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Abstract. A maximum matching of a graph G is a matching of G with the largest number
of edges. The matching number of a graph G, denoted by α

′(G), is the number of edges
in a maximum matching of G. In 1966, Gallai conjectured that all the longest paths of
a connected graph have a common vertex. Although this conjecture has been disproved,
finding some nice classes of graphs that support this conjecture is still very meaningful and
interesting. In this short note, we prove that Gallai’s conjecture is true for every connected
graph G with α

′(G) 6 3.
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1. Introduction

Graphs in this paper are simple (without loops or parallel edges), finite and undi-

rected. Let G be a graph with the vertex set V (G) and edge set E(G). Let v be

a vertex of V (G). The neighborhood of v in G, denoted by NG(v), is the set of ver-

tices in V (G) which are adjacent to v. The degree of v in G, denoted by dG(v), equals

|NG(v)|. A matching in a graph is a set of pairwise nonadjacent edges. A maximum

matching is a matching with the largest number of edges. The matching number

of G, denoted by α′(G), is the number of edges in a maximum matching of G.

The research on the intersection of longest paths in a graph has a long history. In

particular, Gallai [5] proposed the following conjecture in 1966.

Conjecture 1.1 (Gallai [5]). If G is a connected graph, then all the longest paths

of G have a common vertex.

Three years later, Walther [10] disproved Gallai’s conjecture by exhibiting a coun-

terexample on 25 vertices. Up to now, the smallest counterexample to Gallai’s con-
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jecture is a graph on 12 vertices (see Figure 1), which was found by Walther [11] and

Zamfirescu [13] independently. One may find that this graph is somewhat interest-

ing: for each vertex v of it, there is a longest path not containing v in it. Therefore,

all the longest paths share no common vertex.

Figure 1. A counterexample to Gallai’s conjecture on 12 vertices.

Since the answer to Gallai’s conjecture is negative, it is natural to consider this

problem by restricting the size of subsets of longest paths with a common vertex.

First, it is an obvious fact that every two longest paths in a connected graph have

a common vertex. (See also Exercise 2.2.13, page 52 in [2].) Zamfirescu [9], [13] asked

the following challenging open problem: Do any three longest paths in a connected

graph share a common vertex? This problem was presented as a conjecture in [6],

and as an open problem in [2], [12]. For advancement on this problem, see [8] for

details.

On the other hand, although Gallai’s conjecture has been disproved, finding classes

of graphs that support this conjecture is also very meaningful. An obvious such

example is the class of trees. In 1990, Klavžar and Petkovšek [7] proved that Con-

jecture 1.1 holds on split graphs, and every connected graph such that each block

is Hamiltonian-connected, almost Hamiltonian-connected or a cycle. As a corollary,

Gallai’s conjecture is true for the class of cacti. In 2004, Balister, Győri, Lehel, and

Schelp [1] showed that circular arc graphs support Conjecture 1.1. In 2013, Rezende,

Fernandes, Martin and Wakabayashi [3] proved that Conjecture 1.1 also holds on

outer-planar graphs and 2-trees. In 2013, Chen, Ehrenmüller, Fernandes, Heise,

Shan, Yang and Yates [4] furthermore proved that Gallai’s conjecture is true for all

series-parallel graphs (K4-minor-free graphs). Since outer-planar graphs and 2-trees

are K4-minor-free, Chen et al. [4] extended Rezende et al.’s [3] results to a larger

class of graphs.

Our main result is the following theorem.

Theorem 1.1. If G is a connected graph with α′(G) 6 3, then all the longest

paths of G have a common vertex.

From Figure 1, we know that there is a counterexample to Gallai’s conjecture such

that its matching number is six. Thus, the following problem is proposed naturally.
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Problem 1. Do all longest paths in a connected graph G with α′(G) 6 5 share

a common vertex?

Note that if the answer to Problem 1 is yes, then the graph in Figure 1 is the

smallest counterexample to Gallai’s conjecture.

Furthermore, since each graph in Figure 2 has the matching number at most 3,

and it has K4 as a minor, our result is not included in the previous results given by

Chen et al. [4].

