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GLOBAL CONTINUUM OF POSITIVE SOLUTIONS FOR DISCRETE

p-LAPLACIAN EIGENVALUE PROBLEMS

Dingyong Bai, Guangzhou, Yuming Chen, Waterloo

(Received November 12, 2013)

Abstract. We discuss the discrete p-Laplacian eigenvalue problem,

{

∆(ϕp(∆u(k − 1))) + λa(k)g(u(k)) = 0, k ∈ {1, 2, . . . , T},

u(0) = u(T + 1) = 0,

where T > 1 is a given positive integer and ϕp(x) := |x|p−2x, p > 1. First, the existence
of an unbounded continuum C of positive solutions emanating from (λ, u) = (0, 0) is shown
under suitable conditions on the nonlinearity. Then, under an additional condition, it is
shown that the positive solution is unique for any λ > 0 and all solutions are ordered. Thus
the continuum C is a monotone continuous curve globally defined for all λ > 0.

Keywords: discrete p-Laplacian eigenvalue problem; positive solution; continuum;
Picone-type identity; lower and upper solutions method

MSC 2010 : 39A12, 39A10, 34B09

1. Introduction

Let Z be the set of all integers. For a, b ∈ Z with a < b, define [a, b]Z = {a, a +

1, a + 2, . . . , b}. Let T > 1 be a given positive integer. We consider the following

discrete p-Laplacian eigenvalue problem

(1.1)

{

∆(ϕp(∆u(k − 1))) + λa(k)g(u(k)) = 0, k ∈ [1, T ]Z,

u(0) = u(T + 1) = 0,

The research of Bai is supported partially by PCSIRT of China (No. IRT1226) and NSF
of China (No. 11171078). The research of Chen is supported by the Natural Sciences
and Engineering Research Council (NSERC) of Canada.
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where ϕp(x) := |x|p−2x, p > 1, ∆u(k) = u(k + 1) − u(k), and λ is a nonnegative

parameter. We assume that

(A1) a : [1, T ]Z → (0,∞) and g : R
+ = [0,∞) → (0,∞) is continuous;

(A2) lim
u→∞

g(u)/ϕp(u) = 0;

(A3) g(u)/ϕp(u) is strictly decreasing on (0,∞).

Recently, solutions (especially positive ones) of discrete p-Laplacian boundary

value problems have been widely studied (see, for example, [1], [4], [7], [11], [12],

[14], [15], [17], and the references therein). However, there is no report on the global

structure of solution sets of discrete p-Laplacian boundary value problems. The pur-

pose of this paper is to study the global structure of the continuum C of positive

solutions of (1.1).

Two results are established in this paper. The first one is that, under conditions

(A1) and (A2), the continuum C emanates from (λ, u) = (0, 0) and can be extended

to λ = ∞. This means that (1.1) has at least one positive solution for any λ > 0.

The second result is that, under conditions (A1)–(A3), the positive solution of (1.1)

is unique for any λ > 0 and all solutions are ordered. Therefore, the continuum C

is a monotone continuous curve globally defined for all λ > 0. Our proofs are based

on an existence theorem of a global continuum of solutions to an operator equation

T (λ, u) = u, the lower and upper solutions method, and the Picone-type identity for

discrete p-Laplacian operators due to Řehák [13].

This study is motivated by the results of Kim and Shi [8] and Bai and Xu [3].

In [8], the global continuum and three positive solutions of a differential p-Laplacian

boundary value problem were studied. The results in [8] demonstrate the rich struc-

ture of the solution set of one-dimensional p-Laplacian eigenvalue problems. In [3],

Bai and Xu established a result associated with lower and upper solutions for dis-

crete ϕ-Laplacian boundary value problems and generalized the result on existence

of three positive solutions of [8]. In [8], Kim and Shi proved the uniqueness of pos-

itive solutions by the generalized Picone identity for one-dimensional p-Laplacian

operators due to Jaroš and Kusano [6], [9]. In this paper, the proof of uniqueness

of positive solutions is based on the discrete Picone-type identity due to Řehák [13].

