$, whenever $d(x',x_0) \geq d(x,x_0)$ and $g(x) \leq t \leq 1$.

Example 2.1. Let $p(\cdot)$ and $q_j(\cdot)$, $j = 1, \ldots, k$, be measurable functions on X such that

(P1) $1 < p^- := \inf_{x \in X} p(x) \leq \sup_{x \in X} p(x) =: p^+ < \infty$

and

(Q1) $-\infty < q_j^- := \inf_{x \in X} q_j(x) \leq \sup_{x \in X} q_j(x) =: q_j^+ < \infty$

for all $j = 1, \ldots, k$.

Set $L_c(t) = \log(c + t)$ for $c \geq e$ and $t \geq 0$, $L_c^{(1)}(t) = L_c(t)$, $L_c^{(j+1)}(t) = L_c(L_c^{(j)}(t))$ and
\[
\Phi(x,t) = t^{p(x)} \prod_{j=1}^k (L_c^{(j)}(t))^{q_j(x)}.
\]

Then, $\Phi(x,t)$ satisfies (Φ1), (Φ2), (Φ3) and (Φ4). $\Phi(x,t)$ satisfies (Φ5) if

(P2) $p(\cdot)$ is log-Hölder continuous, namely
\[
|p(x) - p(y)| \leq \frac{C_p}{L_c(1/d(x,y))}
\]
with a constant $C_p \geq 0$ and
(Q2) $q_j(\cdot)$ is $(j+1)$-log-Hölder continuous, namely

$$|q_j(x) - q_j(y)| \leq \frac{C_{q_j}}{L_c^{(j+1)}(1/d(x,y))}$$

with constants $C_{q_j} \geq 0$, $j = 1, \ldots, k$.

Example 2.2. Let $p_1(\cdot)$, $p_2(\cdot)$, $q_1(\cdot)$ and $q_2(\cdot)$ be measurable functions on X satisfying (P1) and (Q1).

Then,

$$\Phi(x,t) = (1 + t)^{p_1(x)}(1 + 1/t)^{-p_2(x)}L_c(t)^{q_1(x)}L_c(1/t)^{-q_2(x)}$$

satisfies (Φ1), (Φ2) and (Φ4). It satisfies (Φ3) if $p_j^- > 1$, $j = 1, 2$ or $q_j^- \geq 0$, $j = 1, 2$. As a matter of fact, it satisfies (Φ3) if and only if $p_j(\cdot)$ and $q_j(\cdot)$ satisfy the following conditions:

1. $q_j(x) \geq 0$ at points x where $p_j(x) = 1$, $j = 1, 2$;
2. $\sup_{\{x: p_j(x) > 1\}} \{\min(q_j(x), 0) \log(p_j(x) - 1)\} < \infty$.

Moreover, we see that $\Phi(x,t)$ satisfies (Φ5) if $p_1(\cdot)$ is log-Hölder continuous and $q_1(\cdot)$ is 2-log-Hölder continuous.

Example 2.3. Let $\Phi(\cdot, \cdot)$ be defined as in Example 2.1 and fix $x_0 \in X$. Let κ and c be positive constants. If μ satisfies $\mu(B(x_0, r)) \leq cr^\kappa$ for all $r \geq 1$ and

(P3) $p(\cdot)$ is log-Hölder continuous at ∞, namely $|p(x) - p(x')| \leq C_{p,\infty}/L_c(d(x,x_0))$

for $d(x',x_0) \geq d(x,x_0)$ with a constant $C_{p,\infty} \geq 0$,

then $\Phi(\cdot, \cdot)$ satisfies (Φ6) with $g(x) = 1/(1 + d(x,x_0))^{\kappa+1}$.

Example 2.4. Let $\Phi(\cdot, \cdot)$ be defined as in Example 2.2 and fix $x_0 \in X$. Let κ and c be positive constants. If μ satisfies $\mu(B(x_0, r)) \leq cr^\kappa$ for all $r \geq 1$, $p_2(\cdot)$ satisfies (P3) and

(Q3) $q_2(\cdot)$ is 2-log-Hölder continuous at ∞, namely $|q_2(x) - q_2(x')| \leq C_{q_2,\infty}/L_c^2(d(x,x_0))$

for $d(x',x_0) \geq d(x,x_0)$ with a constant $C_{q_2,\infty} \geq 0$,

then $\Phi(\cdot, \cdot)$ satisfies (Φ6) with $g(x) = 1/(1 + d(x,x_0))^{\kappa+1}$.

We say that u is a locally integrable function on X if u is an integrable function on all balls B in X. From now on, we assume that $\Phi(x,t)$ satisfies (Φ1), (Φ2), (Φ3) and (Φ4). Then the associated Musielak-Orlicz space

$$L^\Phi(X) = \left\{ f \in L^1_{\text{loc}}(X) : \int_X \Phi(y, |f(y)|) \, d\mu(y) < \infty \right\}$$
is a Banach space with respect to the norm
\[
\|f\|_{L_\Phi^*(X)} = \inf\left\{ \lambda > 0 : \int_X \Phi(y, |f(y)|/\lambda) \, d\mu(y) \leq 1 \right\}
\]
(cf. [50]).

For a measurable function \(f \) on \(X \), we define the modular \(\varrho_\Phi(f) \) by
\[
\varrho_\Phi(f) = \int_X \Phi(y, |f(y)|) \, d\mu(y).
\]

Lemma 2.5 ([45], Lemma 2.2, and [50], Theorem 8.14). Let \(\{f_i\} \) be a sequence in \(L_\Phi^*(X) \). Then \(\varrho_\Phi(f_i) \) converges to 0 if and only if \(\|f_i\|_{L_\Phi^*(X)} \) converges to 0.

3. MUSIELAK-ORLICZ-HAJŁASZ-SOBOLEV SPACES \(M^{1,\Phi}(X) \)

3.1. Basic properties. We say that a function \(u \in L_\Phi^*(X) \) belongs to Musielak-Orlicz-Hajłasz-Sobolev spaces \(M^{1,\Phi}(X) \) if there exists a nonnegative function \(g \in L_\Phi^*(X) \) such that
\[
|u(x) - u(y)| \leq d(x, y)(g(x) + g(y))
\]
for \(\mu \)-almost every \(x, y \in X \). Here, we call the function \(g \) a Hajłasz gradient of \(u \).

We define the norm
\[
\|u\|_{M^{1,\Phi}(X)} = \|u\|_{L_\Phi^*(X)} + \inf \|g\|_{L_\Phi^*(X)},
\]
where the infimum is taken over all Hajłasz gradients of \(u \). For the case when \(\Phi(x, t) = t^p \), the spaces \(M^{1,p}(X) \) were first introduced by P. Hajłasz [21] as a generalization of the classical Sobolev spaces \(W^{1,p}(\mathbb{R}^N) \) to the general setting of quasi-metric measure spaces. For variable exponent spaces \(M^{1,p(\cdot)}(X) \), see [31].

Since \(L_\Phi^*(X) \) is a Banach space, standard arguments yield the following propositions (see [31]).

Proposition 3.1 (cf. [31], Proposition 3.1). If \(L_\Phi^*(X) \) is reflexive, then for every \(u \in M^{1,\Phi}(X) \), there exist Hajłasz gradients of \(u \) which minimize the norm. Moreover, if \(\|\cdot\|_{L_\Phi^*(X)} \) is a uniformly convex norm, then there exists a unique Hajłasz gradient of \(u \) which minimizes the norm.

Remark 3.2. We say that \(\Phi(x, t) \) is uniformly convex on \(X \) if for any \(\varepsilon > 0 \) there exists a constant \(\delta > 0 \) such that
\[
|a - b| \leq \varepsilon \max\{|a|, |b|\} \quad \text{or} \quad \Phi\left(x, \frac{|a + b|}{2}\right) \leq (1 - \delta) \frac{\Phi(x, |a|) + \Phi(x, |b|)}{2}
\]

441
for all $a, b \in \mathbb{R}$ and $x \in X$. By [14], Section 2.4, if $\Phi(x, t)$ is uniformly convex on X, then the norm $\| \cdot \|_{L^\Phi(X)}$ is a uniformly convex norm.

Proposition 3.3 (cf. [31], Theorem 3.3). $M^{1, \Phi}(X)$ is a Banach space.

Proposition 3.4 (cf. [21], Theorem 5). For every $u \in M^{1, \Phi}(X)$ and $\varepsilon > 0$, there exists a Lipschitz function $h \in M^{1, \Phi}(X)$ such that

1. $\mu(\{x \in X : u(x) \neq h(x)\}) \leq \varepsilon$;
2. $\|u - h\|_{M^{1, \Phi}(X)} \leq \varepsilon$.

Proof. For $u \in M^{1, \Phi}(X)$, we take $g \in L^\Phi(X)$ which is a Hajłasz gradient of u. Set

$$E_\lambda = \{x \in X : |u(x)| \leq \lambda \text{ and } g(x) \leq \lambda\}.$$

Note that u is Lipschitz continuous with the constant 2λ on E_λ. By the McShane extension [46], we extend u to a Lipschitz function \bar{u} on X, where

$$\bar{u}(x) = \inf_{y \in E_\lambda} \{u(y) + 2\lambda \text{ dist}(x, y)\}.$$

We modify this extension by truncating

$$u_\lambda = (\text{sign } \bar{u}) \min\{|\bar{u}|, \lambda\}.$$

Then u_λ is Lipschitz continuous with the constant 2λ, $u = u_\lambda$ on E_λ and $|u_\lambda| \leq \lambda$. For every $\lambda > 1$, we see from (Φ2), (Φ3), (Φ4) and (2.2) that

$$\mu(\{x \in X : u(x) \neq u_\lambda(x)\}) \leq \mu(X \setminus E_\lambda)$$

$$\leq A_1 A_2 \int_{X \setminus E_\lambda} \Phi\left(x, \frac{|u(x)| + g(x)}{\lambda}\right) d\mu(x)$$

$$\leq A_1 A_2^2 \left\{ \int_{X \setminus E_\lambda} \Phi\left(x, \frac{2|u(x)|}{\lambda}\right) d\mu(x) + \int_{X \setminus E_\lambda} \Phi\left(x, \frac{2g(x)}{\lambda}\right) d\mu(x) \right\}$$

$$\leq A_1 A_3^2 \frac{2}{\lambda} \left\{ \int_{X \setminus E_\lambda} \Phi(x, 2|u(x)|) d\mu(x) + \int_{X \setminus E_\lambda} \Phi(x, 2g(x)) d\mu(x) \right\}$$

$$\leq 2 A_1 A_3^3 \frac{A_3}{\lambda} \left\{ \int_{X \setminus E_\lambda} \Phi(x, |u(x)|) d\mu(x) + \int_{X \setminus E_\lambda} \Phi(x, g(x)) d\mu(x) \right\}.$$
Hence we have \(\mu(\{x \in X : u(x) \neq u_\lambda(x)\}) \to 0 \) as \(\lambda \to \infty \). Since \(u_\lambda \leq \lambda \leq |u| + g \) in \(X \setminus E_\lambda \), we find by (Φ3) and (Φ4) that

\[
\int_X \Phi(x, |u(x) - u_\lambda(x)|) \, d\mu(x) \\
= \int_{X \setminus E_\lambda} \Phi(x, |u(x) - u_\lambda(x)|) \, d\mu(x) \\
\leq A_2 \int_{X \setminus E_\lambda} \Phi(x, |u(x)| + |u_\lambda(x)|) \, d\mu(x) \\
\leq A_2^2 \int_{X \setminus E_\lambda} \{\Phi(x, 2|u(x)|) + \Phi(x, 2|u_\lambda(x)|)\} \, d\mu(x) \\
\leq 2A_2^2 A_3 \int_{X \setminus E_\lambda} \{\Phi(x, |u(x)|) + \Phi(x, |u_\lambda(x)|)\} \, d\mu(x) \\
\leq 2A_2^2 A_3 \int_{X \setminus E_\lambda} \{\Phi(x, |u(x)|) + \Phi(x, |u(x)| + g(x))\} \, d\mu(x) \\
\leq 4A_2^2 A_3^2 \int_{X \setminus E_\lambda} \{\Phi(x, |u(x)|) + \Phi(x, |u(x)|) + \Phi(x, g(x))\} \, d\mu(x) \\
\leq 8A_2^2 A_3^2 \int_{X \setminus E_\lambda} \{\Phi(x, |u(x)|) + \Phi(x, g(x))\} \, d\mu(x).
\]

Since \(u, g \in L^\Phi(X) \) and \(\mu(X \setminus E_\lambda) \to 0 \) as \(\lambda \to \infty \), \(g_\Phi(u - u_\lambda) \) converges to 0 as \(\lambda \to \infty \). Therefore, we see from Lemma 2.5 and (2.1) that \(\|u - u_\lambda\|_{L^\Phi(X)} \) converges to 0 as \(\lambda \to \infty \).