. . . . . .

. . .

Figure 2.

Our proof of Theorem 1.1 will be given in the next section.

2. Proof of Theorem 1.1

We prove this theorem by contradiction. Let G be a counterexample. Since G is

connected, if G has no cycle, then G is a tree, and therefore all the longest paths of G

have a common vertex (a center vertex of G). SoG has a cycle. Let C = v1v2 . . . vrv1,

r > 3, be a longest cycle of G, and P = x0x1 . . . xs a longest path of G. We write

C[vi, vj ] for the longer subpath of C between vi and vj , and P [xm, xn] for the subpath

of P between xm and xn, 1 6 i, j 6 r and 0 6 m,n 6 s. Since α′(G) 6 3, we have

that r 6 7 and s 6 6. If C is a Hamilton cycle, then every longest path of G is

a Hamilton path, therefore all the longest paths have a common vertex. Thus C is

not a Hamilton cycle. Let R = G− V (C), and u ∈ V (R).

Claim 2.1. s > r.

P r o o f. Since G is connected and C is not a Hamilton cycle, there is a vertex

y ∈ V (R) such that yvi ∈ E(G), where vi ∈ V (C). Then yvivi+1 . . . vi−1 is a path of

length r. Since P is a longest path of G, s > r. �

Claim 2.2. |V (P ) ∩ V (C)| > 1.

P r o o f. Suppose that V (P ) ∩ V (C) = ∅.

First we claim that s 6 4. Assume that s > 5. Then x0x1, x2x3, x4x5, v1v2 are

four independent edges, a contradiction. By Claim 2.1, we have r 6 s 6 4. If r = 4,

then v1v2, v3v4, x1x2, x3x4 are four independent edges, a contradiction. This implies

that r = 3.
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Since G is connected, there is a path P ′ connecting P and C. Suppose that

the two end-vertices of P ′ are xi and vj . Now either C[vj+1, vj ]P
′[vj , xi]P [xi, xs]

or C[vj+1, vj ]P
′[vj , xi]P [xi, x0] is a path of length at least 5, and longer than P ,

a contradiction. �

Claim 2.3. If there is a vertex v ∈ V (G) such that NG(v) = {v1, v2}, then every

longest path of G containing v must also contain v1 and v2.

P r o o f. Let Q be a longest path such that v ∈ V (Q). If v is an end-vertex of Q,

without loss of generality supposing that v2 is not on Q, then Q ∪ vv2 is a path

longer than Q, a contradiction. Hence v is an internal vertex of Q. Since dG(v) = 2,

Q passes v1 and v2. �

By Claim 2.1 and s 6 6, we have r 6 6. Now we distinguish the following cases.

Case 1. r = 3.

P r o o f. By Claims 2.1 and 2.2, s > 3 and |V (P ) ∩ V (C)| > 1.

Claim 2.4. For any longest path Q of G, |V (Q)∩V (C)| = 1 or |V (Q)∩V (C)| = 3.

P r o o f. By Claim 2.2, |V (Q) ∩ V (C)| > 1. If |V (Q) ∩ V (C)| = 2, then without

loss of generality, suppose that v1, v2 ∈ V (Q). Now v1v2 ∈ E(Q), since if v1v2 /∈

E(Q), then v1v3v2Q[v2, v1]v1 is a cycle longer than C, a contradiction. But now

(Q− v1v2) ∪ v1v3v2 is a path longer than Q, a contradiction. �

Claim 2.5. If there is a longest path Q = y0y1 . . . ys of G such that |V (Q) ∩

V (C)| = 1, then for each vertex v ∈ V (C) \ V (Q), dG(v) = 2. Furthermore, all the

longest paths of G share a common vertex.

P r o o f. First we claim that s 6 4, since otherwise y0y1, y2y3, y4y5 and an edge

in C are four independent edges, a contradiction. Furthermore, we have that s = 4.

Otherwise, there will be a path longer than Q, a contradiction. Now Q = y0y1y2y3y4.

Since Q is the longest, V (Q)∩V (C) = {y2}. Without loss of generality, assume that

v1 = y2.