However, the discussion is much more complicated due to the discrete structure of

difference p-Laplacian operators, which is demonstrated in the proof of Theorem 3.4.

The remaining part of this paper is organized as follows. In Section 2, we give

some preliminary results. These results are crucial in the development of Section 3,

where we present and prove the main results of this paper.
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2. Preliminary results

Note that (1.1) is a special case of the ϕ-Laplacian boundary problem (3) with

ϕ(x) = ϕp(x) in Bai [2]. Some necessary results on solutions to (1.1) for the discussion

in Section 3 are summarized below. We refer to [2] for the details.

Let R be the set of all real numbers and E = {u : [0, T+1]Z → R
T+2} be equipped

with the norm ‖u‖ = max
t∈[0,T+1]Z

|u(t)| for u ∈ E. Given u, v ∈ E, we say that u 6 v

if u(k) 6 v(k) holds for all k ∈ [0, T + 1]Z, and that u ≺ v if u 6 v and u(k) < v(k)

for k ∈ [1, T ]Z.

The function α ∈ E is called a lower solution of (1.1) if

{

∆(ϕp(∆α(k − 1))) + λa(k)g(α(k)) > 0, k ∈ [1, T ]Z,

α(0) 6 0, α(T + 1) 6 0.

If the first inequality above is strict, then α is called a strict lower solution of (1.1).

The upper solution and the strict upper solution of (1.1) can be defined similarly by

reversing the above inequalities.

Lemma 2.1 ([3], [5]). Assume that (1.1) has a lower solution α and an upper

solution β such that α 6 β. Then the problem (1.1) has at least one solution u

which satisfies α 6 u 6 β. Moreover, if α and β are strict lower solution and strict

upper solution, respectively, then α ≺ β.

A function u of integer variable is said to be concave on [a, b]Z if ∆2u(k − 1) 6 0

for all k ∈ [a+1, b− 1]Z. Moreover, if ∆2u(k− 1) < 0 for all k ∈ [a+1, b− 1]Z, then

u is said to be strictly concave on [a, b]Z.

Let (A1) hold. If u ∈ E is a solution of (1.1) for some λ > 0, then the following

statements are true (see Bai [2] for the detail).

(i) u is strictly concave on [0, T + 1]Z and u(k) > 0 for all k ∈ [1, T ]Z.

(ii) u satisfies

(2.1) u(k) =
k

∑

s=1

ϕ−1
p

(

C1 + λ
T
∑

l=s

a(l)g(u(l))

)

=
T
∑

s=k

ϕ−1
p

(

C2 + λ
s

∑

l=1

a(l)g(u(l))

)

for k ∈ [0, T + 1]Z, where C1 and C2 satisfy

(2.2)
T+1
∑

k=1

ϕ−1
p

(

C1 + λ
T
∑

l=k

a(l)g(u(l))

)

= 0
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and

(2.3)
T
∑

k=0

ϕ−1
p

(

C2 + λ

k
∑

l=1

a(l)g(u(l))

)

= 0,

respectively.

(iii) Suppose ‖u‖ = u(k∗) for some k∗ ∈ [1, T ]Z. Then

(2.4) C1 + λ

T
∑

l=k∗

a(l)g(u(l)) > 0

and

(2.5) C2 + λ
k∗

∑

l=1

a(l)g(u(l)) > 0.

Let K = {u ∈ E : u is nonnegative and concave on [0, T +1]Z}, a cone in E. With

the help of (2.1), define T : R
+ ×K → E by

T (λ, u)(k) =

k
∑

s=1

ϕ−1
p

(

C1 + λ

T
∑

l=s

a(l)g(u(l))

)

, k ∈ [0, T + 1]Z.

Then T : R
+×K → K is continuous. It is easy to see that, for λ > 0, u is a positive

solution of (1.1) if and only if u ∈ K \ {0} is a fixed point of T (λ, ·).

