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Abstract. We provide a comparative study of the Subspace Projected Approximate Ma-
trix method, abbreviated SPAM, which is a fairly recent iterative method of computing
a few eigenvalues of a Hermitian matrix A. It falls in the category of inner-outer iteration
methods and aims to reduce the costs of matrix-vector products with A within its inner
iteration. This is done by choosing an approximation A0 of A, and then, based on both A

and A0, to define a sequence (Ak)
n
k=0 of matrices that increasingly better approximate A

as the process progresses. Then the matrix Ak is used in the kth inner iteration instead
of A.
In spite of its main idea being refreshingly new and interesting, SPAM has not yet been

studied in detail by the numerical linear algebra community. We would like to change this
by explaining the method, and to show that for certain special choices for A0, SPAM turns
out to be mathematically equivalent to known eigenvalue methods. More sophisticated
approximations A0 turn SPAM into a boosted version of Lanczos, whereas it can also
be interpreted as an attempt to enhance a certain instance of the preconditioned Jacobi-
Davidson method.
Numerical experiments are performed that are specifically tailored to illustrate certain

aspects of SPAM and its variations. For experiments that test the practical performance of
SPAM in comparison with other methods, we refer to other sources. The main conclusion
is that SPAM provides a natural transition between the Lanczos method and one-step
preconditioned Jacobi-Davidson.

Keywords: Hermitian eigenproblem; Ritz-Galerkin approximation; subspace projected
approximate matrix; Lanczos method; Jacobi-Davidson method

MSC 2010 : 65F10, 65F35

1. Introduction

We provide a comparative study of SPAM [21]. SPAM, which stands for Subspace

Projected Approximate Matrix, is a method for the computation of eigenvalues of

a large Hermitian matrix A. Like the Davidson method [9], SPAM was originally
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developed for matrices that arise from applications in Chemistry. It was only in [8],

many years after its conception, that Davidson’s method was given proper attention

by the numerical linear algebra community. As far as we can tell, also SPAM has

been neglected by the numerical linear algebra community. Moreover, even though

a number of citations [6], [13], [16], [20], [31] within the Chemistry and Physics

communities over the past years demonstrate awareness of its existence, no studies

of its mathematical properties seems to exist.

SPAM belongs to the category of inner-outer iteration methods and is interpreted

by its inventors as a modification of the above mentioned Davidson method. It is

based on the following observation. Even when sparse, the computational effort

necessary to carry out a matrix-vector multiplication with A can be significant and

often represents the bottleneck of the total computational effort. SPAM reduces

the costs of matrix-vector products with A by replacing its action within the inner

iteration of the algorithm with a sparser or more structured approximation. By doing

so, it attempts to slash the overall computational cost. The idea is not altogether new

and is related to a certain type of preconditioning, called one-step approximation in

the Jacobi-Davidson method. See Section 4.1 of [23]. There too, the matrix A is, in

the inner iteration, replaced by a preconditioner. The originality of the approach in

[21] lies in the fact that the action of the preconditioner is only applied to the subspace

in which the action of A has not yet been computed in the outer iteration of the

method. Consequently, the approximated action of A in the inner iterations is likely

to become more and more accurate as the number of outer iterations increases. Note

that nonetheless, only one approximate matrix A0 is needed. Intuitively, one would

expect that SPAM would outperform Jacobi-Davidson with one-step approximation.

Since the main idea of SPAM is potentially interesting, with links to other eigen-

value methods and selection techniques, we would like to bring it to the attention

of the numerical linear algebra community and also to submit it to a more illustra-

tive set of numerical experiments than those in [21]. In the experiments in [21], the

overall efficiency of SPAM was the main interest instead of its mathematical position

within the class of iterative eigensolvers. In particular, we would like to point out

the similarities with and differences from strongly related and well-known iterative

methods such as the Lanczos method [15] and the Jacobi-Davidson method of Slei-

jpen and van der Vorst [23]. In the context of applying the same idea to iteratively

solving linear systems, see [5].

1.1. Outline of the results in this paper. We will show that for certain

choices of the approximate matrix A0, the SPAM method is mathematically equiv-

alent to methods such as Lanczos [15] or the Riccati [4] method, another attempt to

improve upon the Jacobi-Davidson [23] method. Further, we will see that a Schur
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complement-based choice for the action of A outside the Ritz-Galerkin subspace that

is being built in the outer iteration naturally leads to a connection with harmonic

Rayleigh-Ritz [3] methods. Next, we show that choosing A0 such that A − A0 is

positive semi-definite has, at least in theory, an agreeable effect on the approxima-

tions obtained in the inner iteration in comparison to choosing A0 without such

a restriction. Numerical experiments suggest that this also works through into the

outer iteration. We comment on how such approximations A0 can be obtained in

the context of discretized elliptic PDEs [7], [30] but also from a purely algebraic

point of view. Finally, we present a variety of detailed numerical illustrations of

the performance of the method in comparison with the Lanczos and the Jacobi-

Davidson method. These illustrations do not merely aim at showing that SPAM

is a suitable method to solve eigenvalue problems (which was for a large part al-

ready taken care of in [21]), but to emphasize the role of approximations A0 from

below and to show the similarities and discrepancies as compared with Lanczos and

Jacobi-Davidson, such that the SPAM method can be put into a proper perspec-

tive.