Next we consider the function \(g_\lambda = (g + 3\lambda)\chi_{X \setminus E_\lambda} \), where \(\chi_E \) denotes the characteristic function of \(E \). Note that \(g_\lambda \) is a Hajlasz gradient of \(u - u_\lambda \). We have by (Φ3) and (Φ4) that

\[
\int_X \Phi(x, g_\lambda(x)) \, d\mu(x) = \int_{X \setminus E_\lambda} \Phi(x, g(x) + 3\lambda) \, d\mu(x) \\
\leq 8A_2 A_3^3 \int_{X \setminus E_\lambda} \{\Phi(x, g(x)) + \Phi(x, \lambda)\} \, d\mu(x) \\
\leq 8A_2^2 A_3^3 \int_{X \setminus E_\lambda} \{\Phi(x, g(x)) + \Phi(x, |u(x)| + g(x))\} \, d\mu(x) \\
\leq 32A_2^3 A_3^4 \int_{X \setminus E_\lambda} \{\Phi(x, g(x)) + \Phi(x, |u(x)|)\} \, d\mu(x)
\]

and the above discussion implies that \(\|g_\lambda\|_{L^\Phi(X)} \) converges to 0 as \(\lambda \to \infty \). Thus the proposition is proved. \(\square \)

443
For a locally integrable function u on X and a ball $B(x, r) \subset X$, we define the mean integral:

$$u_{B(x,r)} = \int_{B(x,r)} u(y) \, d\mu(y) = \frac{1}{\mu(B(x, r))} \int_{B(x,r)} u(y) \, d\mu(y).$$

We introduce a fractional sharp maximal operator. For every locally integrable function u on X, we define

$$u^\flat(x) = \sup_{r>0} \frac{1}{r} \int_{B(x,r)} |u(x) - u_{B(x,r)}| \, d\mu(x).$$

For a locally integrable function u on X, the Hardy-Littlewood maximal function $M u$ is defined by

$$M u(x) = \sup_{r>0} \frac{1}{\mu(B(x, r))} \int_{B(x,r)} |u(y)| \, d\mu(y).$$

The following is a generalization of [22], Theorem 3.4, [23], Theorem 3.1, and [31], Theorem 5.2, (see also [18]).

For $a, b \in \mathbb{R}$, we write $a \sim b$ if $C^{-1}a \leq b \leq Ca$ for a constant $C > 0$.

Theorem 3.5. Let X be a doubling space. Suppose the Hardy-Littlewood maximal operator is bounded on $L^\Phi(X)$. Then the following three statements are equivalent:

(i) $u \in M^{1,\Phi}(X)$;
(ii) $u \in L^\Phi(X)$ and there exists a nonnegative function $g \in L^\Phi(X)$ such that the Poincaré inequality

$$\int_{B(z,r)} |u(x) - u_{B(z,r)}| \, d\mu(x) \leq C r \int_{B(z,r)} g(x) \, d\mu(x)$$

holds for every $z \in X$ and $r > 0$;
(iii) $u \in L^\Phi(X)$ and $u^\flat \in L^\Phi(X)$.

Moreover, we obtain $\|u\|_{M^{1,\Phi}(X)} \sim \|u\|_{L^\Phi(X)} + \|u^\flat\|_{L^\Phi(X)}$ for all $u \in L^\Phi(X)$.

This theorem is proved in the same way as [22], Theorem 3.4.

3.2. Sobolev capacity on Musielak-Orlicz-Hajlasz-Sobolev spaces. For $u \in M^{1,\Phi}(X)$, we define

$$\widetilde{\varphi}_\Phi(u) = \varphi_\Phi(u) + \inf \varphi_\Phi(g),$$

444
where the infimum is taken over all Hajlasz gradients of \(u \). For \(E \subset X \), we write

\[
S_\Phi(E) = \{ u \in M^{1,\Phi}(X) : u \geq 1 \text{ in an open set containing } E \}.
\]

The Sobolev capacity in Musielak-Orlicz-Hajlasz-Sobolev spaces is defined by

\[
C_\Phi(E) = \inf_{u \in S_\Phi(E)} \tilde{\phi}(u).
\]

In the case \(S_\Phi(E) = \emptyset \), we set \(C_\Phi(E) = \infty \).

Remark 3.6. We can redefine the Sobolev capacity in Musielak-Orlicz-Hajlasz-Sobolev spaces by

\[
C_\Phi(E) = \inf_{u \in S'_\Phi(E)} \tilde{\phi}(u),
\]

since \(M^{1,\Phi}(X) \) is a lattice (see [38], Lemma 2.4), where

\[
S'_\Phi(E) = \{ u \in S_\Phi(X) : 0 \leq u \leq 1 \}.
\]

A standard argument yields the following results (see [31], Theorem 3.11, and [38], Theorem 3.2, Remark 3.3 and Lemma 3.4).

Proposition 3.7. The set function \(C_\Phi(\cdot) \) satisfies the following properties:

1. \(C_\Phi(\cdot) \) is an outer measure;
2. \(C_\Phi(\emptyset) = 0 \);
3. \(C_\Phi(E_1) \leq C_\Phi(E_2) \) for \(E_1 \subset E_2 \subset X \);
4. \(C_\Phi(E) = \inf_{\{E \subset U, U: \text{open}\}} C_\Phi(U) \) for \(E \subset X \) (\(C_\Phi(\cdot) \) is an outer capacity);
5. if \(K_1 \supset K_2 \supset \ldots \) are compact sets on \(X \), then \(\lim_{i \to \infty} C_\Phi(K_i) = C_\Phi\left(\bigcap_{i=1}^{\infty} K_i\right) \).

Furthermore, as in the proof of [37], Theorem 4.1, we have the following consequence of [14], Theorem 2.2.8.

Proposition 3.8. If \(L^\Phi(X) \) is reflexive and \(E_1 \subset E_2 \subset \ldots \) are subsets of \(X \), then

\[
\lim_{i \to \infty} C_\Phi(E_i) = C_\Phi\left(\bigcup_{i=1}^{\infty} E_i\right).
\]

We say that a property holds \(C_\Phi \)-q.e. (quasi-everywhere) in \(X \), if it holds everywhere except for a set \(F \subset X \) with \(C_\Phi(F) = 0 \).
Theorem 3.9. For each Cauchy sequence of functions in $M^{1,\Phi}(X) \cap C(X)$, there is a subsequence which converges pointwise C_Φ-q.e. in X. Moreover, the convergence is uniform outside a set of arbitrary small Sobolev capacity in Musielak-Orlicz-Hajlasz-Sobolev spaces.

Proof. Let $\{u_i\}$ be a Cauchy sequence of functions in $M^{1,\Phi}(X) \cap C(X)$. Since for all $0 < \epsilon < 1$, $\|u\|_{M^{1,\Phi}(X)} < \epsilon$ implies $\tilde{\varrho}_\Phi(u) < \epsilon$, we can take a subsequence of $\{u_i\}$, which we still denote by $\{u_i\}$, such that $\tilde{\varrho}_\Phi(u_i - u_{i+1}) \leq 2^{-i} A_2^{-1} (2A_3)^{-i-1}$ for each positive integer i. Consider the sets

$$E_i = \{x \in X: |u_i(x) - u_{i+1}(x)| > 2^{-i}\}$$

and $F_j = \bigcup_{i=j}^{\infty} E_i$. Here note that $2^i|u_i - u_{i+1}| \in S_\Phi(E_i)$ by the continuity of u_i. Since g_i is also a Hajlasz gradient of $|u_i - u_{i+1}|$ if g_i is a Hajlasz gradient of $u_i - u_{i+1}$, we have by ($\Phi 4$) and (2.1) that

$$C_\Phi(E_i) \leq \tilde{\varrho}_\Phi(2^i|u_i - u_{i+1}|) \leq A_2 (2A_3)^{i+1} \tilde{\varrho}_\Phi(u_i - u_{i+1}) \leq 2^{-i}.$$

Then it follows from Proposition 3.7 that

$$C_\Phi(F_j) \leq \sum_{i=j}^{\infty} C_\Phi(E_i) \leq 2^{-j+1}.$$

Hence, we obtain

$$C_\Phi\left(\bigcap_{j=1}^{\infty} F_j\right) \leq \lim_{j \to \infty} C_\Phi(F_j) = 0$$

and $\{u_i\}$ converges in $X \setminus \bigcap_{j=1}^{\infty} F_j$. Moreover, we find

$$|u_j(x) - u_k(x)| \leq \sum_{i=j}^{k-1} |u_i(x) - u_{i+1}(x)| \leq 2^{-j+1},$$

whenever $x \in X \setminus F_j$ for every $k > j$, which implies that $\{u_i\}$ converges uniformly in $X \setminus F_j$. \qed

We say that a function u is C_Φ-quasicontinuous on X if, for any $\epsilon > 0$, there is a set E such that $C_\Phi(E) < \epsilon$ and u is continuous on $X \setminus E$. By Proposition 3.4 and Theorem 3.9, we have the following result.
Proposition 3.10. For each \(u \in M^{1,\Phi}(X) \), there is a \(C_\Phi \)-quasicontinuous function \(v \in M^{1,\Phi}(X) \) such that \(u = v \) \(\mu \)-a.e. in \(X \).

As in the proof of [38], Lemma 4.1, we have the following result.

Lemma 3.11. \(\mu(E) \leq CC_\Phi(E) \) for every \(E \subset X \).

In fact, note that for \(u \in S_\Phi(E) \)

\[
\mu(E) \leq A_1A_2 \int_X \Phi(x, |u(x)|) \, d\mu(x) \leq 2A_1A_2A_3\Phi(u)
\]

by (2.1), (Φ2) and (Φ3).

Theorem 3.12. Suppose \(\Phi(x, t) \) satisfies (Φ5). Then there exists a constant \(C > 0 \) such that \(C_\Phi(B(x_0, r)) \leq C\Phi(x_0, r^{-1})\mu(B(x_0, 2r)) \) for all \(x_0 \in X \) and \(0 < r \leq 1 \).

Proof. Define

\[
u(x) = \begin{cases}
\frac{2r - d(x, x_0)}{r}, & x \in B(x_0, 2r) \setminus B(x_0, r), \\
1, & x \in B(x_0, r), \\
0, & x \in X \setminus B(x_0, 2r)
\end{cases}
\]

and

\[
g(x) = \begin{cases}
\frac{1}{r}, & x \in B(x_0, 2r), \\
0, & x \in X \setminus B(x_0, 2r).
\end{cases}
\]

Then note from [38], Theorem 4.6, that \(g \) is a Hajlasz gradient of \(u \) and \(u \in S_\Phi(B(x_0, r)) \). Hence, we have by (Φ2), (Φ3), (Φ5) and (2.1)

\[
C_\Phi(B(x_0, r)) \leq \int_{B(x_0, 2r)} \Phi(x, u(x)) \, d\mu(x) + \int_{B(x_0, 2r)} \Phi(x, g(x)) \, d\mu(x)
\]

\[
\leq A_2 \int_{B(x_0, 2r)} \Phi(x, u(x)) \, d\mu(x) + A_2 \int_{B(x_0, 2r)} \Phi(x, r^{-1}) \, d\mu(x)
\]

\[
\leq A_1A_2^2\mu(B(x_0, 2r)) + A_2B_2,1\Phi(x_0, r^{-1})\mu(B(x_0, 2r))
\]

\[
\leq A_2(A_1^2A_2^2 + B_2,1)\Phi(x_0, r^{-1})\mu(B(x_0, 2r)),
\]

as required.