Since T (0, u) = 0 and T (λ, 0) 6= 0 for all λ > 0, applying a well-known result on

the existence of a global continuum of solutions to T (λ, u) = u in Zeidler [16], we

have the following result.

Lemma 2.2. Assume that (A1) holds. Then there exists an unbounded contin-

uum C of positive solutions for (1.1) emanating from (0, 0) in R
+ ×K.

Finally, we present an identity satisfied by solutions of (1.1), which is a simplified

version of the generalized Picone identity due to Řehák [13].

Lemma 2.3. Let u ∈ E and v ∈ E be two positive solutions of (1.1) for some

λ > 0. Then

(2.6) ∆
{ u(k − 1)

ϕp(v(k − 1))
[ϕp(v(k − 1))ϕp(∆u(k − 1))− ϕp(u(k − 1))ϕp(∆v(k − 1))]

}

= −λa(k)
[ g(u(k))

ϕp(u(k))
−

g(v(k))

ϕp(v(k))

]

|u(k)|p +G(u, v)(k)
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for k ∈ [2, T ]Z, where

(2.7) G(u, v)(k) = |∆u(k − 1)|p −
ϕp(∆v(k − 1))

ϕp(v(k))
|u(k)|p

+
ϕp(∆v(k − 1))

ϕp(v(k − 1))
|u(k − 1)|p > 0

for k ∈ [2, T ]Z and G(u, v)(k) = 0 if and only if

∆u(k − 1) = u(k − 1)
∆v(k − 1)

v(k − 1)
.

3. Main results

Let S be the set of positive solutions of (1.1) in R
+ ×K. Denote

a := min
k∈[1,T ]Z

a(k) and a := max
k∈[1,T ]Z

a(k).

Lemma 3.1. Assume that (A1) holds. If there exists a sequence {(λn, un)}
∞

n=1 ∈

S such that λn → ∞ as n → ∞, then ‖un‖ → ∞ as n → ∞.

P r o o f. By way of contradiction, suppose that there exists M > 0 such that

‖un‖ 6 M for all n. Passing to a subsequence of {un}
∞

n=1 if necessary, we can assume

that {un}
∞

n=1 is convergent. Since g : R
+ → (0,∞) is continuous, there exists δ > 0

such that g(un(k)) > δ for k ∈ [1, T ]Z. For each n, let ‖un‖ = un(kn) for some

kn ∈ [1, T ]Z. We distinguish two cases to finish the proof.

Case 1. There is a subsequence of {kn}∞n=1, say itself, whose all terms are equal

to 1. Then it follows from (2.1) and (2.5) that

un(T ) = ϕ−1
p

(

C
(n)
2 + λn

T
∑

l=1

a(l)g(un(l))

)

= ϕ−1
p

(

C
(n)
2 + λna(1)g(un(1)) + λn

T
∑

k=2

a(k)g(un(k))

)

> ϕ−1
p

(

λn

T
∑

k=2

a(k)g(un(k))

)

> ϕ−1
p (λnaδ(T − 1)) → ∞ as n → ∞,

a contradiction to ‖un‖ 6 M . Here C(n)
2 satisfies (2.3) with λ and u being replaced

by λn and un, respectively.
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Case 2. There is no subsequence of {kn}∞n=1whose all terms are equal to 1. In

this case, without loss of generality, we assume that kn > 1. Similarly, with (2.1)

and (2.4), we get

un(1) = ϕ−1
p

(

C
(n)
1 + λn

T
∑

l=1

a(l)g(un(l))

)

= ϕ−1
p

(

C
(n)
1 + λn

(kn−1
∑

k=1

+

T
∑

k=kn

)

a(k)g(un(k))

)

> ϕ−1
p

(

λn

kn−1
∑

k=1

a(k)g(un(k))

)

> ϕ−1
p (λnaδ(kn − 1))

> ϕ−1
p (λn aδ) → ∞ as n → ∞,

again a contradiction to ‖un‖ 6 M . Here C(n)
1 satisfies (2.2) with λ and u being

replaced by λn and un, respectively.