Now we can check that for each v ∈ {v2, v3}, the following assertions hold:

(i) v is not adjacent to any vertex in V (Q) \ y2, since r = 3;

(ii) v is not adjacent to any vertex in V (G) \ (V (Q) ∪ V (C)), since if there is

a vertex z ∈ V (G) \ (V (Q) ∪ V (C)) such that zv ∈ E(G), then either

{y0y1, y3y4, y2v2, v3z} or {y0y1, y3y4, y2v3, v2z} is a set of independent edges

of size four;

(iii) dG(v) = 2, since (i) and (ii).

By Claim 2.3, every longest path of G containing v2 (v3) must also contain y2 and

v3 (v2). Therefore, all the longest paths of G contain y2. �
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Since G is a counterexample, by Claims 2.4 and 2.5, for every longest path Q of G,

V (C) ⊂ V (Q). But now all the longest paths ofG contain V (C), a contradiction. �

Case 2. r = 4.

P r o o f. By Claims 2.1 and 2.2, s > 4 and |V (P ) ∩ V (C)| > 1.

Claim 2.6. For any longest path Q of G, |V (Q) ∩ V (C)| > 2.

P r o o f. Let Q=y0y1 . . . ys be a longest path of G such that |V (Q)∩V (C)|=1.

Without loss of generality, assume that V (Q) ∩ V (C) = {v1}. If s > 5, then {y0y1,

y2y3, y4y5, v2v3} is a set of independent edges of size four, a contradiction. Thus

s 6 4. However, there is a path longer than Q, a contradiction. �

Claim 2.7. For any two longest paths Q and Q′ of G such that |V (Q)∩ V (C)| =

|V (Q′) ∩ V (C)| = 2, we have V (Q) ∩ V (C) = V (Q′) ∩ V (C) = {vi, vi+2}, i ∈ {1, 2}.

P r o o f. We claim that {v1, v2} is not in V (Q). Otherwise, if v1v2 ∈ E(Q), then

(Q − v1v2) ∪ v1v4v3v2 is a path longer than Q, a contradiction; if v1v2 /∈ E(Q),

then Q[v1, v2]v2v3v4v1 is a cycle longer than C, a contradiction. Similarly, none of

{v2, v3}, {v3, v4}, {v4, v1} is contained in V (Q). Since |V (Q) ∩ V (C)| = 2, we have

V (Q) ∩ V (C) = {v1, v3} or V (Q) ∩ V (C) = {v2, v4}. Suppose that V (Q) ∩ V (C) =

{v1, v3} and V (Q′) ∩ V (C) = {v2, v4}. Then v1v3 cannot be an edge of Q, and v2v4

cannot be an edge of Q′, otherwise (Q − v1v3) ∪ v1v2v3 or (Q
′ − v2v4) ∪ v2v3v4 is

a path longer than Q, a contradiction. Since the length of a longest cycle in G is 4,

v1w1v3 is a subpath of Q and v2w2v4 is a subpath of Q
′, where w1, w2 ∈ V (R). If

w1 = w2, then v1w1v2v3v4v1 is a cycle of length 5, a contradiction. If w1 6= w2, then

v1w1v3v2w2v4v1 is a cycle of length 6, a contradiction. �

Claim 2.8. If there is a longest path Q = y0y1 . . . ys of G, such that |V (Q) ∩

V (C)| 6 3, then for each vertex v ∈ V (C) \ V (Q), dG(v) = 2. Furthermore, all the

longest paths of G share a common vertex.

P r o o f. By Claim 2.6, |V (Q) ∩ V (C)| > 2. If |V (Q) ∩ V (C)| = 2, by Claim 2.7,

set V (Q)∩V (C) = {v1, v3}. If |V (Q)∩V (C)| = 3, then exactly one of {v1, v2, v3, v4}

is not in V (Q). Thus for each vi ∈ V (C) \ V (Q), vi−1, vi+1 ∈ V (Q), i is taken

modulo 4. Since r = 4, vi−1wivi+1 is a subpath of Q in G, wi may be a vertex

of V (C). Now vi−1 and vi+1 are not end-vertices of Q, since otherwise adding vi

to Q results in a longer path, a contradiction. Suppose that vi−1 = yk, vi+1 = yj ,

0 < k < j < s.