3.3. Lebesgue points in Musielak-Orlicz-Hajlasz-Sobolev spaces. Let \(X \) be a doubling space. We recall from [36], Section 3, the definition of a discrete
maximal function. Fix $r > 0$ and let $B(x_i, r)$, $i = 1, 2, \ldots$, be a family of balls covering X such that every point $x \in X$ belongs to at most θ balls $B(x_i, 6r)$. Here, θ can be chosen to depend only on the doubling constant c_2. Let $\{ \varphi_i \}$ be a set of functions such that $0 \leq \varphi_i \leq 1$, $\varphi_i = 0$ in the complement of $B(x_i, 3r)$, $\varphi_i \geq c_3 > 0$ in $B(x_i, r)$, φ_i is Lipschitz with a constant c_3/r and $\sum_{i=1}^{\infty} \varphi_i = 1$ on X. We set

$$u_r(x) = \sum_{i=1}^{\infty} \frac{\varphi_i(x)}{\mu(B(x_i, 3r))} \int_{B(x_i, 3r)} |u(y)| \, d\mu(y).$$

Let $\{r_j\}$ be an enumeration of positive rationals. For every radius r_j, we choose a covering $\{B(x_i, r_j)\}$ as above. We define the discrete maximal function related to the covering $\{B(x_i, r_j)\}$ by

$$M^* u(x) = \sup_j u_{r_j}(x).$$

Note that the discrete maximal function related to the covering $\{B(x_i, r_j)\}$ depends on the chosen coverings. However, by [36], Lemma 3.1, the inequalities

$$c_M^{-1} M u(x) \leq M^* u(x) \leq c_M M u(x)$$

hold for every $x \in X$ and every $u \in L^1_{\text{loc}}(X)$. Here the constant $c_M \geq 1$ depends only on the doubling constant.

Lemma 3.13. Let X be a doubling space. Suppose the Hardy-Littlewood maximal operator is bounded on $L^\Phi(X)$. Then there exists a constant $C > 0$ such that

$$C_\Phi(\{x \in X : Mu(x) > \lambda\}) \leq C \lambda^{-\log_2(2A_3)} \|u\|_{M^1, \Phi(X)}$$

for all $0 < \lambda < 1$ and $u \in M^1, \Phi(X)$ with $\|u\|_{M^1, \Phi(X)} \leq 1$.

Proof. Let $u \in M^1, \Phi(X)$ with $\|u\|_{M^1, \Phi(X)} \leq 1$ and let g be a Hajlasz gradient of u. By our assumption, there exists a constant $B_M > 0$ such that $\|Mv\|_{L^\Phi(X)} \leq B_M \|v\|_{L^\Phi(X)}$ for all $v \in L^\Phi(X)$.

By (3.2), we have $\{x \in X : Mu(x) > \lambda\} \subseteq E_\lambda$, where set $E_\lambda = \{x \in X : c_M M^* u(x) > \lambda\}$ is open, since the supremum of continuous functions is lower semicontinuous.
Note, from the proof of [36], Theorem 3.6, that $c_M M^* u / \lambda \in S_\Phi(E, \lambda)$ and $c M g$ is a Hajlasz gradient of $M^* u$ for some constant $c \geq 1$. We have by $(\Phi 3)$, $(\Phi 4)$ and (2.2)

\[C_\Phi(E, \lambda) \leq \int_X \Phi(x, c M M^* u(x) / \lambda) \, d\mu(x) + \int_X \Phi(x, c c M M g(x) / \lambda) \, d\mu(x) \]

\[\leq A_2 \int_X \Phi(x, c M M^* u(x) / \lambda) \, d\mu(x) + A_2 \int_X \Phi(x, c c M M g(x) / \lambda) \, d\mu(x) \]

\[\leq 2 A_2^2 A_3 \left(\frac{c c M}{\lambda} \right)^{\log_2(2 A_3)} \left\{ \int_X \Phi(x, M^* u(x)) \, d\mu(x) + \int_X \Phi(x, M g(x)) \, d\mu(x) \right\} . \]

Since $\| M u / B_M \|_{L^\Phi(X)} \leq \| u \|_{L^\Phi(X)} \leq 1$, we find by $(\Phi 3)$, $(\Phi 4)$, (2.2) and (3.2) that

\[\int_X \Phi(x, M^* u(x)) \, d\mu(x) \leq A_2 \int_X \Phi(x, c M M u(x)) \, d\mu(x) \]

\[\leq 2 A_2^2 A_3 (c M B_M)^{\log_2(2 A_3)} \int_X \Phi(x, M u(x) / B_M) \, d\mu(x) \]

\[\leq 4 A_2^2 A_3^2 (c M B_M)^{\log_2(2 A_3)} \| M u / B_M \|_{L^\Phi(X)} \]

\[\leq 4 A_2^2 A_3^2 (c M B_M)^{\log_2(2 A_3)} \| u \|_{L^\Phi(X)}. \]

Similarly, we have

\[\int_X \Phi(x, M g(x)) \, d\mu(x) \leq 2 A_2 A_3 (B_M)^{\log_2(2 A_3)} \int_X \Phi(x, M g(x) / B_M) \, d\mu(x) \]

\[\leq 4 A_2^2 A_3^2 (B_M)^{\log_2(2 A_3)} \| g \|_{L^\Phi(X)}. \]

Thus we obtain the required result. \[\square \]

As in the proof of [36], Theorem 4.5, we can show the following result by Lemma 3.13.

Theorem 3.14. Let X be a doubling space and let $u \in M^{1, \Phi}(X)$. Suppose the Hardy-Littlewood maximal operator is bounded on $L^\Phi(X)$. Then there exists a set $E \subset X$ of zero Sobolev capacity in Musielak-Orlicz-Hajlasz-Sobolev spaces such that

\[\tilde{u}(x) = \lim_{r \to 0} u_{B(x, r)} \]

for every $x \in X \setminus E$, where \tilde{u} is the C_Φ-quasicontinuous representative of u.

449
4. Musielak-Orlicz-Newton-Sobolev spaces $N^{1,\Phi}(X)$

4.1. Basic properties. A curve γ in the set X is a nonconstant continuous map $\gamma: I \to X$, where $I = [a, b]$ is a closed interval in \mathbb{R}. The image of γ is denoted by $|\gamma|$. Let Γ be a family of rectifiable curves in X. We denote by $F(\Gamma)$ the set of all admissible functions, that is, all Borel measurable functions $h: X \to [0, \infty]$ such that

$$\int_{\gamma} h \, ds \geq 1$$

for every $\gamma \in \Gamma$, where ds represents integration with respect to path length. We define the Φ-modulus of Γ by

$$M_{\Phi}(\Gamma) = \inf_{h \in F(\Gamma)} \Phi(h).$$

If $F(\Gamma) = \emptyset$, then we set $M_{\Phi}(\Gamma) = \infty$.

Lemma 4.1 (cf. [30], Lemma 2.1). $M_{\Phi}(\cdot)$ is an outer measure.

Proof. Since it is obvious that $M_{\Phi}(\emptyset) = 0$ and $\Gamma_1 \subset \Gamma_2$ implies $M_{\Phi}(\Gamma_1) \leq M_{\Phi}(\Gamma_2)$, we show that $M_{\Phi}(\cdot)$ is a countably subadditive capacity. For $\varepsilon > 0$, we take $h_i \in F(\Gamma_i)$ such that

$$\int_{X} \Phi(x, h_i(x)) \, d\mu(x) \leq M_{\Phi}(\Gamma_i) + \varepsilon 2^{-i}.$$

We set $h = \sup_i h_i$. Noting that h satisfies $\int_{\gamma} h \, ds \geq 1$ for every $\gamma \in \bigcup_{i=1}^{\infty} \Gamma_i$, we have

$$M_{\Phi}\left(\bigcup_{i=1}^{\infty} \Gamma_i\right) \leq \Phi(h) \leq \sum_{i=1}^{\infty} \int_{X} \Phi(x, h_i(x)) \, d\mu(x) \leq \sum_{i=1}^{\infty} M_{\Phi}(\Gamma_i) + \varepsilon.$$

Letting $\varepsilon \to 0$, we have the required result. \qed

A family of curves Γ is said to be exceptional if $M_{\Phi}(\Gamma) = 0$. The following lemma is an extension of [31], Lemma 4.1. The proof is the same as the proof of [30], Lemma 2.2.
Lemma 4.2 (Fuglede’s lemma). Let \(\{u_i\} \) be a sequence of nonnegative Borel functions in \(L^\Phi(X) \) converging to zero in \(L^\Phi(X) \). Then there exist a subsequence \(\{u_{i_k}\} \) and an exceptional family \(\Gamma \) of rectifiable curves such that for every \(\gamma \notin \Gamma \) we have
\[
\lim_{k\to\infty} \int_\gamma u_{i_k} \, ds = 0.
\]

Let \(u \) be a real-valued function on \(X \). A nonnegative Borel measurable function \(h \) is said to be a \(\Phi \)-weak upper gradient of \(u \) if there exists a family \(\Gamma \) of rectifiable curves with \(M_\Phi(\Gamma) = 0 \) and
\[
|u(x) - u(y)| \leq \int_\gamma h \, ds
\]
for every rectifiable curve \(\gamma \notin \Gamma \) with endpoints \(x \) and \(y \). Here note that the basic properties of \(p \)-weak upper gradients can be extended to the basic properties of \(\Phi \)-weak upper gradients as in [6], Chapter 1.

We define the norm
\[
\|u\|_{N^1,\Phi(X)} = \|u\|_{L^\Phi(X)} + \inf \|h\|_{L^\Phi(X)},
\]
where the infimum is taken over all \(\Phi \)-weak upper gradients of \(u \). We say that the function \(u \in L^\Phi(X) \) belongs to Musielak-Orlicz-Newton-Sobolev spaces \(N^1,\Phi(X) \) if \(\|u\|_{N^1,\Phi(X)} < \infty \).

Remark 4.3. Let \(u \) be a real-valued function on \(X \) and let \(h \) be a \(\Phi \)-weak upper gradient of \(u \). Suppose \(\Gamma \) is a family of rectifiable curves \(\gamma \) satisfying the condition that there exists a rectifiable subcurve \(\gamma' \) of \(\gamma \), that is, \(|\gamma'| \subset |\gamma| \), such that
\[
|u(x') - u(y')| \leq \int_{\gamma'} h \, ds,
\]
where \(x' \) and \(y' \) are endpoints of \(\gamma' \). Then note that \(M_\Phi(\Gamma) = 0 \) (see [6], Lemma 1.40).

Lemma 4.4 (cf. [36], Lemma 2.6, and [29], Lemma 3). Suppose that \(\{u_i\} \) is a sequence of measurable functions. Let \(g_i \) be a \(\Phi \)-weak upper gradient of \(u_i \). If \(u = \sup_i u_i \) is finite almost everywhere, then \(g = \sup_i g_i \) is a \(\Phi \)-weak upper gradient of \(u \).

For \(u \in N^1,\Phi(X) \), we set
\[
\hat{\varphi}_\Phi(u) = \varphi_\Phi(u) + \inf \varphi_\Phi(h),
\]
where \(\varphi_\Phi \) and \(\hat{\varphi}_\Phi \) are certain functions related to \(\Phi \) and \(\phi \).
where the infimum is taken over all Φ-weak upper gradients of u. For $E \subset X$, we denote

$$s_\Phi(E) = \{u \in N^1.\Phi(X): u \geq 1 \text{ on } E\}.$$

We define the capacity in Musielak-Orlicz-Newton-Sobolev spaces by

$$c_\Phi(E) = \inf_{u \in s_\Phi(E)} \hat{\mu}_\Phi(u).$$

In the case $s_\Phi(E) = \emptyset$, we set $c_\Phi(E) = \infty$. For the definition of Sobolev capacity, see [6], Section 6.2.

By Lemma 4.4, we have the following result.

Proposition 4.5. The set function $c_\Phi(\cdot)$ is an outer measure.

