Francesco M. Malvestuto
Erratum: Equivalence of compositional expressions and independence relations in compositional models

Persistent URL: http://dml.cz/dmlcz/144305

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*
ERRATUM: EQUIVALENCE OF COMPOSITIONAL EXPRESSIONS AND INDEPENDENCE RELATIONS IN COMPOSITIONAL MODELS

FRANCESCO M. MALVESTUTO

In the Closing Note of the article [1] (see page 352), the number of simple compositional expressions was calculated incorrectly. Recall that a compositional expression is simple if it contains exactly one subexpression of the form “X ⊲ Y”. The correct number \(s^*_n \) of simple compositional expressions with \(n \) sets, \(n \geq 2 \), is

\[
s^*_n = \begin{cases}
2 & \text{if } n = 2 \\
2 \cdot (n-2) \cdot n! & \text{otherwise}
\end{cases}
\]

which for \(n > 3 \) is larger than that reported in [1]. The error has no effect on the rest of the article, except that the table reported at page 353 of the article should be

<table>
<thead>
<tr>
<th>(n)</th>
<th>(s_n)</th>
<th>(s^*_n)</th>
<th>(e_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>96</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>720</td>
<td>1680</td>
</tr>
</tbody>
</table>

In order to prove [1], consider first the simple compositional expressions with a given base sequence, say \((X_1, \ldots, X_n)\). Such a simple compositional expression contains exactly one subexpression of the form “\(X_i \triangleright X_{i+1} \)” for some \(i, 1 \leq i \leq n-1 \).

If \(n = 2 \) then trivially we have only one simple compositional expression, namely \(X_1 \triangleright X_2 \).

If \(n = 3 \) then we have only two simple compositional expression, namely \((X_1 \triangleright X_2) \triangleright X_3\) and \(X_1 \triangleright (X_2 \triangleright X_3) \).

Assume that \(n \geq 4 \) and let us distinguish the following three cases.

Case 1: \(i = 1 \). We have only the following simple compositional expression

\[
(\ldots (X_1 \triangleright X_2) \triangleright \ldots) \triangleright X_n .
\]
Case 2: \(i = n - 1 \). We have only the following simple compositional expression

\[X_1 \triangleright (X_2 \ldots \triangleright (X_{n-1} \triangleright X_n) \ldots) . \]

Case 3: \(2 \leq i \leq n - 2 \). We have only the following two simple compositional expressions

\[
\begin{align*}
\ldots & \ldots ((X_1 \triangleright (\ldots \triangleright (X_i \triangleright X_{i+1}) \ldots)) \triangleright X_{i+2}) \triangleright \ldots \triangleright X_{n-1}) \triangleright X_n \\
& X_1 \triangleright (\ldots \triangleright ((\ldots ((X_i \triangleright X_{i+1}) \triangleright X_{i+2}) \triangleright \ldots) \triangleright X_{n-1}) \triangleright X_n) \ldots .
\end{align*}
\]

Therefore, for \(n \geq 3 \) the number of simple compositional expressions with the same base sequence is \(2 + 2 \cdot (n - 3) = 2 \cdot (n - 2) \). Finally, since the number of possible base sequences is \(n! \), we get [1].

(Received February 28, 2015)

REFERENCES

Francesco M. Malvestuto, Department of Computer Science, Sapienza University of Rome, Via Salaria 113, 00198 Rome, Italy.
e-mail: malvestuto@di.uniroma1.it