2. SPAM and some other subspace methods

Eigenvalue problems are among the most prolific topics in Numerical Linear Al-

gebra [1], [11]. In particular, the continuous increase in matrix sizes turns the un-

derstanding of known iterative methods, as well as the development of more efficient

ones, into an ample field of work within the global topic. Successful methods like

the Implicitly Restarted Arnoldi [26] and the Krylov-Schur [28] methods and their

symmetric counterparts are nowadays among the most competitive. For convenience

and in order to set the ground for what is to come, we opt to outline the main

concepts. For more detailed considerations on both theoretical and practical as-

pects of the numerical solution of large eigenvalue problems, we refer to [19], [12],

[27], [29].

2.1. Ritz values and vectors. Throughout this paper, A is a Hermitian n× n

matrix with eigenvalues

(1) λn 6 λn−1 6 . . . 6 λ2 6 λ1.

Let V be an n × k matrix with mutually orthonormal columns and define the k-

dimensional subspace V of Cn by

(2) V = {V y | y ∈ C
k}.
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In the context of iterative methods, V is called the search subspace. Let V⊥ be such

that (V |V⊥) is unitary and write

(3) Â = (V |V⊥)
∗A(V |V⊥) =

[
M R∗

R S

]
.

The eigenvalues of the k × k matrix M = V ∗AV ,

(4) µk 6 µk−1 6 . . . 6 µ2 6 µ1,

are called the Ritz values of A with respect to V . The vectors ui = V zi, where

z1, . . . , zk is an orthonormal basis for C
k consisting of eigenvectors of M belonging

to the corresponding µi, are the Ritz vectors of A in V . The residuals r̂i = Aui−uiµi

for the respective Ritz pairs (µi, ui) satisfy

(5) Aui − uiµi = r̂i ⊥ V .

Each Ritz pair (µi, ui) is also an eigenpair of the n×n rank-k matrix VMV ∗ and is

interpreted as an approximation of an eigenpair of A. See [14], [19], [22].

2.2. Rayleigh-Ritz and subspace expansion. The Rayleigh-Ritz procedure

is the first stage in iterative methods for eigenproblems and consists of computing

the Ritz pairs from V . The computation of S in (3) is not needed, nor feasible for
reasons of efficiency. However, a cheaply available by-product of the computation of

AV is the matrix R̂ = AV − VM , where R = V ∗

⊥
R̂. Its columns are the respective

residuals (5). In the second stage, the search subspace V is expanded. Different
definitions of the expansion vector distinguish the different iterative methods. Each

strategy results in a sequence of nested spaces

(6) V1 ⊂ V2 ⊂ . . . ⊂ Vn−1 ⊂ Vn

and has the objective to obtain accurate Ritz pairs while spending only minimal

computational effort. One of the strategies will result in SPAM. Other strategies

lead to methods with which SPAM will be compared in this paper: the Lanczos [15],

Jacobi-Davidson [23], and Riccati [4] methods.

2.3. The Lanczos method. The Lanczos method [15] defines Vj+1 as Vj ⊕
span{r} where r ⊥ Vj is any of the current residuals from (5). This results in a well-

defined method: starting with some initial vector v1 with ‖v1‖ = 1 that spans the

one-dimensional search space V1, it can be easily verified by induction that regardless
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of which residual is used for expansion, the sequence of search spaces that is defined,

equals the sequence of Krylov subspaces

(7) Vj = Kj(A, v1) = span{v1, Av1, . . . , Aj−1v1}.

Due to (5), the matrix Vk with the property that its column span equals Kk(A, v1)

can be chosen to have as columns v1 and the normalized residuals

(8) vj+1 =
r̂j

‖r̂j‖
, j ∈ {1, . . . , k},

where r̂j is a residual from the j-dimensional search space. From this the so-called

Lanczos relation results,

(9) AVk = Vk+1Mk,k+1, with Mk,k+1 =
[ Mk

̺ke∗k

]
.

Here, Mk is a k × k tridiagonal matrix, ek is the kth canonical basis vector of C
k

and ̺k is a scalar. The following trivial observation will have its counterpart in the

discussion of the SPAM method in Section 2.4.

R em a r k 2.1. If the Lanczos method runs for the full number of n iterations, it

produces a unitary matrix Vn that depends only on A and the start vector v1. The

kth leading principal submatrix of the n× n tridiagonal matrix M = V ∗
nAVn is the

matrix Mk from (9) whose eigenvalues are the Ritz values after k iteration steps.

2.4. The Subspace Projected Approximate Matrix (SPAM) method. In

the Subspace Projected Approximate Matrix (SPAM) method [21], the expansion

vector is a suitable eigenvector of an approximation of A. This approximation has

a cheaper action than A itself. Thus, the matrix-vector products within the inner

iteration that is needed to compute this eigenvector, will be cheaper than for instance

in the Jacobi-Davidson [23] and Riccati [4] methods. These methods, which we will

explain in more detail in Section 2.5, both use A itself in their inner iteration.