Proof. Since it is obvious that $c_\Phi(\emptyset) = 0$ and $E_1 \subset E_2$ implies $c_\Phi(E_1) \leq c_\Phi(E_2)$, we only show that $c_\Phi(\cdot)$ is a countably subadditive capacity. Let E_i be subsets in X. We may assume that $\sum_{i=1}^{\infty} c_\Phi(E_i) < \infty$. For $\varepsilon > 0$, we take $u_i \in s_\Phi(E_i)$ such that

$$\int_X \overline{\Phi}(x, |u_i(x)|) \, d\mu(x) + \int_X \overline{\Phi}(x, h_i(x)) \, d\mu(x) \leq c_\Phi(E_i) + \varepsilon 2^{-i},$$

where h_i is a Φ-weak upper gradient of u_i. Set $u = \sup_i u_i$ and $h = \sup_i h_i$. Noting that $u \in L^\Phi(X)$ and $h \in L^\Phi(X)$, we find that h is a Φ-weak upper gradient of u by Lemma 4.4 and $u \in s_\Phi\left(\bigcup_{i=1}^{\infty} E_i\right)$. Hence, we have

$$c_\Phi\left(\bigcup_{i=1}^{\infty} E_i\right) \leq \hat{\mu}_\Phi(u)$$

$$\leq \sum_{i=1}^{\infty} \left\{ \int_X \overline{\Phi}(x, |u_i(x)|) \, d\mu(x) + \int_X \overline{\Phi}(x, h_i(x)) \, d\mu(x) \right\}$$

$$\leq \sum_{i=1}^{\infty} c_\Phi(E_i) + \varepsilon.$$

Letting $\varepsilon \to 0$, we have the required result. \qed

We denote by Γ_E the family of all rectifiable curves whose image intersects the set E.

452
Lemma 4.6. Let $E \subset X$. If $c_\Phi(E) = 0$, then $M_\Phi(\Gamma_E) = 0$.

Proof. Let $E \subset X$ with $c_\Phi(E) = 0$. Then for all positive integers i, we choose functions $u_i \in N^{1,\Phi}(X)$ with Φ-weak upper gradients κ_i such that $u_i(x) \geq 1$ for every $x \in E$ and

$$\int_X \Phi(x, |u_i(x)|) \, d\mu(x) + \int_X \Phi(x, \kappa_i(x)) \, d\mu(x) \leq A_2^{-1}(2A_3)^{-i-1}.$$

Set $v_k = \sum_{i=1}^{k} |u_i|$. Then note that $h_k = \sum_{i=1}^{k} \kappa_i$ is a Φ-weak upper gradient of v_k. Since

$$\int_X \Phi\left(x, \frac{|u_i(x)|}{2^{-i}}\right) \, d\mu(x) \leq A_2(2A_3)^i \int_X \Phi(x, |u_i(x)|) \, d\mu(x) \leq A_2(2A_3)^i+1 \int_X \Phi(x, |u_i(x)|) \, d\mu(x) \leq 1$$

and

$$\int_X \Phi\left(x, \frac{\kappa_i(x)}{2^{-i}}\right) \, d\mu(x) \leq 1$$

by (2.1) and (\Phi4), we have

$$\|v_l - v_m\|_{L^\Phi(X)} \leq \sum_{i=m+1}^{l} \|u_i\|_{L^\Phi(X)} \leq 2^{-m}$$

and

$$\|h_l - h_m\|_{L^\Phi(X)} \leq \sum_{i=m+1}^{l} \|\kappa_i\|_{L^\Phi(X)} \leq 2^{-m}$$

for every $l > m$. Hence $\{v_k\}$ and $\{h_k\}$ are Cauchy sequences in $L^\Phi(X)$. Therefore, $\{h_k\}$ converges to a function h in $L^\Phi(X)$, which we may assume to be a Borel function. Setting $v_k(x) = \lim_{k \to \infty} v_k(x)$ for every $x \in X$, we find $\forall \in L^\Phi(X)$. Since $v_k(x) \geq k$ for $x \in E$, we have

$$E \subset E_\infty = \{x \in X : v(x) = \infty\}.$$

Hence it suffices to show that $M_\Phi(\Gamma_{E_\infty}) = 0$.

It follows from Lemma 4.2 that there exists a subsequence $\{h_{k_j}\}$ of $\{h_k\}$ such that there exists an exceptional family Γ_1 and

$$\lim_{j \to \infty} \int_{\gamma} |h_{k_j} - h| \, ds = 0.$$
for all rectifiable curves $\gamma \notin \Gamma_1$. Set

$$\Gamma_2 = \{ \gamma: \gamma is a rectifiable curve satisfying \int_\gamma v \, ds = \infty \}$$

and

$$\Gamma_3 = \{ \gamma: \gamma is a rectifiable curve satisfying \int_\gamma h \, ds = \infty \}.$$

We see from the convexity of Φ that

$$M_\Phi(\Gamma_2) \leq \int_X \Phi(x, \frac{v(x)}{i}) \, d\mu(x) \leq \frac{\|v\|_{L^\Phi(X)}}{i}$$

for all $i \geq \|v\|_{L^\Phi(X)}$. Hence $M_\Phi(\Gamma_2) = 0$. Similarly, $M_\Phi(\Gamma_3) = 0$. We denote by $\Gamma_{4,i}$ the exceptional family of rectifiable curves for u_i in Remark 4.3 and by Γ_4 the union of $\Gamma_{4,i}$. By Remark 4.3 and Lemma 4.1, we have $M_\Phi(\Gamma_4) = M_\Phi(\bigcup \Gamma_{4,i}) = 0$. Hence we find $M_\Phi(\Gamma_0) = 0$, where $\Gamma_0 = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4$.

To complete the proof, we show that $\Gamma_{E,\infty} \subset \Gamma_0$. Suppose $\gamma \notin \Gamma_0$. Since $\gamma \notin \Gamma_2$, there is $y \in |\gamma|$ with $v(y) < \infty$. For any $x \in |\gamma|$, we find that

$$v_{k_j}(x) \leq v_{k_j}(y) + \left| v_{k_j}(x) - v_{k_j}(y) \right| \leq v_{k_j}(y) + \int_\gamma h_{k_j} \, ds,$$

since $\gamma \notin \Gamma_4$. Letting $j \to \infty$, we have

$$v(x) = \lim_{j \to \infty} v_{k_j}(x) \leq v(y) + \int_\gamma h \, ds,$$

since $\gamma \notin \Gamma_1$. Since $\gamma \notin \Gamma_3$ and $v(y) < \infty$, we have $v(x) < \infty$ for all $x \in |\gamma|$, which implies $\gamma \notin \Gamma_{E,\infty}$, as required.

Standard arguments and Lemma 4.6 yield the following proposition (see [31]).

Proposition 4.7 (cf. [31], Theorem 4.4). $N^{1,\Phi}(X)$ is a Banach space.

We say that X supports a $(1,1)$-Poincaré inequality if there exists a constant $C > 0$ such that for all open balls B in X,

$$\frac{1}{\mu(B)} \int_B |u(x) - u_B| \, d\mu(x) \leq C d_B \frac{1}{\mu(B)} \int_B h(x) \, d\mu(x)$$

holds, whenever h is a Φ-weak upper gradient of u on B and u is integrable on B.

454
Lemma 4.8. Let X be a doubling space that supports a $(1,1)$-Poincaré inequality. Assume that the Hardy-Littlewood maximal operator is bounded on $L^\Phi(X)$. Then Lipschitz continuous functions are dense in $N^{1,\Phi}(X)$.

Proof. Let $u \in N^{1,\Phi}(X)$ and let h be a Φ-weak upper gradient of u. By truncation, we may assume that u is a bounded function on X, say $|u| \leq u_0$ for $u_0 > 1$ (see [51], Lemma 4.3). Set

$$E_\lambda = \{ x \in X : Mh(x) > \lambda \}.$$

As in the proof of [31], Theorem 4.5, we can define

$$u_\lambda(x) = \lim_{r \to 0} u_{B(x,r)}$$

for all $x \in X \setminus E_\lambda$ and u_λ is $c\lambda$-Lipschitz in $X \setminus E_\lambda$ with some constant $c > 1$. We extend u_λ as a Lipschitz function to all of X by the McShane extension [46], by setting

$$u_\lambda(x) = \inf_{y \in X \setminus E_\lambda} \{ u_\lambda(y) + c\lambda d(x,y) \}.$$

We may assume that u_λ is still bounded by u_0 by truncation. Then we have by (\Phi2), (\Phi3) and (\Phi4) that

$$\int_X \Phi(x, |u(x) - u_\lambda(x)|) \, d\mu(x) = \int_{E_\lambda} \Phi(x, |u(x) - u_\lambda(x)|) \, d\mu(x) \leq 2A_2^2A_3 \left\{ \int_{E_\lambda} \Phi(x, |u(x)|) \, d\mu(x) + \int_{E_\lambda} \Phi(x, |u_\lambda(x)|) \, d\mu(x) \right\} \leq 4A_2^2A_3 \int_{E_\lambda} \Phi(x, u_0) \, d\mu(x) \leq 8A_1A_2^4A_3^2u_0 \log_2(2A_3) \mu(E_\lambda).$$

Hence we see from the boundedness of the Hardy-Littlewood maximal operator on $L^\Phi(X)$, Lemma 2.5 and (2.1) that $u_\lambda \to u$ in $L^\Phi(X)$. Since E_λ is open and $u - u_\lambda$ is zero μ-a.e. in $X \setminus E_\lambda$, we may assume that the Φ-weak upper gradient of $u - u_\lambda$ is zero in $X \setminus E_\lambda$ (see [51], Lemma 4.3). Since

$$\int_X \Phi(x, \lambda_{X,E_\lambda}(x)) \, d\mu(x) \leq A_2 \int_X \Phi(x, Mh(x)) \, d\mu(x) < \infty$$

455
by the boundedness of the Hardy-Littlewood maximal operator on \(L^\Phi(X)\), we find that the function \((c\lambda + h)\chi_{E_\lambda} \in L^\Phi(X)\) is a \(\Phi\)-weak upper gradient of \(u - u_\lambda\). Hence \(u - u_\lambda \in N^{1,\Phi}(X)\) and therefore so does \(u_\lambda\). We have

\[
\int_X \Phi\left(x, (c\lambda + h)\chi_{E_\lambda}(x)\right) \, d\mu(x) \\
\leq 4A_2^2A_3^3c\log_2(2A_3)\left\{ \int_{E_\lambda} \Phi(x, \lambda) \, d\mu(x) + \int_{E_\lambda} \Phi(x, h(x)) \, d\mu(x) \right\} \\
\leq 4A_2^4A_3^3c\log_2(2A_3)\left\{ \int_{E_\lambda} \Phi(x, M\lambda(x)) \, d\mu(x) + \int_{E_\lambda} \Phi(x, h(x)) \, d\mu(x) \right\}.
\]

Then the right hand side converges to zero as \(\lambda \to \infty\). Hence \(\{u_\lambda\}\) converges to \(u\) in \(N^{1,\Phi}(X)\) by Lemma 2.5 and (2.1). \(\square\)

4.2. Lebesgue points in Musielak-Orlicz-Newton-Sobolev spaces.

Lemma 4.9. Let \(X\) be a doubling space that supports a \((1,1)\)-Poincaré inequality. If the Hardy-Littlewood maximal operator is bounded on \(L^\Phi(X)\), then there exists a constant \(C > 0\) such that

\[
c_{\Phi}\left(\{ x \in X : Mu(x) > \lambda \} \right) \leq C\lambda^{-\log_2(2A_3)}\|u\|_{N^{1,\Phi}(X)}
\]

for all \(0 < \lambda < 1\) and \(u \in N^{1,\Phi}(X)\) with \(\|u\|_{N^{1,\Phi}(X)} \leq 1\).