We can check that for each vertex vi ∈ V (C)\V (Q), the following assertions hold:

(i) vi is not adjacent to wi, since otherwise (Q−vi−1wi)∪vi−1viwi is a path longer

than Q;

549



(ii) vi is not adjacent to any vertex in Q[y0, yk−1]∪Q[yj+1, ys], since otherwise if w
′ ∈

Q[y0, yk−1]∪Q[yj+1, ys] such that viw
′ ∈ E(G), then either vivi+1Q[vi+1, w

′]w′vi
or vivi−1Q[vi−1, w

′]w′vi is a cycle of length at least 5; and

(iii) vi is not adjacent to any vertex in V (G) \ (V (Q) ∪ V (C)), since if there exists

a vertex z ∈ V (G)\(V (Q)∪V (C)) such that zvi ∈ E(G), then s = 4. Otherwise

{y0y1, y2y3, y4y5, zvi} is a set of independent edges of size four, a contradiction.

But now zvivi−1Q[vi−1, vi+1]vi+1Q[vi+1, ys] is a path of length at least 5;

(iv) dG(vi) = 2, since (i), (ii) and (iii).

If |V (Q) ∩ V (C)| = 2, by Claim 2.3, every longest path of G containing v2 (v4)

must also contain v1 and v3. Therefore, all the longest paths of G contain v1 and v3.

If |V (Q)∩V (C)| = 3, by Claim 2.3, every longest path ofG containing vi must also

contain vi−1 and vi+1. Therefore, all the longest paths of G contain vi−1 and vi+1.

�

Since G is a counterexample, by Claim 2.8, for every longest path Q of G we have

V (C) ⊂ V (Q). But now all the longest paths ofG contain V (C), a contradiction. �

Case 3. r = 5.

P r o o f. By Claims 2.1 and 2.2, we have that s > 5 and |V (P ) ∩ V (C)| > 1.

Claim 2.9. For any longest path Q of G, |V (Q) ∩ V (C)| > 3.

P r o o f. Let Q = y0y1 . . . ys be a longest path of G such that |V (Q)∩ V (C)| 6 2.

Then y0y1, y2y3, y4y5 and an edge in C are four independent edges, a contradiction.

�

Claim 2.10. If there is a longest path Q = y0y1 . . . ys of G such that |V (Q) ∩

V (C)| 6 4, then for each vertex v ∈ V (C) \ V (Q), dG(v) = 2. Furthermore, all the

longest paths of G share a common vertex.

P r o o f. By Claim 2.9, |V (Q) ∩ V (C)| > 3. Since r = 5, at least two vertices of

V (Q) ∩ V (C) are adjacent in C. Without loss of generality, suppose that v1, v2 ∈

V (Q). If |V (Q) ∩ V (C)| = 3, then v3, v5 /∈ V (Q). Since if v3 or v5 ∈ V (Q), hence

{y0y1, y2y3, y4y5, v4v5} or {y0y1, y2y3, y4y5, v3v4} is a set of independent edges of size

four, a contradiction. If |V (Q) ∩ V (C)| = 4, then exactly one of {v3, v4, v5} is not

in V (Q). Thus for each vi ∈ V (C) \ V (Q), vi−1, vi+1 ∈ V (Q), i ∈ {3, 4, 5}. Since

r = 5, vi−1wivi+1 or vi−1w1iw2ivi+1 is a subpath of Q, wi, w1i, w2i may be vertices

of V (C). Now vi−1 and vi+1 are not end-vertices of Q, since otherwise adding vi

to Q results in a longer path, a contradiction. Suppose that vi−1 = yk, vi+1 = yj ,

0 < k < j < s.