A central observation in [21] is that the action of A on V that has already been
performed in the outer iteration can be stored in a matrix W = AV , and be re-used

within the inner iteration at relatively low costs. Thus, the action of A in the inner

iteration only needs to be approximated partially. The resulting approximation is

then different after each outer iteration step, even though only one approximate

matrix A0 is provided. Its action is merely used on less and less of the total space.

As such, SPAM may be interpreted as a discrete homotopy method.
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2.4.1. General description of SPAM. Let A0 be an approximation of A. In

Section 3 we will comment on how this approximation can be chosen. For now,

assume that A0 is available and define, in view of (3),

(10) Ŝ = V⊥A0V
∗

⊥

and

(11) Ak = (V |V⊥)Âk(V |V⊥)
∗, where Âk =

[
M R∗

R Ŝ

]
.

The subscript k of Ak refers to the number of columns of V . In [21], the matrix Ak

is called a subspace projected approximate matrix. This is motivated by the fact that

AkV = AV and V ∗Ak = V ∗A. In particular, since M = V ∗AV = V ∗AkV , both Ak

and A have the same Ritz pairs in V . This will be exploited to derive bounds for
the eigenvalues of Ak in Section 3. This is of interest since the search space V in the
outer iteration is expanded with an eigenvector of Ak. Note that the action of Ak

on V⊥ does not equal the action of A0 on V⊥. Since A∗ = A, the action of Ak on

V⊥ equals, in fact, the action of A in k linearly independent functionals on Cn.

With the convention that Π0 = I, write

(12) Πk = V⊥V
∗

⊥ = I − V V ∗.

This shows, together with equations (10) and (3), that

(13) Ak = −V V ∗AV V ∗ +AV V ∗ + V V ∗A+ΠkA0Πk.

Thus, the action of Ak can benefit from the stored action of A on V as follows. With
W = AV we have that

(14) Akv = −VMV ∗v +WV ∗v + VW ∗v +ΠkA0Πkv

where we have used (12) to avoid the numerically infeasible formation of V⊥. Note

that if v ∈ V⊥, the first two terms vanish.

R em a r k 2.2. In [21] and [5], the projections Πk are used to actually define Ak.

Indeed, one can verify that

(15) Ak = A+Πk(A0 −A)Πk.

The present set-up, however, is better suited to stress the relations with other meth-

ods.
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In view of Remark 2.1 we now observe the following.

R em a r k 2.3. If SPAM runs for the full n iterations, it produces a unitary

matrix Un that depends only on A and A0. The kth leading principal submatrix of

the n×n matrixM = U∗
nAUn then contains the Rayleigh-Ritz approximations after

k steps of the outer iteration.

For theoretical purposes and without loss of generality, we assume that V⊥ in (11)

contains precisely the basis for the orthogonal complement of V that SPAM is about
to produce in future iterations. With respect to this basis, Âk is an update of Âk−1

of arrowhead type, in the sense that

(16) Âk − Âk−1 =




0 0 0

0∗ τ t∗

0∗ t 0


 =




0

τ

t


 e∗k + ek(0

∗ τ t∗)− ekτe
∗

k,

where each entry in the arrowhead formed by t ∈ C
n−k, τ ∈ R and t∗, is the differ-

ence between the corresponding entries of Â from (3) and Â0 = (V |V⊥)
∗A0(V |V⊥)

from (11). Thus, with respect to the basis defined by the columns of (V |V⊥), the

matrix Â0 simply transforms step by step into Â in the sense that after k steps, the

first k columns and rows have changed into those of Â, and the resulting matrix is

called Âk. This is visualized in Figure 1.

Figure 1. Arrowhead updates from Âk−1 to Âk for consecutive values of k.

On the original basis, this transformation is described in the next proposition.

Note that in this proposition, v is the eigenvector of interest ofAk−1, orthonormalized

to Vk−1.

Proposition 2.4. Let k > 1. Write (Vk−1|v|V⊥) = (V |V⊥), thus v = V ek. Then

Ak is the indefinite Hermitian rank-2 update of Ak−1,

(17) Ak = Ak−1 + uv∗ + vu∗ = Ak−1 + (u|v)
[
0 1

1 0

]
(u|v)∗,
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where

(18) u =
(
Πk−1 −

1

2
vv∗

)
(A−A0)v =

(
Πk +

1

2
vv∗

)
(A−A0)v.

P r o o f. Combining (16) with (V |V⊥)(Â − Â0)(V |V⊥)
∗ = A−A0 we find

(19)




0

τ

t


 = (0 ek . . . en)

∗(Â− Â0)ek = (0|v|V⊥)
∗(A−A0)v.

Therefore, substituting (19) into

Ak −Ak−1 = (Vk−1|v|V⊥)






0

τ

t


 e∗k + ek(0

∗ τ t∗)− ekτe
∗

k


 (Vk−1|v|V⊥)

∗

we arrive, using that v = (Vk−1|v|V⊥), at

(20) Ak −Ak−1 = Πk−1(A−A0)vv
∗ + vv∗(A−A0)Πk−1 − vv∗(A−A0)vv

∗.