Proof. Let \(u \in N^{1,\Phi}(X)\) with \(\|u\|_{N^{1,\Phi}(X)} \leq 1\) and \(h \in L^\Phi(X)\) be a \(\Phi\)-weak upper gradient of \(u\). By (3.2), we have

\[
\{ x \in X : Mu(x) > \lambda \} \subset E_\lambda,
\]

where \(E_\lambda = \{ x \in X : c_MM^*u(x) > \lambda \}\). Here, note from the boundedness of the Hardy-Littlewood maximal operator on \(L^\Phi(X)\), Lemma 4.4 and [29], Lemma 5, that \(M^*u \in L^\Phi(X)\) and \(cMh \in L^\Phi(X)\) is a \(\Phi\)-weak upper gradient of \(M^*u\) for some constant \(c \geq 1\). Since \(c_MM^*u/\lambda \in s_{\Phi}(E_\lambda)\), we have by (\(\Phi3\)), (\(\Phi4\)) and (2.2) that

\[
c_{\Phi}(E_\lambda) \leq \int_X \overline{\Phi}(x, c_MM^*u(x)/\lambda) \, d\mu(x) + \int_X \overline{\Phi}(x, cMh(x)/\lambda) \, d\mu(x) \\
\leq 2A_2^2A_3^3\left(\frac{ccM}{\lambda}\right)^{\log_2(2A_3)} \left\{ \int_X \Phi(x, M^*u(x)) \, d\mu(x) + \int_X \Phi(x, Mh(x)) \, d\mu(x) \right\}.
\]

Thus, as in the proof of Lemma 3.13, we obtain the required result. \(\square\)

As in the proof of [29], Theorem 1, we can show the following consequence of Lemma 4.9.
Theorem 4.10. Let X be a doubling space that supports a $(1,1)$-Poincaré inequality. If the Hardy-Littlewood maximal operator is bounded on $L^\Phi(X)$ and $u \in N^{1,\Phi}(X)$, then there exists a set $E \subset X$ of zero Sobolev capacity in Musielak-Orlicz-Newton-Sobolev space such that

$$u(x) = \lim_{r \to 0} u_{B(x,r)}$$

and

$$\lim_{r \to +0} \int_{B(x,r)} |u(y) - u(x)| \, d\mu(y) = 0$$

for every $x \in X \setminus E$.

5. Equivalence of function spaces

Let \mathbb{R}^N be the N-dimensional Euclidean space. In the case $X = \mathbb{R}^N$, let μ be the Lebesgue measure on \mathbb{R}^N and let d be the Euclidean metric. We define the Musielak-Orlicz-Sobolev space $W^{1,\Phi}(\mathbb{R}^N)$ by

$$W^{1,\Phi}(\mathbb{R}^N) = \{ u \in L^\Phi(\mathbb{R}^N) : |\nabla u| \in L^\Phi(\mathbb{R}^N) \}.$$

The norm

$$\|u\|_{W^{1,\Phi}(\mathbb{R}^N)} = \|u\|_{L^\Phi(\mathbb{R}^N)} + \|\nabla u\|_{L^\Phi(\mathbb{R}^N)}$$

makes $W^{1,\Phi}(\mathbb{R}^N)$ a Banach space.

We prove relations between the Musielak-Orlicz-Hajłasz-Sobolev space and the Musielak-Orlicz-Sobolev space $W^{1,\Phi}(\mathbb{R}^N)$.

Proposition 5.1. $M^{1,\Phi}(\mathbb{R}^N) \subset W^{1,\Phi}(\mathbb{R}^N)$. Moreover, if the Hardy-Littlewood maximal operator is bounded on $L^\Phi(\mathbb{R}^N)$, then $M^{1,\Phi}(\mathbb{R}^N) = W^{1,\Phi}(\mathbb{R}^N)$.

Proof. First we show $M^{1,\Phi}(\mathbb{R}^N) \subset W^{1,\Phi}(\mathbb{R}^N)$. Let $u \in M^{1,\Phi}(\mathbb{R}^N)$ and let $g \in L^\Phi(\mathbb{R}^N)$ be a Hajłasz gradient of u. Since $t \leq A_1 A_2 \Phi(x,t)$ for $t \geq 1$ by (\text{2.2}), we have $g \in L^1(B)$ for every ball B and hence ∇u exists and satisfies $|\nabla u(x)| \leq C g(x)$ for a.e. $x \in \mathbb{R}^N$ by [33], Remark 5.13. Thus we have $M^{1,\Phi}(\mathbb{R}^N) \subset W^{1,\Phi}(\mathbb{R}^N)$.

Next we prove the second claim. Let $u \in W^{1,\Phi}(\mathbb{R}^N)$. Then we have by [21], Section 2,

$$|u(x) - u(y)| \leq |x - y| (M|\nabla u|(x) + M|\nabla u|(y))$$

for a.e. $x, y \in \mathbb{R}^N$. By the boundedness of the Hardy-Littlewood maximal operator on $L^\Phi(\mathbb{R}^N)$, we find that $M|\nabla u| \in L^\Phi(\mathbb{R}^N)$ is a Hajłasz gradient of u. Hence we obtain the required result. \qed

457
Theorem 5.2. $N^{1,\Phi}(\mathbb{R}^N) \subset W^{1,\Phi}(\mathbb{R}^N)$. Moreover, if $W^{1,\Phi}(\mathbb{R}^N)$ is reflexive and C^1-functions are dense in $W^{1,\Phi}(\mathbb{R}^N)$, then $N^{1,\Phi}(\mathbb{R}^N) = W^{1,\Phi}(\mathbb{R}^N)$.

Proof. The proof of the first claim is exactly the same as the proof of [31], Theorem 5.3. Hence we only show the second claim. Let $u \in W^{1,\Phi}(\mathbb{R}^N)$. Then we can take $\{u_i\} \subset W^{1,\Phi}(\mathbb{R}^N) \cap C^1(X)$ such that u_i converges to u in $W^{1,\Phi}(\mathbb{R}^N)$. By the proof of [30], Theorem 4.2, we see that the sum of absolute value of the distributional gradient of u_i is a Φ-weak upper gradient of u in \mathbb{R}^N. Hence we obtain the required result. □

Remark 5.3. By [43], Theorem 3.5, we know that C^1-functions are dense in $W^{1,\Phi}(\mathbb{R}^N)$ if $\Phi(x, t)$ satisfies $(\Phi5)$ and $(\Phi6)$.

Theorem 5.4. For $u \in M^{1,\Phi}(X)$, there exists a representative \tilde{u} of u such that

$$\|\tilde{u}\|_{N^{1,\Phi}(X)} \leq 4\|u\|_{M^{1,\Phi}(X)}.$$

Furthermore, if X is a doubling space that supports a $(1,1)$-Poincaré inequality and the Hardy-Littlewood maximal operator is bounded on $L^\Phi(X)$, then $M^{1,\Phi}(X) \supset N^{1,\Phi}(X)$.

Proof. Let $u \in M^{1,\Phi}(X)$ and let $g \in L^\Phi(X)$ be a Hajlasz gradient of u. If u is continuous on X, we find that $4g$ is a Φ-weak upper gradient of u as in [51], Lemma 4.7. Since continuous functions are dense in $M^{1,\Phi}(X)$ by Proposition 3.4, we can take $\{u_i\} \subset M^{1,\Phi}(X)$ such that u_i is continuous on X, u_i converges to u in $M^{1,\Phi}(X)$ and

$$\|u_n - u_m\|_{N^{1,\Phi}(X)} \leq 4\|u_n - u_m\|_{M^{1,\Phi}(X)}$$

for all positive integers n, m. Therefore, $\{u_i\} \subset N^{1,\Phi}(X)$ is a Cauchy sequence. Hence there exists a $\tilde{u} \in N^{1,\Phi}(X)$ such that

$$\|\tilde{u}\|_{N^{1,\Phi}(X)} \leq 4\|u\|_{M^{1,\Phi}(X)},$$

since $N^{1,\Phi}(X)$ is a Banach space by Proposition 4.7. Noting that $u(x) = \tilde{u}(x)$ for a.e. $x \in X$, we find that \tilde{u} is an equivalence class of u in $M^{1,\Phi}(X)$.

By our assumption and Theorem 3.5, we obtain that $M^{1,\Phi}(X) \supset N^{1,\Phi}(X)$. □
In this section, we show the boundedness of maximal operators on $L^\Phi(X)$. This proof with only a minor change appears in [44], but for reader’s convenience, we give the proof.

For a nonnegative $f \in L^1_{\text{loc}}(X)$, let

$$I(f, x, r) = \frac{1}{\mu(B(x, r))} \int_{X \cap B(x, r)} f(y) \, d\mu(y)$$

and

$$J(f, x, r) = \frac{1}{\mu(B(x, r))} \int_{X \cap B(x, r)} \Phi(y, f(y)) \, d\mu(y).$$

Lemma 6.1 (cf. [44], Lemma 3.1). Assume that μ is lower Ahlfors $Q(x)$-regular. Suppose that $\Phi(x, t)$ satisfies (Φ_5). Then there exists a constant $C > 0$ such that

$$\Phi(x, I(f; x, r)) \leq CJ(f; x, r)$$

for all $x \in X$, $r > 0$ and for all nonnegative $f \in L^1_{\text{loc}}(X)$ such that $f(y) \geq 1$ or $f(y) = 0$ for each $y \in X$ and $\|f\|_{L^\Phi(X)} \leq 1$.

Proof. Given f as in the statement of the lemma, $x \in X$ and $r > 0$, set $I = I(f; x, r)$ and $J = J(f; x, r)$. Note that $\|f\|_{L^\Phi(X)} \leq 1$ implies

$$J \leq 2A_3\mu(B(x, r))^{-1} \leq 2A_3c_0^{-1}r^{-Q(x)}$$

for $0 < r < d_X$ by (2.1) and lower Ahlfors $Q(x)$-regularity of μ.

By (Φ_2) and (2.2), $\Phi(y, f(y)) \geq (A_1A_2)^{-1}f(y)$, since $f(y) \geq 1$ or $f(y) = 0$. Hence $I \leq A_1A_2J$. Thus, if $J \leq 1$, then

$$\Phi(x, I) \leq (A_1A_2J)A_2\phi(x, A_1A_2) \leq CJ.$$

Next, suppose $J > 1$. Since $\Phi(x, t) \to \infty$ as $t \to \infty$, there exists $K \geq 1$ such that

$$\Phi(x, K) = \Phi(x, 1)J.$$

Then $K \leq A_2J$ by (2.2). With this K, we have

$$\int_{X \cap B(x, r)} f(y) \, d\mu(y) \leq K\mu(B(x, r)) + A_2 \int_{X \cap B(x, r)} f(y) \frac{\phi(y, f(y))}{\phi(y, K)} \, d\mu(y).$$
Since
\[1 \leq K \leq A_2 J \leq 2 A_2 A_3 c_0^{-1} r^{-Q(x)} \leq C_1 r^{-Q^+}, \]
by (Φ5) there is \(\beta > 0 \), independent of \(f, x, r \), such that
\[\phi(x, K) \leq \beta \phi(y, K) \quad \text{for all } y \in B(x, r). \]
Thus, we have by (Φ2)
\[
\int_{X \cap B(x, r)} f(y) \, d\mu(y) \leq K \mu(B(x, r)) + \frac{A_2 \beta}{\phi(x, K)} \int_{X \cap B(x, r)} f(y) \phi(y, f(y)) \, d\mu(y)
= K \mu(B(x, r)) + A_2 \beta \mu(B(x, r)) \frac{J}{\phi(x, K)}
= K \mu(B(x, r)) \left(1 + \frac{A_2 \beta}{\phi(x, 1)}\right) \leq K \mu(B(x, r))(1 + A_1 A_2 \beta).
\]
Therefore
\[I \leq (1 + A_1 A_2 \beta) K. \]
By (Φ2), (Φ3) and (Φ4), we obtain
\[\Phi(x, I) \leq C \Phi(x, K) \leq C J \]
with \(C > 0 \) independent of \(f, x, r \), as required. \(\square \)

Lemma 6.2 (cf. [44], Lemma 3.2). Suppose that \(\Phi(x, t) \) satisfies (Φ6). Then there exists a constant \(C > 0 \) such that
\[\Phi(x, I(f; x, r)) \leq C \{J(f; x, r) + \Phi(x, g(x))\} \]
for all \(x \in X, r > 0 \) and for all nonnegative \(f \in L^1_{\text{loc}}(X) \) such that \(g(y) \leq f(y) \leq 1 \) or \(f(y) = 0 \) for each \(y \in X \), where \(g \) is the function appearing in (Φ6).

Proof. Given \(f \) as in the statement of the lemma, \(x \in X \) and \(r > 0 \), let \(I = I(f; x, r) \) and \(J = J(f; x, r) \).