In summary, in either case, we have a contradiction. This completes the proof. �

Lemma 3.2. Assume that (A1) and (A2) hold. If there exists a sequence

{(λn, un)}
∞

n=1 ∈ S such that ‖un‖ → ∞ as n → ∞, then λn → ∞ as n → ∞.

P r o o f. By way of contradiction, assume that there exists L > 0 such that

λn 6 L for all n. Let ε = 1/(2T pLa). Then, by (A2), there exists Nε > 0 such

that g(u) < εϕp(u) for all u > Nε. Denote Mε = max
06u6Nε

g(u), and An = {k ∈

[1, T ] : un(k) 6 Nε} and Bn = {k ∈ [1, T ] : un(k) > Nε} for each n. Moreover, for

each n, assume ‖un‖ = un(kn) for some kn ∈ [1, T ]Z. Using (2.1), we have

‖un‖ = un(kn) =

kn
∑

s=1

ϕ−1
p

(

C
(n)
1 + λn

T
∑

l=s

a(l)g(un(l))

)

6

T
∑

s=1

ϕ−1
p

(

λn

(

∑

l∈An

+
∑

l∈Bn

)

a(l)g(un(l))

)

6 Tϕ−1
p

(

La

(

TMε + ε
∑

l∈Bn

ϕp(un(l))

))

6 Tϕ−1
p (TLa(Mε + εϕp(‖un‖))),

where C(n)
1 satisfies (2.2) with u being replaced by un. It follows that

ϕp(T
−1‖un‖) 6 TLa(Mε + εϕp(‖un‖)),
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or
T 1−p

2
= T 1−p − εTLa 6

TLaMε

ϕp(‖un‖)
.

Letting n → ∞ yields T 1−p/2 6 0, a contradiction. This completes the proof. �

The next theorem follows immediately from Lemmas 2.2, 3.1, and 3.2.

Theorem 3.3. Assume that (A1) and (A2) hold. Then there exists an unbounded

continuum C of positive solutions for (1.1) emanating from (0, 0) in R
+ × K such

that

(i) for each λ > 0, there exists a positive solution u(λ) of (1.1) such that (λ, u(λ)) ∈

C; and

(ii) for (λ, u(λ)) ∈ S, λ → ∞ if and only if ‖u(λ)‖ → ∞.

The following result shows that the continuum is indeed a monotone continuous

curve globally defined for all λ > 0.

Theorem 3.4. Assume that (A1)–(A3) hold. Then S = C and C is the solution

curve of positive solutions for (1.1) such that

(i) for each λ > 0, there exists a unique positive solution u(λ) of (1.1) such that

(λ, u(λ)) ∈ C;

(ii) λ → ∞ if and only if ‖u(λ)‖ → ∞; and

(iii) for any 0 < λa < λb, u(λa) ≺ u(λb).

P r o o f. We only need to prove (i) and (iii) since (ii) follows from Theorem 3.3.

We first prove (i). By way of contradiction, assume that there exists λ > 0 such

that (λ, u1) and (λ, u2) are two distinct positive solutions of (1.1). Without loss of

generality, there exist 1 6 k1 6 k2 6 T such that

(3.1) u1(k) > u2(k) for k ∈ [k1, k2]Z

and

(3.2) u1(k1 − 1) 6 u2(k1 − 1), u1(k2 + 1) 6 u2(k2 + 1).

Then

(3.3) ∆u1(k1 − 1) > ∆u2(k1 − 1) and ∆u1(k2) < ∆u2(k2).