Splitting the most right term in two equal parts and rearranging the terms proves

the formula for u in (18). Since by (12)

(21) Πk−1 − vv∗ = Πk,

also the second equality is proved. �

R em a r k 2.5. Note that (20) follows more easily from the alternative definition

given in Remark 2.2. However, the proof of Proposition 2.4 also shows the validity

of (16).

From (3) and (11) we see that

(22) rank(A−Ak) = rank(Â− Âk) 6 n− k,

and thus, even though Ak−Ak−1 has rank-2, the update—or maybe better downdate

(23) A−Ak = A−Ak−1 + (Ak−1 −Ak)

will generically decrease the rank of A − Ak−1 by at most one. This remark goes

hand in hand with the observation that even though the approximations Ak of A

may seem unusual, the viewpoint of considering the reverse sequence 0 = A − An,

A−An−1, . . ., A−A1, A−A0 as increasingly better approximations of A−A0 is very

natural indeed: they form a sequence of Rayleigh-Ritz approximations to A−A0 in

the orthogonal complements of the spaces Vk.
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In the outer iteration, the products Av and V ∗Av were computed. Thus, both

v∗Av and Πk−1Av are available in (18) without additional computational costs.

Furthermore, since v is orthogonal to the (k − 1)-dimensional search space, we have

that v∗Ak−1v = v∗A0v. Now, because v is the result of orthogonalization of an

eigenvector of Ak−1 to Vk−1, also v∗A0v can be retrieved from the inner iteration.

Thus, the vectors u and v in the updating procedure (17) are cheaply available.

R em a r k 2.6. Of course, the update (17) itself should not be performed explicitly

because it will generally result in fill-in of originally sparse matrices.

2.4.2. Choice of the method for the inner iteration of SPAM. In [21], the

authors suggest to use Davidson’s method [9] to solve the eigenvalue problem for Ak,

but of course any other method can be adopted. Apart from the Lanczos method,

also the Generalized Davidson method from [17] was tested as inner method in [21].

Other possibilities include, for instance, the Jacobi-Davidson [23] method1. The

latter can be a good option because it often needs only a few iterations to converge

if a good start vector is available. This start vector may be either the eigenvector

approximation of Ak−1, or the current eigenvector approximation of A from the outer

iteration. We will study this choice in Section 2.5.

R em a r k 2.7. SPAM should first of all perform well under the assumption that

the eigenproblem for Ak is solved exactly. This will be investigated in the numerical

illustrations in Section 4.

In [21] it is also noted that SPAM itself can be chosen in the inner iteration.

This leads to a recursive multilevel version of the method, and assumes that a whole

sequence of approximating matrices of A is available, each having a cheaper action

than its predecessor. The eigenvector computed at a given level is then used as

expansion vector at the first higher level.

2.5. Comparing SPAM with the Jacobi-Davidson and the Riccati

method. The philosophy of SPAM is to use all available (computed) information

from (3), i.e., M,R and R∗, to determine the expansion vector, and consequently,

that only S needs to be approximated. The Jacobi-Davidson [23] and Riccati [4]

methods partially share this philosophy. Instead of R, they only use the residual

corresponding to the selected eigenvector approximation. On the other hand, in

their simplest forms, they do not approximate the matrix S but use its full action.

In this section we will outline their similarities and differences.

1M.Hochstenbach presented this option at the 2006 GAMM/SIAM Applied Linear Alge-
bra conference.
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R em a r k 2.8. Since in the Lanczos method all residuals are linearly dependent,

also the Lanczos method uses all information about the residual. However, Lanczos

has no inner iteration. This will make sense from the point of view taken in Section 3.

There we will show that for the choice A0 = 0, also SPAM needs no inner iteration,

and that this choice makes SPAM mathematically equivalent to Lanczos.

2.5.1. The Riccati and the Jacobi-Davidson methods. Given a Ritz pair

(µ, u) with residual r̂ ⊥ V , generally each eigenvector of A has a multiple that equals
u+ t, with t ⊥ u a so-called orthogonal correction to u. Indeed, let X be such that

(u|X) is unitary. Then with S = X∗AX and r̂ = Xr,

(24) A(u|X) = (u|X)

[
µ r∗

r S

]
,

and the orthogonal correction t equals Xp where p can be verified to satisfy the

generalized algebraic Riccati equation

(25) (S − µI)p = −r + pr∗p.

Transforming (25) back to the original basis shows that t solves

(26) t ⊥ u and (I − uu∗)(A − µI)(I − uu∗)t = −r̂ + tr̂∗t.

In [4], solutions of (26) were approximated by means of Rayleigh-Ritz projection in

a l-dimensional subspace U of u⊥ and a suitable one was selected as expansion vector

for V . This idea was intended as an enhancement of the Jacobi-Davidson method [23].
This method neglects the quadratic term tr̂∗t from (26) and uses instead the unique

solution t̂ of

(27) t̂ ⊥ u and (I − uu∗)(A− µI)(I − uu∗)t̂ = −r̂

to expand V . Jacobi-Davidson is simpler than the Riccati method in the sense
that only a linear system for t̂ needs to be solved. It can be interpreted as an

accelerated Newton method [24]. However, much more than the Riccati method,

Jacobi-Davidson suffers from stagnation in case the term tr̂∗t from (26) is not small.