By Jensen’s inequality, we have
\[\Phi(x, I) \leq \frac{1}{\mu(B(x, r))} \int_{X \cap B(x, r)} \Phi(x, f(y)) \, d\mu(y). \]
In view of (2.1),
\[\Phi(x, I) \leq 2 A_2 A_3 \frac{1}{\mu(B(x, r))} \int_{X \cap B(x, r)} \Phi(x, f(y)) \, d\mu(y). \]
If \(d(x, x_0) \geq d(y, x_0) \), then \(\Phi(x, f(y)) \leq B_\infty \Phi(y, f(y)) \) by (\(\Phi 6 \)), where \(x_0 \) is the point appearing in (\(\Phi 6 \)).

Let \(d(x, x_0) < d(y, x_0) \). If \(g(x) \leq f(y) \), then \(\Phi(x, f(y)) \leq B_\infty \Phi(y, f(y)) \) by (\(\Phi 6 \)) again. If \(g(x) \geq f(y) \), then \(\Phi(x, f(y)) \leq A_2 \Phi(x, g(x)) \) by (\(\Phi 3 \)). Hence,

\[
\Phi(x, f(y)) \leq C \{ \Phi(y, f(y)) + \Phi(x, g(x)) \}
\]
in any case. Therefore, we obtain the required inequality. \(\square \)

Theorem 6.3 (cf. [44], Theorem 4.1). Assume that \(X \) is a doubling space and \(\mu \) is lower Ahlfors \(Q(x) \)-regular. Suppose that \(\Phi(x, t) \) satisfies (\(\Phi 5 \)), (\(\Phi 6 \)) and further assume:

(\(\Phi^* 3 \)) \(t \mapsto t^{-\varepsilon_0} \phi(x, t) \) is uniformly almost increasing on \((0, \infty)\) for some \(\varepsilon_0 > 0 \).

Then the Hardy-Littlewood maximal operator \(M \) is bounded from \(L^{\Phi}\(X \)) into itself, namely, there is a constant \(C > 0 \) such that

\[
\| Mf \|_{L^{\Phi}(X)} \leq C \| f \|_{L^{\Phi}(X)}
\]
for all \(f \in L^{\Phi}(X) \).

We use the following result, which is a special case of the theorem for \(\Phi(x, t) = t^{p_0} \) (\(p_0 > 1 \)) (see [33], Theorem 2.2).

Lemma 6.4. Let \(p_0 > 1 \). Suppose that \(X \) is a doubling space. Then there exists a constant \(\tilde{c} > 0 \) depending only on \(p_0 \) and \(c_2 \) for which the following holds: If \(f \) is a measurable function such that

\[
\int_X |f(y)|^{p_0} \, d\mu(y) \leq 1,
\]
then

\[
\int_X [Mf(x)]^{p_0} \, d\mu(x) \leq \tilde{c}.
\]

Proof of Theorem 6.3. Set \(p_0 = 1 + \varepsilon_0 \) for \(\varepsilon_0 > 0 \) in condition (\(\Phi^* 3 \)) and consider the function

\[
\Phi_0(x, t) = \Phi(x, t)^{1/p_0}.
\]

Then \(\Phi_0(x, t) \) also satisfies all the conditions (\(\Phi j \)), \(j = 1, 2, \ldots, 6 \). In fact, it trivially satisfies (\(\Phi j \)) for \(j = 1, 2, 4, 5, 6 \) with the same \(g \) as in (\(\Phi 6 \)). Since

\[
\Phi_0(x, t) = t^{\phi_0(x, t)} \quad \text{with} \quad \phi_0(x, t) = [t^{-\varepsilon_0} \phi(x, t)]^{1/p_0},
\]
condition (\(\Phi^* 3 \)) implies that \(\Phi_0(x, t) \) satisfies (\(\Phi 3 \)).
Let \(f \geq 0 \) and \(\| f \|_{L^\Phi(X)} \leq 1 \). Let \(f_1 = f \chi_{\{x : f(x) \geq 1\}} \), \(f_2 = f \chi_{\{x : g(x) \leq f(x) < 1\}} \) with \(g \) from (Φ6) and \(f_3 = f - f_1 - f_2 \).

Since \(\Phi(x,t) \geq 1/(A_1A_2) \) for \(t \geq 1 \) by (Φ2) and (2.2),

\[
\Phi_0(x,t) \leq (A_1A_2)^{1-1/p_0}\Phi(x,t)
\]

if \(t \geq 1 \). Hence there is a constant \(\lambda > 0 \) such that \(\| f_1 \|_{L^\Phi_0(X)} \leq \lambda \), whenever \(\| f \|_{L^\Phi(X)} \leq 1 \). Applying Lemma 6.1 to \(\Phi_0 \) and \(f_1/\lambda \), we have

\[
\Phi_0(x, Mf_1(x)) \leq CM\Phi_0(\cdot, f_1(\cdot))(x).
\]

Hence

\[
(6.1) \quad \Phi(x, Mf_1(x)) \leq C[M\Phi_0(\cdot, f(\cdot))(x)]^{p_0}
\]

for all \(x \in X \) with a constant \(C > 0 \) independent of \(f \).

Next, applying Lemma 6.2 to \(\Phi_0 \) and \(f_2 \), we have

\[
\Phi_0(x, Mf_2(x)) \leq C[M\Phi_0(\cdot, f_2(\cdot))(x) + \Phi_0(x, g(x))].
\]

Noting that \(\Phi_0(x, g(x)) \leq Cg(x) \) by (2.2) and (Φ2), we have

\[
(6.2) \quad \Phi(x, Mf_2(x)) \leq C\{[M\Phi_0(\cdot, f(\cdot))(x)]^{p_0} + g(x)^{p_0}\}
\]

for all \(x \in X \) with a constant \(C > 0 \) independent of \(f \).

Since \(0 \leq f_3 \leq g \leq 1 \), we have \(0 \leq Mf_3 \leq Mg \leq 1 \). Hence

\[
(6.3) \quad \Phi(x, Mf_3(x)) \leq A_2\Phi_0(x, Mg(x))^{p_0} \leq C[Mg(x)]^{p_0}
\]

for all \(x \in X \) with a constant \(C > 0 \) independent of \(f \).

Combining (6.1), (6.2) and (6.3), and noting that \(g(x) \leq Mg(x) \) for a.e. \(x \in X \), we obtain

\[
(6.4) \quad \Phi(x, Mf(x)) \leq C\{[M\Phi_0(\cdot, f(\cdot))(x)]^{p_0} + [Mg(x)]^{p_0}\}
\]

for a.e. \(x \in X \) with a constant \(C > 0 \) independent of \(f \).

In view of (2.1),

\[
\int_X \Phi_0(y, f(y))^{p_0} \, d\mu(y) = \int_X \Phi(y, f(y)) \, d\mu(y) \leq 2A_3
\]

462
for all \(x \in X \). Hence, applying Lemma 6.4 to \((2A_3)^{-1/p_0}\Phi_0(y, f(y))\), we have

\[
\int_X [M\Phi_0(\cdot, f(\cdot))(y)]^{p_0} \, d\mu(y) \leq C
\]

with a constant \(C > 0 \) independent of \(f \).

By Lemma 6.4, we obtain

\[
\int_X [Mg(y)]^{p_0} \, d\mu(y) \leq C
\]

as \(g \in L^{p_0}(X) \).

Thus, by (6.4), we finally obtain

\[
\int_X \Phi(y, Mf(y)) \, d\mu(y) \leq C.
\]

This completes the proof. \(\Box\)

Corollary 6.5. Suppose \(\mu \) is Ahlfors \(Q(x) \)-regular. Let \(\Phi(x, t) \) be defined as in Examples 2.1 and 2.4. Then the Hardy-Littlewood maximal operator \(M \) is bounded from \(L^\Phi(X) \) into itself.

In fact, \(\Phi(x, t) \) satisfies \((\Phi_3^*) \) with \(\varepsilon_0 = (p^- - 1)/2 \).

Similarly to Theorem 6.3, we can show the following lemma.

Lemma 6.6. Assume that \(X \) is a bounded doubling space. Suppose that \(\Phi(x, t) \) satisfies \((\Phi_3^*) \) and \((\Phi_5) \). Then the Hardy-Littlewood maximal operator \(M \) is bounded from \(L^\Phi(X) \) into itself.

Corollary 6.7. Assume that \(X \) is a bounded doubling space. Let \(\Phi(x, t) \) be defined as in Example 2.1. Then the Hardy-Littlewood maximal operator \(M \) is bounded from \(L^\Phi(X) \) into itself.

By Proposition 5.1 and Theorem 6.3, we have the following result.

Proposition 6.8. Suppose that \(\Phi(x, t) \) satisfies \((\Phi_3^*) \), \((\Phi_5) \) and \((\Phi_6) \). Then \(M^{1,\Phi}(\mathbb{R}^N) = W^{1,\Phi}(\mathbb{R}^N) \).

7. Sobolev’s inequality

In this section, we show a Sobolev-type inequality on Musielak-Orlicz-Hajlasz-Sobolev spaces. For this purpose, we first prove Sobolev’s inequality for a Riesz-type operator in Musielak-Orlicz spaces.
Lemma 7.1 (cf. [44], Lemma 5.1). Let $H(x,t)$ be a positive function on $X \times (0, \infty)$ satisfying the following conditions:

(H1) $H(x, \cdot)$ is continuous on $(0, \infty)$ for each $x \in X$;
(H2) there exists a constant $K_1 \geq 1$ such that $K_1^{-1} \leq H(x,1) \leq K_1$ for all $x \in X$;
(H3) $t \mapsto t^{-\epsilon'} H(x,t)$ is uniformly almost increasing for $\epsilon' > 0$; namely, there exists a constant $K_2 \geq 1$ such that $t^{-\epsilon'} H(x,t) \leq K_2 s^{-\epsilon'} H(x,s)$ for all $x \in X$ whenever $0 < t < s$.

Set $H^{-1}(x,s) = \sup \{ t > 0 : H(x,t) < s \}$ for $x \in X$ and $s > 0$. Then:

1. $H^{-1}(x,\cdot)$ is nondecreasing.
2. $H^{-1}(x,\lambda s) \leq (K_2 \lambda)^{1/\epsilon'} H^{-1}(x,s)$ for all $x \in X$, $s > 0$ and $\lambda \geq 1$.
3. $H(x,H^{-1}(x,t)) = t$ for all $x \in X$ and $t > 0$.
4. $K_2^{-1/\epsilon'} t \leq H^{-1}(x,H(x,t)) \leq K_2^{1/\epsilon'} t$ for all $x \in X$ and $t > 0$.
5. $\min \{ 1, (s/K_1 K_2)^{1/\epsilon'} \} \leq H^{-1}(x,s) \leq \max \{ 1, (K_1 K_2)^{1/\epsilon'} \}$ for all $x \in X$ and $s > 0$.

Remark 7.2. $H(x,t) = \Phi(x,t)$ satisfies (H1), (H2) and (H3) with $K_1 = A_1$, $K_2 = A_2$ and $\epsilon' = 1$.

Lemma 7.3. Assume that X is a bounded space. Suppose that μ is lower Ahlfors $Q(x)$-regular and $\Phi(x,t)$ satisfies (\Phi5). Then there exists a constant $C > 0$ such that

$$
\frac{1}{\mu(B(x,r))} \int_{X \cap B(x,r)} f(y) \, d\mu(y) \leq C \Phi^{-1}(x,r^{-Q(x)})
$$

for all $x \in X$, $0 < r < d_X$ and $f \geq 0$ satisfying $\|f\|_{L^\Phi(X)} \leq 1$.