550



We can check that for each vertex vi ∈ V (C)\V (Q), the following assertions hold:

(i) vi is not adjacent to wi if vi−1wivi+1 is a subpath of Q or wi1, wi2 if

vi−1wi1wi2vi+1 is a subpath of Q since otherwise (Q − vi−1wi) ∪ vi−1viwi

or (Q − vi−1wi1) ∪ vi−1viwi1 or (Q − vi+1w2) ∪ vi+1viwi2 is a path longer

than Q;

(ii) vi is not adjacent to any one of {yk−1, yj+1} since otherwise (Q − vi−1yk−1) ∪

vi−1viyk−1 or (Q − vi+1yj+1) ∪ vi+1viyj+1 is a path longer than Q;

(iii) vi is not adjacent to any vertex in Q[y0, yk−2]∪Q[yj+2, ys] since otherwise if w
′ ∈

Q[y0, yk−2]∪Q[yj+2, ys] such that viw
′ ∈ E(G), then either vivi+1Q[vi+1, w

′]w′vi

or vivi−1Q[vi−1, w
′]w′vi is a cycle of length at least 6; and

(iv) vi is not adjacent to any vertex in V (G)\(V (Q)∪V (C)) since if there exists a ver-

tex z ∈ V (G)\ (V (Q)∪V (C)) such that zvi ∈ E(G), then {y0y1, y2y3, y4y5, zvi}

is a set of independent edges of size four;

(v) dG(vi) = 2 since (i), (ii), (iii) and (iv).

If |V (Q) ∩ V (C)| = 3, by Claim 2.3, every longest path of G containing v3 (v5)

must also contain v2 (v1) and v4. Therefore, all the longest paths of G contain v4.

If |V (Q)∩V (C)| = 4, by Claim 2.3, every longest path ofG containing vi must also

contain vi−1 and vi+1. Therefore, all the longest paths of G contain vi−1 and vi+1.

�

Since G is a counterexample, by Claim 2.10, for every longest path Q of G, V (C) ⊂

V (Q). But now all the longest paths of G contain V (C), a contradiction. �

Case 4. r = 6.

P r o o f. By Claim 2.1 and s 6 6, we have s = 6. If there is an edge in E(R),

then together with three independent edges of C, there will be a set of independent

edges of size four, a contradiction. Thus R is an independent set.

Let x ∈ V (R). Suppose that xv1 ∈ E(G). For any vertex y ∈ V (R) \ x, if

yv2 ∈ E(G), yv4 ∈ E(G) or yv6 ∈ E(G), there will be a set of independent edges of

size four, a contradiction. Thus NC(R\x) ⊂ {v1, v3, v5}. Furthermore, if xv2 ∈ E(G)

or xv6 ∈ E(G), then (C − v1v2) ∪ v1xv2 or (C − v1v6) ∪ v1xv6 is a cycle longer

than C, a contradiction. Thus xv2 /∈ E(G) and xv6 /∈ E(G). If xv4 ∈ E(G), then

V (R) = {x}. Otherwise, we could find a set of independent edges of size four,

a contradiction. Since s = 6 and |V (G)| = |V (C)| + |V (R)| = 7, every longest path

of G is a hamilton path. Then all the longest paths of G have a common vertex,

a contradiction. This implies that xv4 /∈ E(G). Thus NC(R) ⊂ {v1, v3, v5}.

If all vertices in V (R) are only adjacent to v1, then noting that the length of

a longest path in C is 5, every longest path of G contains a vertex of R. This implies
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that all the longest paths of G contain the vertex v1. Since s = 6, every longest path

of G must contain a vertex of R.

If one vertex of V (R) is adjacent to v3, then every longest path of G contains v1
and v3; otherwise, if there is a longest path Q of G not containing v1, then Q contains

at most 6 vertices, a contradiction. Furthermore, if one vertex of V (R) is adjacent

to v5, then every longest path of G contains v1, v3 and v5. Since in this situation, if

v2v4 ∈ E(G), v2v6 ∈ E(G), or v4v6 ∈ E(G), thenNR(v1) = NR(v3) = NR(v5) = {x};

otherwise, there will be a path longer than P , a contradiction. But now, we could

find a cycle longer than C, a contradiction. Thus, v2v4, v2v6, v4v6 /∈ E(G). Now, if

there is a longest path Q of G not containing v1, then Q contains at most 5 vertices,

a contradiction. Thus, we have completed the proof. �
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