On the other hand, if tr̂∗t is small enough, Jacobi-Davidson converges quadratically,

as one would expect from a Newton type method. This shows that one should be

careful in proposing alternatives to the correction equation (27). For instance, in

[10], the authors investigated the effect of solving the alternative correction equation

(28) t̃ ⊥ V and (I − V V ∗)(A− µI)(I − V V ∗)t̃ = −r̂.
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At first sight this seems to make sense, because it directly looks for a correction

orthogonal to V . Also, the conditioning of the linear equation (28) may be better
than (27) in case the search space contains good approximations of eigenvectors

belonging to eigenvalues close to µ. However, orthogonalizing t̂ from (27) to V
generally does not result in t̃ from (28) and the price to pay is that ‖t − t̃‖ is not
of higher order, as is ‖t− t̂‖. Indeed, in [10] it is shown explicitly that, apart from
some exceptional cases, the quadratic convergence of Jacobi-Davidson is lost, whereas

in those exceptional cases, both expansions are equivalent. Numerical experiments

in [10] confirm the above observations.

R em a r k 2.9. The method using the correction equation (28) may at first sight

also resemble SPAM. However, as we will see in the section to come, the use of V

in SPAM is of a different nature than in (28), where the correction is sought orthog-

onal to V . In SPAM, it is sought in the whole space and only orthogonalized to V
afterwards.

2.5.2. Preconditioning in the Jacobi-Davidson method. In the original

paper [23] on the Jacobi-Davidson method, reprinted as [25], preconditioning is dis-

cussed as follows. Suppose that an approximation A0 of A is available. It is shown

in [23] how to apply such a preconditioner to (27), which is a linear equation, though

not with system matrix A. To be explicit, since (I − uu∗)t̂ = t̂, we have that

(29) (A− µI)t̂ = −εu− r̂,

where ε is such that t̂ ⊥ u. Or equivalently, written as an augmented system,

(30)

[
A− µI u

u∗ 0

] [
t̂

ε

]
=

[−r̂

0

]
.

Thus, an approximation t̂0 of t̂, together with an approximation ε0 of ε can be

obtained simply by replacing A by A0 in (30). The pair t̂0, ε0 can be computed as

(31) t̂0 = −ε0(A0 − µI)−1u− (A0 − µI)−1r̂, with ε0 = −u∗(A0 − µI)−1r̂

u∗(A0 − µI)−1u
.

This approximation is called a one step approximation in [23]. It was observed that

setting ε0 = 0 in (31), the Davidson method [9] results. With A0 = A, which cor-

responds to Jacobi-Davidson with full accuracy solution of the correction equation,

(31) becomes

(32) t̂ = −ε(A− µI)−1u− u,
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and since t̂ is then orthogonalized to u, the method is mathematically equivalent to

an accelerated shift and invert iteration that works with (A − µI)−1u. It is argued,

and demonstrated by experiments in [23], that Jacobi-Davidson combines the best

of those two methods. Of course, a natural next stage in preconditioning is to use

the matrix

(33) Au
0 =

[
A0 − µI u

u∗ 0

]

as preconditioner within the iterative method that aims at solving (30). In each step

of such a method one would need to solve a system with Au
0 . This can be done by

solving two systems as in (30)–(31) in the first step of the inner iteration. In each

consecutive step, only one system of the form (A0 − µI)z = y would need to be

solved.

2.5.3. One step approximation of the SPAM eigenproblem for Ak. In

the SPAM method, the expansion vector for the Ritz Galerkin subspace in the outer

iteration is a relevant eigenvector vk of Ak. In principle, any eigenvalue method can

be used to compute an approximation for vk, but observe that the starting point

is as follows. In the outer iteration, we have just solved a k × k eigenproblem for

M = V ∗AV , and a Ritz pair (µ, u) with ‖u‖ = 1 and with residual r̂ = Au− µu has

been selected. The matrix Ak is now available, either explicitly or implicitly. Since

AkV = AV and V ∗Ak = V ∗A, the Ritz pair (µ, u) for A with respect to the current

search space Vk is also a Ritz pair for Ak. Thus we can exploit the fact that Vk

contains, by definition, good approximations of the relevant eigenvectors of Aj with

j < k, and use it as initial search space for a Ritz Galerkin method applied to Ak to

approximate vk. Since Vk is generally not a Krylov subspace, the Lanczos method is

not a feasible candidate. The Jacobi-Davidson method is. The correction equation

for the first step of the Jacobi-Davidson method in the inner iteration can be set up

without any additional computations:

(34)

[
Ak − µI u

u∗ 0

] [
tk
εk

]
=

[−r̂

0

]
.

Since quadratic convergence in the outer iteration cannot be expected even if an exact

eigenvector of Ak were computed, we study the effect of applying only one iteration

of Jacobi-Davidson in the inner iteration. This is also motivated by the fact that

the initial search space Vk for Jacobi-Davidson applied to Ak may be relatively good

and may result in quadratic convergence in the inner iteration.