Proof. Let f be a nonnegative function on X such that $\|f\|_{L^\Phi(X)} \leq 1$. Then we have $\int_X \Phi(y,f(y)) \, d\mu(y) \leq 2 A_3$ by (2.1). By Lemma 6.1, (\Phi2), (\Phi3) and (\Phi4), we obtain

$$
\Phi \left(x, \frac{1}{\mu(B(x,r))} \int_{X \cap B(x,r)} f(y) \, d\mu(y) \right) \leq C (1 + \mu(B(x,r))^{-1}) \leq C (1 + r^{-Q(x)}) \leq C_1 r^{-Q(x)}
$$

for some constant $C_1 > 1$ and for all $x \in X$ and $0 < r < d_X$. Hence, we find by Lemma 7.1 with $H = \Phi$

$$
\frac{1}{\mu(B(x,r))} \int_{X \cap B(x,r)} f(y) \, d\mu(y) \leq A_2 \Phi^{-1}(x,C_1 r^{-Q(x)}) \leq C_1 A_2^2 \Phi^{-1}(x,r^{-Q(x)}),
$$

as required. \qed

464
For an open set $\Omega \subset X$, $f \in L^1_{\text{loc}}(X)$ and $\alpha > 0$, we define the Riesz-type operator $J^\Omega f$ of order α by

$$J^\Omega f(x) = \sum_{2^i \leq 2d_x} \frac{2^{i\alpha}}{\mu(B(x, 2^i))} \int_{\Omega \cap B(x, 2^i)} |f(y)| \, d\mu(y).$$

If μ is a doubling measure, then $I^\Omega f(x) \leq C J^\Omega f(x)$ for a.e. $x \in X$, where

$$I^\Omega f(x) = \int_{\Omega} \frac{d(x, y)^\alpha |f(y)|}{\mu(B(x, r))} \, d\mu(y)$$

is the usual Riesz potential of order α (see e.g. [23]).

Lemma 7.4. Suppose that X is a bounded space and μ is lower Ahlfors $Q(x)$-regular. Assume that $\Phi(x, t)$ satisfies $(\Phi 5)$ and $(\Phi \mu)$ there exist constants $\gamma > 0$ and $A_4 \geq 1$ such that $s^{\gamma + \alpha} \Phi^{-1}(x, s^{-Q(x)}) \leq A_4 t^{\gamma + \alpha} \Phi^{-1}(x, t^{-Q(x)})$ for all $x \in X$, whenever $0 \leq t < s$.

Then there exists a constant $C > 0$ such that

$$\sum_{\delta < 2^i \leq 2d_x} \frac{2^{i\alpha}}{\mu(B(x, 2^i))} \int_{\Omega \cap B(x, 2^i)} f(y) \, d\mu(y) \leq C \delta^\alpha \Phi^{-1}(x, \delta^{-Q(x)})$$

for all $x \in X$, $0 < \delta < d_X$ and $f \geq 0$ satisfying $\|f\|_{L^\Phi(X)} \leq 1$.

Proof. Let f be a nonnegative function on X such that $\|f\|_{L^\Phi(X)} \leq 1$. By Lemmas 7.1 and 7.3 and $(\Phi \mu)$, we have

$$\sum_{\delta < 2^i \leq 2d_x} \frac{2^{i\alpha}}{\mu(B(x, 2^i))} \int_{\Omega \cap B(x, 2^i)} f(y) \, d\mu(y) \leq C \sum_{\delta < 2^i \leq 2d_x} 2^{i\alpha} \Phi^{-1}(x, 2^{-i}Q(x)) \leq C \int_{\delta}^{\infty} t^\alpha \Phi^{-1}(x, t^{-Q(x)}) \, \frac{dt}{t} \leq C \delta^\alpha \Phi^{-1}(x, \delta^{-Q(x)}),$$

as required. \qed

Note that $(\Phi \mu)$ implies

$$\lim_{t \to \infty} t^{\alpha/Q(x)} = \infty \quad \text{uniformly in } x \in X. \quad (7.1)$$

We consider a function $\Psi_{\alpha}(x, t) : X \times [0, \infty) \to [0, \infty)$ satisfying the following conditions:
Write for all (7.1) and (466) \(Q(\Psi_1) \) satisfies

Here, let \(\delta J \) Therefore since \(J \)

We have by Lemma 7.4

\(\Psi_\Phi(\cdot) \) there is a constant \(A_6 \geq 1 \) such that \(\Psi_\alpha(x, t\Phi(x,t))^{-\alpha/Q(x)} \leq A_6 \Phi(x,t) \) for all \(x \in X \) and \(t > 0 \).

Note: \((\Psi 2) \) implies that \(\Psi_\alpha(x, \cdot) \) is uniformly almost increasing on \([0, \infty) \); \((\Psi 2), (7.1) \) and \((\Psi \Phi \mu) \) imply that \(\Psi_\alpha(\cdot, t) \) is bounded on \(X \) for each \(t > 0 \).

Theorem 7.5. Assume that \(X \) is a bounded doubling space and \(\mu \) is lower Ahlfors \(Q(x) \)-regular. Suppose that \(\Phi(x,t) \) satisfies \((\Phi 3^*) \), \((\Phi 5) \) and \((\Phi \mu) \), and that \(\Psi_\alpha(x, t) \) satisfies \((\Psi 1), (\Psi 2) \) and \((\Psi \Phi \mu) \). Then there exist constants \(C_1, C_2 > 0 \), such that

\[
\int_X \Psi_\alpha(x, J^X_\alpha f(x)/C_1) \, d\mu(x) \leq C_2
\]

for all \(f \geq 0 \) satisfying \(\|f\|_{L^\Phi(X)} \leq 1 \).

Proof. Let \(f \) be a nonnegative measurable function on \(X \) satisfying \(\|f\|_{L^\Phi(X)} \leq 1 \).

Write

\[
J^X_\alpha f(x) = \sum_{2^i \leq \delta} \frac{2^{i\alpha}}{\mu(B(x, 2^i))} \int_{X \cap B(x, 2^i)} f(y) \, d\mu(y)
\]

\[
+ \sum_{\delta < 2^i < 2d_X} \frac{2^{i\alpha}}{\mu(B(x, 2^i))} \int_{X \cap B(x, 2^i)} f(y) \, d\mu(y) =: J_1 + J_2.
\]

We have by Lemma 7.4

\[
J_2 \leq C \delta^\alpha \Phi^{-1}(x, \delta^{-Q(x)}).
\]

Since \(J_1 \leq C \delta^\alpha Mf(x) \), we find that

\[
J^X_\alpha f(x) \leq C \{ \delta^\alpha Mf(x) + \delta^\alpha \Phi^{-1}(x, \delta^{-Q(x)}) \}.
\]

Here, let \(\delta = \min\{d_X, \Phi(x, Mf(x))^{-1/Q(x)}\} \).

If \(d_X \leq \Phi(x, Mf(x))^{-1/Q(x)} \), then note from Lemma 7.1 that

\[
Mf(x) \leq A_2 \Phi^{-1}(x, d_X^{-Q(x)}) \leq A_2 \max\{1, A_1 A_2 d_X^{-Q(x)}\} \leq C.
\]

Therefore \(J^X_\alpha f(x) \leq C \).

Next, if \(d_X > \Phi(x, Mf(x))^{-1/Q(x)} \), then we have

\[
\Phi^{-1}(x, \delta^{-Q(x)}) = \Phi^{-1}(x, \Phi(x, Mf(x))) \leq A_2 \Phi^{-1}(x, d_X^{-Q(x)}) \leq A_2 Mf(x)
\]

466
in view of Lemma 7.1. Hence we see that
\[J^X_\alpha f(x) \leq C_1 \max\{ Mf(x)\Phi(x, Mf(x)) - \alpha/Q(x), 1 \} \]
for some constant \(C_1 > 0 \). By (Ψ2) and (ΨΦµ), we find
\[
\Psi_\alpha(x, J^X_\alpha f(x)/C_1) \leq A_\alpha \{ \Psi_\alpha(x, Mf(x)\Phi(x, Mf(x)) - \alpha/Q(x)) + \Psi_\alpha(x, 1) \} \\
\leq C \{ \Phi(x, Mf(x)) + 1 \}
\]
Hence, by Lemma 6.6
\[
\int_X \Psi_\alpha(x, J^X_\alpha f(x)/C_1) d\mu(x) \leq C \left\{ \int_X \Phi(x, Mf(x)) d\mu(x) + \mu(X) \right\} \leq C_2
\]
for some constant \(C_2 > 0 \), as required. \(\square \)

Corollary 7.6. Assume that \(X \) is a bounded doubling space and \(\mu \) is lower Ahlfors \(Q(x) \)-regular. Let \(\Phi(x, t) \) be defined as in Example 2.1 and set
\[
\Psi_\alpha(x, t) = \left(t^{1/p^\ast(x)} \prod_{j=1}^k \left(L^{(j)}(t) \right)^{q_j(x)/p(x)} \right)^{p^\ast(x)}
\]
for all \(x \in X \) and \(t > 0 \), where \(1/p^\ast(x) = 1/p(x) - \alpha/Q(x) \). Suppose
\[
(7.2) \quad \text{ess sup}_{x \in X}(\alpha p(x) - Q(x)) < 0.
\]
Then there exists a constant \(C > 0 \) such that
\[
\int_X \Psi_\alpha(x, J^X_\alpha f(x)) d\mu(x) \leq C
\]
for all \(f \geq 0 \) satisfying \(\| f \|_{L^\Phi(X)} \leq 1 \).

Proof. First note that
\[
\Phi^{-1}(x, t) \sim t^{1/p(x)} \prod_{j=1}^k \left(L^{(j)}(t) \right)^{-q_j(x)/p(x)}
\]
for all \(x \in X \) and \(t > 0 \). Therefore, by (7.2), there exists a constant \(\gamma > 0 \) such that
\[
t^{\gamma + \alpha} \Phi^{-1}(x, t^{-Q(x)}) \sim t^{\gamma + \alpha - Q(x)/p(x)} \prod_{j=1}^k \left(L^{(j)}(t^{-1}) \right)^{-q_j(x)/p(x)}
\]
is uniformly almost decreasing on t. Hence $\Phi(x, t)$ satisfies (Φ_μ). Similarly, since $t^{-1}\Psi_\alpha(x, t)$ is uniformly almost increasing on t, we see that $\Psi_\alpha(x, t)$ satisfies (Ψ_2).

Finally, since $t^{p(x)/p'(x)} \prod_{j=1}^{k} (L_c^{(j)}(t))^{-\alpha_j(x)/Q(x)}$ for all $x \in X$ and $t > 0$, we see that $\Psi_\alpha(x, t)$ satisfies $(\Psi\Phi_\mu)$. Hence we obtain the required result by Theorem 7.5.

Theorem 7.7. Assume that X is a bounded doubling space and μ is lower Ahlfors $Q(x)$-regular. Suppose that $\Phi(x, t)$ satisfies (Φ^3), (Φ_4) and (Φ_μ), and that $\Psi_1(x, t)$ satisfies (Ψ_1), (Ψ_2) and $(\Psi\Phi_\mu)$. Then for each ball $B \subset X$, there exist constants $C_1, C_2 > 0$ such that

$$
\int_B \Psi_1(x, |u(x) - u_B|/C_1) \, d\mu(x) \leq C_2
$$

for all u satisfying $\|u\|_{M^{1, \Phi}(X)} \leq 1$.

Proof. Let $u \in M^{1, \Phi}(X)$ and let $g \in L^{\Phi}(X)$ be a Hajłasz gradient of u. Integrating both sides in (3.1) over y and x, we obtain the Poincaré inequality

$$
\int_B |u(x) - u_B| \, d\mu(x) \leq C d_B \int_B g(x) \, d\mu(x)
$$

for every ball $B \subset X$. Here, if μ is a doubling measure, then we have by [23], Theorem 5.2,

$$
|u(x) - u_B| \leq C J_X^1 g(x)
$$

for μ-a.e. $x \in B$. Hence we obtain the Sobolev-type inequality on Musielak-Orlicz-Hajłasz-Sobolev spaces by Theorem 7.5.

Corollary 7.8. Assume that X is a bounded doubling space and μ is lower Ahlfors $Q(x)$-regular. Let $\Phi(x, t)$ and $\Psi_1(x, t)$ be defined as in Corollary 7.6. Suppose

$$
\text{ess sup}_{x \in X} (p(x) - Q(x)) < 0.
$$

Then for each ball $B \subset X$, there exists a constant $C > 0$ such that

$$
\int_B \Psi_1(x, |u(x) - u_B|) \, d\mu(x) \leq C
$$

for all u satisfying $\|u\|_{M^{1, \Phi}(X)} \leq 1$.

