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CO-RANK AND BETTI NUMBER OF A GROUP

Irina Gelbukh, Mexico City

(Received December 1, 2014)

Abstract. For a finitely generated group, we study the relations between its rank, the
maximal rank of its free quotient, called co-rank (inner rank, cut number), and the maximal
rank of its free abelian quotient, called the Betti number. We show that any combination
of the group’s rank, co-rank, and Betti number within obvious constraints is realized for
some finitely presented group (for Betti number equal to rank, the group can be chosen
torsion-free). In addition, we show that the Betti number is additive with respect to the
free product and the direct product of groups. Our results are important for the theory of
foliations and for manifold topology, where the corresponding notions are related with the
cut-number (or genus) and the isotropy index of the manifold, as well as with the operations
of connected sum and direct product of manifolds.
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In this paper, the relation between the rank rkG, co-rank corank(G), and the

Betti number b(G) of a finitely generated group G is studied. The latter two values

bound the isotropy index i(G) of G : corank(G) 6 i(G) 6 b(G), see [2], [5], [11].

These notions have important applications in the theory of manifolds, where they

are called the first non-commutative Betti number b′1(M) = corank(π1(M)), the first

Betti number b1(M) = b(π1(M)), and the isotropy index of the manifold h(M) =

i(π1(M)), where π1(M) is the fundamental group of the manifold M . Namely, for

any n > 4, a group is the fundamental group of a smooth closed connected n-manifold

if and only if it is finitely presented. In the theory of 2- and 3-manifolds, co-rank of

the fundamental group coincides with the cut-number, a generalization of the genus

for closed surfaces [7], [13]. In the theory of foliations of Morse forms, b′1(M) and

h(M) define the topology of the foliation [5], [6], the form’s cohomology class [3],

and the types of its singularities [4].
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For a finitely generated abelian groupG = Z
n⊕T , where T is finite, its torsion-free

rank, Prüfer rank, or (first) Betti number, is defined as b(G) = rk(G/T ) = n. The

latter term extends to finitely generated groups by b(G) = b(Gab) = rk(Gab/T(Gab)),

where Gab = G/[G,G] is the abelianization and T(·), the torsion subgroup. In other

words:

Definition 1. Let G be a finitely generated group. The Betti number b(G) is

the maximum rank of a free abelian quotient group of G, i.e., the maximum rank of

a free abelian group A such that there exists an epimorphism ϕ : G։ A.

The term came from geometric group theory, whereGab is called the first homology

group H1(G). A non-commutative analog of Betti number can be defined as follows:

Definition 2 ([7], [8]). Let G be a finitely generated group. The co-rank

corank(G), see [8], is the maximum rank of a free quotient group of G, i.e., the

maximum rank of a free group F such that there exists an epimorphism ϕ : G։ F .

The same notion is called inner rank IN(G) in [7] or Ir(G) in [9], or the first

non-commutative Betti number b′1(G) in [1].

The notion of co-rank is also in a way dual to that of rank, which is the minimum

rank of a free group allowing an epimorphism onto G. In contrast to rank, co-rank

is algorithmically computable for finitely presented groups [10], [12].

For example, corank(Zn) = 1, while b(Zn) = n. For a finite group G, corank(G) =

b(G) = 0; the same holds for G = Z2 ∗Z2 ∗Z2, even though it is infinite and contains

F2 and thus free subgroups of all ranks up to countable. Obviously, for any finitely

generated group, corank(G) 6 b(G) 6 rkG and b(G) > 1 implies corank(G) > 1. In

this paper we show that these are the only constraints between these values:

Theorem 3. Let 0 6 c, b, r ∈ Z. Then there exists a finitely generated group G

with corank(G) = c, b(G) = b, and rkG = r if and only if

c = b = 0 or 1 6 c 6 b 6 r;

the group can be chosen to be finitely presented and, if b = r, torsion-free.

Lemma 4. Let G1, G2 be finitely generated groups. Then for the Betti number

of the free product and of the direct product,

b(G1 ∗G2) = b(G1 ×G2) = b(G1) + b(G2).

P r o o f. Obviously, (G1 ∗G2)
ab = (G1×G2)

ab. Denote G = G1×G2. Since epi-

morphisms Gi ։ Z
b(Gi) onto free abelian groups can be extended to an epimorphism

of G1 ×G2 ։ Z
b(G2) × Z

b(G2) = Z
b(G2)+b(G2), we have b(G) > b(G1) + b(G2).
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Let us now show that b(G) 6 b(G1)+b(G2). Consider the natural homomorphisms

ψ1 : G1 → G1 × 1 ⊆ G, ψ2 : G1 → 1×G2 ⊆ G. Then ψi and an epimorphism onto

a free abelian group

Gi
ψi

−→ G = G1 ×G2 ։ A = Z
b(G)

induces a homomorphism ϕi : Gi → A. Since Ai = ϕi(Gi) ⊆ A are free abelian

groups, rkAi 6 b(Gi). Since G = 〈ψ1(G1), ψ2(G2)〉, we have A = 〈A1, A2〉; in

particular, b(G) = rkA 6 rkA1 + rkA2. �

P r o o f of Theorem 3. For 1 6 c 6 b 6 r, consider G = Z
b1 ∗ . . .∗Zbc ∗Zr−b2 such

that
c∑

i=1

bi = b. By Proposition 6.4 in [9], corank(G1∗G2) = corank(G1)+corank(G2),

so corank(G) =
c∑

i=1

corank(Zbi) = c. By Lemma 4, b(G) =
c∑

i=1

b(Zbi) = b, and by the

Grushko-Neumann theorem, rkG = r. �
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