R em a r k 2.10. If only one step of Jacobi-Davidson is applied, then after solving

tk from (34), the new approximation v for the eigenvector vk of Ak would lie in the
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space Vk ⊕ 〈tk〉. It would not be necessary to actually compute this approximation,
because

(35) Vk ⊕ 〈v〉 ⊂ Vk ⊕ 〈tk〉.

Thus, instead of computing the eigendata of a (k+1)× (k+1) matrix, the expansion

of the Ritz-Galerkin space in the outer iteration can be done immediately with tk.

SPAM in which the eigenproblem for Ak is approximated with one iteration of

Jacobi-Davidson, we will refer to as one step SPAM, abbreviated by SPAM(1). We

will talk about Full SPAM if the eigenproblem for Ak is solved to full precision.

2.5.4. Comparing one step Jacobi-Davidson with SPAM(1). SPAM(1) can

best be compared with preconditioned Jacobi-Davidson with one step approximation,

as described in Section 2.5.2. The only difference between the two methods is that

in iteration k of SPAM(1) the preconditioner Ak is used, whereas in one-step Jacobi-

Davidson this is A0. As such, SPAM(1) can be seen as an attempt to enhance this

type of preconditioned Jacobi-Davidson. We will now investigate the effect of this

attempt.

Lemma 2.11. Assume that Vk+1 = Vk ⊕ 〈v〉 with v ⊥ Vk and ‖v‖ = 1. Then

(36) Ak+1 = −vv∗Avv∗ +Avv∗ + vv∗A+ (I − vv∗)Ak(I − vv∗).

P r o o f. By substitution of the defining relation for Ak. �

Corollary 2.12. Let V1 be the span of the relevant eigenvector u of A0 and let

µ = u∗Au and r̂ = Au− µu. Then the solution t1 from the system

(37)

[
A1 − µI u

u∗ 0

] [
t1
ε1

]
=

[−r̂

0

]

in the first iteration of SPAM(1), to be used to expand V1, coincides with the solution

t0 from the system

(38)

[
A0 − µI u

u∗ 0

] [
t0
ε0

]
=

[−r̂

0

]
,

solved in the first iteration of Jacobi-Davidson with one-step approximation using

A0.

P r o o f. The linear system (34) for SPAM(1) with k = 1 is equivalent to

(39) t1 ⊥ u, (I − uu∗)(A1 − µI)(I − uu∗)t1 = −r̂,

where u is a unit vector spanning V1. Substituting the expression (36) for A1 imme-

diately proves the statement. �
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Thus, there is no difference in the first iteration. There is, however, a difference in

further iterations. To study this difference we take a different viewpoint. Above, we

approximated the SPAM inner eigenvalue problem by a linear correction equation

which made it suitable for comparison with one step Jacobi-Davidson. The oppo-

site viewpoint is also possible, which is to interpret the Jacobi-Davidson correction

equation with one-step approximation as an exact correction equation of a perturbed

eigenproblem.

Lemma 2.13. Given u with ‖u‖ = 1 and µ = u∗Au and r = Au− µu. Define for

a given approximation A0 of A the matrix

(40) Au := −uu∗Auu∗ + uu∗A+Auu∗ + (I − uu∗)A0(I − uu∗)

= uµu∗ + ur∗ + ru∗ + (I − uu∗)A0(I − uu∗).

Then (u, µ) is a Ritz pair of Au in the one-dimensional span of u with residual

r = Auu− µu and with the equation

(41) (I − uu∗)(A0 − µI)(I − uu∗)t = −r

as its exact (i.e., without preconditioning) Jacobi-Davidson correction equation.

P r o o f. It is easily verified that u∗Auu = µ and Auu − µu = r and thus (µ, u)

is a Ritz pair for Au with residual r. Since, moreover,

(42) (I − uu∗)Au(I − uu∗) = (I − uu∗)A0(I − uu∗),

its correction equation is precisely (41), or equivalently, (31). �

Note that Au from (40) is the subspace projected approximate matrix for the one

dimensional subspace spanned by u. Now, with

(43) Vk = U ⊕ 〈u〉,

where U is the orthogonal complement of the span of the relevant Ritz vector u in
the current search space Vk, we have, similarly to (36) and (40), that

(44) Ak = uµu∗ + ur∗ + ru∗ + (I − uu∗)AU (I − uu∗).

Here, AU is the subspace projected approximated matrix corresponding to the sub-

space U . Now, the opposite viewpoint mentioned above is the observation that in
one step Jacobi-Davidson, the expansion vector is (an arguably good approximation

of) the relevant eigenvector of Au in (40), whereas in SPAM, it is (an arguably good

approximation of) the relevant eigenvector of Ak in (44). Both matrices have now

an appearance that is suitable for studying their differences and similarities.
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The most important observation is that neither correction will lead to the unique

correction that results in quadratic convergence in the outer iteration. Second, since

both matrices Au and Ak differ only in their restriction to the orthogonal complement

u⊥ of u, the difference in the methods they represent will be marginal if the residual

is already small. Since, as already mentioned in Corollary 2.12, not only at the

start but also in the first iteration both methods coincide, the difference from the

second iteration onwards will probably be very small, especially if A0 provides a good

initial approximation of the relevant eigenvector. Finally, even though Au uses less

information of A than Ak, it does use the optimal information in some sense. It may

even be a disadvantage to use more information, because this involves approximations

of eigenvectors orthogonal to the eigenvector of interest. The above observations will

be tested, and confirmed by our numerical illustrations in Section 4.