We reach a contradiction in each of three distinct cases listed below.
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Case 1: 1 < k1 6 k2 6 T . Summing (2.6) from k1 to k2 and with the help of (2.7),

we obtain

(3.4)
u1(k2)

ϕp(u2(k2))
[ϕp(u2(k2))ϕp(∆u1(k2))− ϕp(u1(k2))ϕp(∆u2(k2))]

−
u1(k1 − 1)

ϕp(u2(k1 − 1))
[ϕp(u2(k1 − 1))ϕp(∆u1(k1 − 1))

− ϕp(u1(k1 − 1))ϕp(∆u2(k1 − 1))]

>

k2
∑

k=k1

λa(k)
[ g(u2(k))

ϕp(u2(k))
−

g(u1(k))

ϕp(u1(k))

]

|u1(k)|
p.

First we show

(3.5) ϕp(u2(k2))ϕp(∆u1(k2))− ϕp(u1(k2))ϕp(∆u2(k2)) 6 0.

Obviously, (3.5) holds if either k2 = T , or 0 6 ∆u1(k2) < ∆u2(k2), or ∆u1(k2) <

0 6 ∆u2(k2). Since ∆u1(k2) < ∆u2(k2), to finish the discussion, we only need to

consider the case where ∆u1(k2) < ∆u2(k2) < 0 and k2 < T . In fact,

(3.5) ⇐⇒
ϕp(u1(k2))

ϕp(u2(k2))
6

ϕp(∆u1(k2))

ϕp(∆u2(k2))

⇐⇒
[u1(k2)

u2(k2)

]p−1

6

[∆u1(k2)

∆u2(k2)

]p−1

⇐⇒
u1(k2)

u2(k2)
6

u1(k2)− u1(k2 + 1)

u2(k2)− u2(k2 + 1)

⇐⇒ u1(k2)u2(k2 + 1) > u2(k2)u1(k2 + 1).

The last inequality holds by (3.1) and (3.2). In summary, (3.5) holds.

Next we show

(3.6) ϕp(u2(k1 − 1))ϕp(∆u1(k1 − 1))− ϕp(u1(k1 − 1))ϕp(∆u2(k1 − 1)) > 0.

This inequality holds if either ∆u1(k1 − 1) > ∆u2(k1 − 1) > 0 or ∆u1(k1 − 1) >

0 > ∆u2(k1 − 1). To finish the discussion, it suffices to consider the case where

0 > ∆u1(k1 − 1) > ∆u2(k1 − 1). In this case,

(3.6) ⇐⇒
ϕp(u1(k1 − 1))

ϕp(u2(k1 − 1))
>

ϕp(∆u1(k1 − 1))

ϕp(∆u2(k1 − 1))

⇐⇒ u1(k1 − 1)u2(k1) < u2(k1 − 1)u1(k1).

Again, the last inequality holds because of (3.1) and (3.2). This proves (3.6).
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It follows from (3.4)–(3.6) that

k2
∑

k=k1

λa(k)
[ g(u2(k))

ϕp(u2(k))
−

g(u1(k))

ϕp(u1(k))

]

|u1(k)|
p < 0.

However, by (3.1) and (A3),

k2
∑

k=k1

λa(k)
[ g(u2(k))

ϕp(u2(k))
−

g(u1(k))

ϕp(u1(k))

]

|u1(k)|
p > 0.

Hence, we reached a contradiction.

Case 2: k1 = 1 < k2 6 T . This time, we sum (2.6) from 2 to k2 and use (2.7) to

get

(3.7)
u1(k2)

ϕp(u2(k2))
[ϕp(u2(k2))ϕp(∆u1(k2))− ϕp(u1(k2))ϕp(∆u2(k2))]

−
u1(1)

ϕp(u2(1))
[ϕp(u2(1))ϕp(∆u1(1))− ϕp(u1(1))ϕp(∆u2(1))]

>

k2
∑

k=2

λa(k)
[ g(u2(k))

ϕp(u2(k))
−

g(u1(k))

ϕp(u1(k))

]

|u1(k)|
p.

We prove that

(3.8) ϕp(u2(1))ϕp(∆u1(1))− ϕp(u1(1))ϕp(∆u2(1)) > 0.