468
8. Appendix

8.1. Musielak-Orlicz-Sobolev capacity in \mathbb{R}^N. For $u \in W^{1,\Phi}(\mathbb{R}^N)$, we define

$$\tilde{\varrho}_\Phi(u) = \varrho_\Phi(u) + \varrho_\Phi(\nabla u).$$

For $E \subset \mathbb{R}^N$, we denote

$$T_\Phi(E) = \{ u \in W^{1,\Phi}(\mathbb{R}^N) : u \geq 1 \text{ in an open set containing } E \}.$$

The Musielak-Orlicz-Sobolev Cap$_\Phi$-capacity is defined by

$$\text{Cap}_\Phi(E) = \inf_{u \in T_\Phi(E)} \tilde{\varrho}_\Phi(u).$$

In the case $T_\Phi(E) = \emptyset$, we set Cap$_\Phi(E) = \infty$.

Remark 8.1. Let $u, v \in W^{1,\Phi}(\mathbb{R}^N)$. Since

$$\int_{B(x,1)} |u(x)| \, dx + \int_{B(x,1)} |\nabla u(x)| \, dx$$

$$\leq 2|B(x,1)| + A_1 A_2 \left\{ \int_{B(x,1)} \Phi(x,|u(x)|) \, dx + \int_{B(x,1)} \Phi(x,|\nabla u(x)|) \, dx \right\}$$

$$\leq 2|B(x,1)| + 2A_1 A_2 A_3 \tilde{\varrho}_\Phi(u)$$

for all $x \in \mathbb{R}^N$ by (2.1), (Φ2) and (Φ3), we find $u \in W^{1,1}_{\text{loc}}(\mathbb{R}^N)$. The symbol $|E|$ denotes the Lebesgue measure for a set $E \subset \mathbb{R}^N$. As in the proof of [26], Theorem 2.2, we have

$$\min \{ u, v \} \in W^{1,\Phi}(\mathbb{R}^N),$$

$$\nabla \min \{ u, v \}(x) = \begin{cases} \nabla u(x) & \text{for a.e. } x \in \{ u \leq v \}, \\ \nabla v(x) & \text{for a.e. } x \in \{ u \geq v \} \end{cases}$$

and

$$\nabla \max \{ u, v \}(x) = \begin{cases} \nabla u(x) & \text{for a.e. } x \in \{ u \geq v \}, \\ \nabla v(x) & \text{for a.e. } x \in \{ u \leq v \}. \end{cases}$$

Lemma 8.2. Let $\{ u_j \}$ and $\{ v_j \}$ be sequences in $W^{1,\Phi}(\mathbb{R}^N)$. Assume that $\{ \tilde{\varrho}_\Phi(u_j) \}$ is bounded. If $\{ \tilde{\varrho}_\Phi(u_j - v_j) \}$ converges to zero, then $\{ \tilde{\varrho}_\Phi(u_j) - \tilde{\varrho}_\Phi(v_j) \}$ converges to zero.

Proof. We have by (Φ3) and (Φ4) that

$$\Phi(x,|v_j(x)|) \leq A_2 \Phi(x,|u_j(x) - v_j(x)| + |u_j(x)|)$$

$$\leq 2A_1^2 A_3 \{ \Phi(x,|u_j(x) - v_j(x)|) + \Phi(x,|u_j(x)|) \}$$

469
for all $x \in \mathbb{R}^N$. Hence $\{\check{\phi}(v_j)\}$ is also bounded. For any $\varepsilon > 0$, there exists a constant $C(\varepsilon) > 0$ such that

$$|\check{\Phi}(x, t_1) - \check{\Phi}(x, t_2)| \leq \varepsilon \{\check{\Phi}(x, t_1) + \check{\Phi}(x, t_2)\} + C(\varepsilon)\check{\Phi}(x, |t_1 - t_2|)$$

for all $x \in \mathbb{R}^N$ and $t_1, t_2 \geq 0$. Therefore we have

$$|\check{\phi}(u_j) - \check{\phi}(v_j)| \leq \varepsilon \{\check{\phi}(u_j) + \check{\phi}(v_j)\} + C(\varepsilon)\check{\phi}(u_j - v_j) \leq 2M\varepsilon + C(\varepsilon)\check{\phi}(u_j - v_j),$$

since $\check{\phi}(u_j) \leq M$ and $\check{\phi}(v_j) \leq M$ for some constant $M > 0$. Hence we find

$$\lim_{j \to \infty} |\check{\phi}(u_j) - \check{\phi}(v_j)| \leq 2M\varepsilon,$$

as required. □

Standard arguments and Lemma 8.2 yield the following results (see [26], Theorems 3.1 and 3.2).

Proposition 8.3. The set function $\text{Cap}_\Phi(\cdot)$ satisfies the following conditions:

1. $\text{Cap}_\Phi(\emptyset) = 0$;
2. if $E_1 \subset E_2 \subset \mathbb{R}^N$, then $\text{Cap}_\Phi(E_1) \leq \text{Cap}_\Phi(E_2)$;
3. $\text{Cap}_\Phi(\cdot)$ is an outer capacity;
4. for $E_1, E_2 \subset \mathbb{R}^N$, $\text{Cap}_\Phi(E_1 \cup E_2) + \text{Cap}_\Phi(E_1 \cap E_2) \leq \text{Cap}_\Phi(E_1) + \text{Cap}_\Phi(E_2)$;
5. if $K_1 \supset K_2 \supset \ldots$ are compact sets of \mathbb{R}^N, then

$$\lim_{i \to \infty} \text{Cap}_\Phi(K_i) = \text{Cap}_\Phi\left(\bigcap_{i=1}^\infty K_i\right);$$

6. if $W^{1,\Phi}(\mathbb{R}^N)$ is reflexive and $E_1 \subset E_2 \subset \ldots$ are subsets of \mathbb{R}^N, then

$$\lim_{i \to \infty} \text{Cap}_\Phi(E_i) = \text{Cap}_\Phi\left(\bigcup_{i=1}^\infty E_i\right);$$

7. if $W^{1,\Phi}(\mathbb{R}^N)$ is reflexive and $E_i \subset \mathbb{R}^N$ for $i = 1, 2, \ldots$, then

$$\text{Cap}_\Phi\left(\bigcup_{i=1}^\infty E_i\right) \leq \sum_{i=1}^\infty \text{Cap}_\Phi(E_i).$$

We say that a property holds Cap_Φ-q.e. in \mathbb{R}^N, if it holds everywhere except for a set $F \subset \mathbb{R}^N$ with $\text{Cap}_\Phi(F) = 0$. Analogously to Theorem 3.9, we have the following result.
Theorem 8.4 (cf. [26], Lemma 5.1). Suppose that $W^{1,\Phi}({\mathbb R}^N)$ is reflexive. Then, for each Cauchy sequence of functions in $W^{1,\Phi}({\mathbb R}^N) \cap C({\mathbb R}^N)$, there is a subsequence which converges pointwise Cap_Φ-q.e. in \mathbb{R}^N. Moreover, the convergence is uniform outside a set of arbitrary small Musielak-Orlicz-Sobolev Cap_Φ-capacity.

We say that a function $u: \mathbb{R}^N \to \mathbb{R}$ is Cap_Φ-quasicontinuous, if for every $\varepsilon > 0$, there exists a open set E with $\text{Cap}_\Phi(E) < \varepsilon$ such that u restricted to $\mathbb{R}^N \setminus E$ is continuous.

Corollary 8.5 (cf. [26], Theorem 5.2). Suppose that $W^{1,\Phi}({\mathbb R}^N)$ is reflexive and C^1-functions are dense in $W^{1,\Phi}({\mathbb R}^N)$. Then $u \in W^{1,\Phi}({\mathbb R}^N)$ has a Cap_Φ-quasicontinuous representative of u.

8.2. Fuglede’s theorem in \mathbb{R}^N.

Lemma 8.6 (cf. [30], Lemma 3.1). Suppose that C^1-functions are dense in $W^{1,\Phi}({\mathbb R}^N)$. Let $E \subset \mathbb{R}^N$. If $\text{Cap}_\Phi(E) = 0$, then $M_\Phi(\Gamma_E) = 0$.

Proof. Let $E \subset X$ with $\text{Cap}_\Phi(E) = 0$. Then, for every positive integer i, we choose a function $u_i \in W^{1,\Phi}({\mathbb R}^N) \cap C^1({\mathbb R}^N)$ such that $u_i(x) \geq 1$ for every $x \in E$ and $\partial_\Phi(u_i) \leq A_2^{-1}(2A_3)^{-i-1}$. Set $v_k = \sum_{i=1}^{k} |u_i|$. Since

$$\partial_\Phi\left(\frac{u_i}{2^i}\right) \leq A_2(2A_3)^{i+1}\partial_\Phi(u_i) \leq 1$$

by (2.1) and (Φ_4), we have $\|u_i\|_{W^{1,\Phi}({\mathbb R}^N)} \leq 2^{-i}$. Therefore

$$\|v_l - v_m\|_{W^{1,\Phi}({\mathbb R}^N)} \leq \sum_{i=m+1}^{l} \|u_i\|_{W^{1,\Phi}({\mathbb R}^N)} \leq 2^{-m}$$

for every $l > m$. Hence $\{v_k\}$ is a Cauchy sequence in $W^{1,\Phi}({\mathbb R}^N)$. Setting $v(x) = \lim_{k \to \infty} v_k(x)$ for every $x \in X$, we see that $v \in W^{1,\Phi}({\mathbb R}^N)$ is a Borel function. Thus, as in the proof of Lemma 4.6, we have the required result. \[\square\]

We say that $u: \mathbb{R}^N \to \mathbb{R}$ is absolutely continuous on lines, $u \in \text{ACL}({\mathbb R}^N)$, if u is absolutely continuous on almost every line segment in \mathbb{R}^N parallel to the coordinate axes. Note that an ACL function has classical derivatives almost everywhere. An ACL function is said to belong to $\text{ACL}^\Phi({\mathbb R}^N)$ if $|\nabla u| \in L^\Phi({\mathbb R}^N)$. Since $W^{1,\Phi}({\mathbb R}^N) \hookrightarrow W^{1,1}({\mathbb R}^N)$ locally, we obtain the following result.
Lemma 8.7. \(\text{ACL}^\Phi(\mathbb{R}^N) \cap L^\Phi(\mathbb{R}^N) = W^{1,\Phi}(\mathbb{R}^N) \).

Let \(u: \mathbb{R}^N \to \mathbb{R} \) and \(\Gamma \) be the family of rectifiable curves \(\gamma: [0, l(\gamma)] \to \mathbb{R}^N \) such that \(u \circ \gamma \) is not absolutely continuous on \([0, l(\gamma)] \). We say that \(u \) is absolutely continuous on curves, \(u \in \text{ACC}_\Phi(\mathbb{R}^N) \), if \(M_\Phi(\Gamma) = 0 \). It is clear that \(\text{ACC}_\Phi(\mathbb{R}^N) \subset \text{ACL}(\mathbb{R}^N) \). An \(\text{ACC}_\Phi \) function is said to belong to \(\text{ACC}_\Phi^\Phi(\mathbb{R}^N) \) if \(|\nabla u| \in L^\Phi(\mathbb{R}^N) \).

The proof of the following theorem is the same as the proof of [30], Theorem 4.2.

Theorem 8.8 (cf. [30], Theorem 4.2). Suppose that \(W^{1,\Phi}(\mathbb{R}^N) \) is reflexive and \(C^1 \)-functions are dense in \(W^{1,\Phi}(\mathbb{R}^N) \). Then \(\text{ACC}_\Phi(\mathbb{R}^N) \cap L^\Phi(\mathbb{R}^N) = W^{1,\Phi}(\mathbb{R}^N) \).

References

Authors’ addresses: T a k a o O h n o, Faculty of Education and Welfare Science, Ōita University, 700 Dannoharu Ōita-city 870-1192, Japan, e-mail: t-ohno@oita-u.ac.jp; T e t s u S h i m o m u r a, Department of Mathematics, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama Higashi-Hiroshima 739-8524, Japan, e-mail: tshimo@hiroshima-u.ac.jp.