3. Selecting the matrix A0 in the SPAM method

Here we study some of the effects of the choice for A0 on the iterative approxima-

tion process in SPAM. We will assume for simplicity that the largest eigenvalue of

A is the target, although replacing A by −A, we might as well have set the smallest

eigenvalue of A as a target.

3.1. Some simple choices for A0. It is instructive to study the consequences

of the choice A0 = 0. This generic parameter-free choice may seem dubious at first

sight, but it is not. First note that since the start vector of SPAM is the relevant

eigenvector of A0 = 0, this is necessarily a random vector v ∈ C
n, with ‖v‖ = 1.

Thus, we set V1 = span{v}. Write µ = v∗Av and r̂ = Av − vµ. Then, with V⊥ such

that (v|V⊥) is orthogonal and r = V ∗

⊥
r̂, we find that

(45) A = (v|V⊥)

[
µ r∗

r S

]
(v|V⊥)

∗,

and consequently, replacing S by the zero matrix, the next approximating matrix A1

from (11) is defined by

(46) A1 = (v|V⊥)

[
µ r∗

r 0

]
(v|V⊥)

∗.

As shown already in Proposition 2.4, A1 is a simple rank-two matrix that on the

basis defined by the columns of (v|V⊥) is of arrow-head type. It has two nontrivial

eigenpairs A1w± = θ±w±, where

(47) w± = θ±v + r and θ± =
1

2
µ±

√
1

4
µ2 + ‖r‖2.
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Assuming that A is positive definite will lead to the selection of w+ for the expansion

of the search space. Since w+ is a linear combination of v and r, we find that

(48) V2 = span{v, r} = K2(A, v),

and the two eigenvalue approximations computed in the outer loop of the SPAM

method are the same as in the Lanczos method. This is, of course, not a coincidence.

Theorem 3.1. If the goal is to find the largest eigenvalue of a positive definite

matrix A, the SPAM method with A0 = 0 is mathematically equivalent to the

Lanczos method.

P r o o f. Let A0 = 0. Then the eigenvalues of Ak in (11) are those of the n× n

Hermitian arrowhead

(49)

[
M R∗

R 0

]
.

The Cauchy Interlace Theorem immediately gives that each of the largest k of them

is larger than or equal to the corresponding eigenvalue of M . This ensures that the

eigenvector of Ak that is selected for expansion is not from its null space but from

its column span. From (13) we see that if A0 = 0 this column span is the span of V

and AV . A simple induction argument shows that this span equals Kk+1(A, v). �

R em a r k 3.2. If A is indefinite and we would like to find the eigenvalue closest

to zero, the choice A0 = 0 would lead to expansion vectors from the null space of A0,

and the method would be worthless. As a solution, A may be shifted by a suitable

multiple α times the identity I to make it positive semi-definite. Equivalently, instead

of using A0 = 0 we may choose A0 = αI as approximating matrix. In both cases, it

is easy to verify that SPAM will still be equal to Lanczos.

The observant reader may have noticed that a peculiar situation has arisen. In

the inner loop of SPAM, a better approximation of the largest eigenvalue of A was

computed than the Ritz values from the outer loop. In view of the philosophy of

inner-outer iterations, this in itself is not out of the ordinary, but its computation

did not require any additional matrix-vector multiplication with A, nor with an

elaborate approximation A0 of A. The following proposition, which uses the notation

(1) and (4), makes this explicit.
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Proposition 3.3. With θ+ as in (47) we have that µ 6 ‖Av‖ 6 θ+. Moreover, if

A is positive semi-definite, we find that θ+ 6 λ+, where λ+ is the largest eigenvalue

of A.

P r o o f. Because r ⊥ v and Av − µv = r, by Pythagoras’ Theorem we have

(50) µ2‖v‖2 + ‖r‖2 = µ2 + ‖r‖2 = ‖Av‖2,

hence µ 6 ‖Av‖. Squaring θ+ from (47) gives

(51) θ2+ = ‖r‖2 + 1

2
µ2 + µ

√
1

4
µ2 + ‖r‖2,

which together with (50) shows that ‖Av‖ 6 θ+. Since S in (45) is positive definite

whenever A is, combining (45) and (46) with Weyl’s bound yields θ+ 6 λ+. �

The key issue here is that the inner eigenvalue approximations are much related

to the so-called harmonic Ritz values [3], [22] of A. Indeed, assuming that A itself

is positive semi-definite, these are the k positive eigenvalues of the at most rank-2k

matrix

(52) Ãk =

[
M R∗

R T

]
, where T = RM−1R∗.