In fact, since
ϕp(∆u1(1)) = ϕp(u1(1))− λa(1)g(u1(1)),

ϕp(∆u2(1)) = ϕp(u2(1))− λa(1)g(u2(1)),

it follows from assumption u1(1) > u2(1) and (A3) that

g(u1(1))

ϕp(u1(1))
<

g(u2(1))

ϕp(u2(1))

⇐⇒ λa(1)g(u1(1))ϕp(u2(1)) < λa(1)g(u2(1))ϕp(u1(1))

⇐⇒ [ϕp(u1(1))− ϕp(∆u1(1))]ϕp(u2(1)) < [ϕp(u2(1))− ϕp(∆u2(1))]ϕp(u1(1))

⇐⇒ (3.8).

Combing (3.5) with (3.8) gives

k2
∑

k=2

λa(k)
[ g(u2(k))

ϕp(u2(k))
−

g(u1(k))

ϕp(u1(k))

]

|u1(k)|
p < 0,

which, on the other hand, is larger than 0. Therefore, we have got a contradiction.

351



Case 3: k1 = k2 = 1. In this case, (3.8) still holds. First assume that either

0 6 ∆u1(1) < ∆u2(1) or ∆u1(1) < 0 6 ∆u2(1). Then we have

ϕp(u2(1))ϕp(∆u1(1))− ϕp(u1(1))ϕp(∆u2(1)) < 0,

contradicting with (3.8). Now assume that ∆u1(1) < ∆u2(1) < 0. It follows from

u1(2) 6 u2(2) and u2(1) < u1(1) that u1(2)u2(1) < u1(1)u2(2). Then

u1(2)u2(1) < u1(1)u2(2) =⇒
u2(1)

u1(1)
>

u2(2)− u2(1)

u1(2)− u1(1)

=⇒
ϕp(u2(1))

ϕp(u1(1))
>

ϕp(∆u2(1))

ϕp(∆u1(1))

=⇒ ϕp(u2(1))ϕp(∆u1(1))− ϕp(u1(1))ϕp(∆u2(1)) < 0,

contradicting (3.8) again. Anyway, there is a contradiction in this case.

In summary, we have a contradiction in any of the above three cases. Therefore,

(1.1) has a unique positive solution u(λ) for each λ > 0. This proves (i).

Next we prove (iii). Let v be the unique solution of the following boundary value

problem
{

∆(ϕp(∆u(k − 1))) + a(k) = 0, k ∈ [1, T ]Z,

u(0) = u(T + 1) = 0.

Then it follows from the remark after Lemma 2.2 and Lemma 2.3 of Bai [2] that

v(k) > 0 for all k ∈ [1, T ]Z. Define g∗(u) = max
06s6u

g(s). Obviously, g∗(s) is nonde-

creasing on [0,∞) and lim
u→∞

g∗(u)/ϕp(u) = 0 by (A2) (see, for example, [10]). So

there exists Cb > 0 sufficiently large such that

λb

g∗(λbCb)

ϕp(λbCb)
<

1

ϕp(‖v‖)
,

and u(λa) 6 β := λbCbv/‖v‖. Then β is a strict upper solution of (1.1) at λb. In

fact, for k ∈ [1, T ]Z,

−∆(ϕp(∆β(k − 1))) = −ϕp

(λbCb

‖v‖

)

∆(ϕp(∆v(k − 1)))

= ϕp

(λbCb

‖v‖

)

a(k)

> λba(k)g
∗(λbCb) > λba(k)g

∗(β(k)) > λba(k)g(β(k)).

Clearly, u(λa) is a strict lower solution of (1.1) at λb. By Lemma 2.1, there exists

a positive solution ub of (1.1) at λ = λb, such that u(λa) ≺ ub ≺ β. The uniqueness

of positive solution implies that ub = u(λb) and hence u(λa) ≺ u(λb). The proof is

complete. �
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