They can be computed without additional matrix vector multiplications with A. Note

that harmonic Ritz values are usually introduced as the reciprocals of the Rayleigh-

Ritz approximations of A−1 in the space AV . It is well known that for positive
semi-definite matrices A, the harmonic Ritz values are better approximations of the

larger eigenvalues ofA than the standard Ritz values. We provide the short argument

in Lemma 3.5. See also [3].

Proposition 3.4. The matrix Ãk can be decomposed as

(53)

[
M R∗

R T

]
=

[
M

R

]
M−1 [M R∗ ] .

The blocks

(54)

[
M

R

]
and

[−M−1R∗

I

]

span the range and null space, respectively, and the nonzero eigenvalues are the

eigenvalues of the k × k matrix

(55) UM−1U∗ where

[
M

R

]
= QU

is a QR-decomposition. In particular, those eigenvalues are positive.

437



P r o o f. The statements are all easy to verify. The positivity of the k nonzero

eigenvalues follows from Sylvester’s Theorem of Inertia. �

The k eigenpairs (θj , wj) of Ãk in (52) with positive eigenvalues we label as

(56) 0 < θ̃k 6 θ̃k−1 6 . . . 6 θ̃2 6 θ̃1.

The proposition shows that they can be computed by solving a k × k eigenproblem

and that no additional matrix-vector products with A are needed. We can now easily

prove the following bounds. See also [3], [19].

Lemma 3.5. For all j ∈ {1, . . . , k}, we have that

(57) µj 6 θ̃j 6 λj .

P r o o f. The left inequalities follow from the Cauchy Interlace Theorem applied

to Ãk. Now, with Â as in (3), recognizing the Schur complement Â/M shows that

(58) Â− Ãk =

[
0 0∗

0 Â/M

]

is positive semi-definite, hence the right inequalities follow from Weyl’s bound. �

Observe that, as was the case with the choice A0 = 0, assuming that from the start

of the SPAM method the eigenvector w1 belonging to θ1 was selected for expansion,

the eigenvectors wj , called the harmonic Ritz vectors, lie in the column span of AV

and hence, in Kk+1(A, v).

Thus, even though we may have improved the inner loop eigenvalue approxima-

tions, the SPAM method is still equal to the Lanczos method. It does give, however,

valuable insight into SPAM: Lanczos results from the choice A0 = 0, even after mod-

ification of Ak into the positive semi-definite matrix Ãk. In order to get a method

different from Lanczos, we should use less trivial approximations that are based on

the structure and properties of A itself, while aiming at retaining similar inequali-

ties as in Lemma 3.5. For this, we would need the matrices A − Ak to be positive

semi-definite. We will investigate this in the following sections.

3.2. One-sided approximations. Having seen that the trivial choice A0 = 0,

even after a correction that turns all approximate matrices positive semi-definite, will

generally lead to the Lanczos method, we now turn our attention to approximations

from below, by which we mean A0 such that A−A0 is positive semi-definite.
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Lemma 3.6. If A0 approximates A from below, then so does each matrix Ak.

P r o o f. Combining (3) and (10) with (11) we see that for all x ∈ C
n,

(59) x∗(Â− Âk)x = x∗

[
0 0∗

0 S − S̃

]
x = x∗V ∗

⊥(A−A0)V⊥x > 0

where the last inequality holds because A − A0 is positive semi-definite. And thus,

Â− Âk is positive semi-definite, and hence, so is A−Ak. �

By Proposition 2.4, Ak−Ak−1 is an indefinite rank-2matrix, hence it will generally

not be true that Ak−1 approximates Ak from below.

Lemma 3.7. The following inequalities are valid generally:

(60) θj+1 6 µj 6 θj for all j ∈ {1, . . . , k},

whereas, if A0 approximates A from below, additionally

(61) θj 6 λj for all j ∈ {1, . . . , n}.

P r o o f. The first set of inequalities applies because Ak has the same Ritz values

as A. See also Section 2.4.1. It is well known that the Ritz values interlace the

exact eigenvalues [19]. Since A−Ak is positive semi-definite due to Lemma 3.6, the

equality Ak + (A− Ak) = A together with Weyl’s bound [19] proves the second set

of inequalities. �

Lemma 3.7 shows that if A0 approximates A from below, the approximations for

the larger eigenvalues of A that are produced in the inner iteration will never be worse

than the ones obtained in the outer iteration. Moreover, they will never be larger

than the corresponding exact eigenvalues. Thus, it indeed makes sense to expand the

search space with the eigenvector that is computed in the inner iteration. Question

that remains is how to obtain matrices A0 that approximate A from below.

3.2.1. Algebraic construction of approximations from below. Clearly, for

any positive definite matrix H we have that A0 = A−H approximates A from below,

even though A0 itself may not be positive definite. The problem is of course how

to choose H such that A0 is close to A in an appropriate sense, while its action is

considerably less expensive than that of A.

439



If A itself is a positive definite matrix, a purely algebraic option is at hand. Given

an index set I ⊂ {1, . . . , n} of cardinality m, let EI be the matrix with the standard

basis vectors ei, i ∈ I as columns. Then set

(62) A0 = A−H, where H = EIE
∗

IAEIE
∗

I .

The matrix H is the result of a Rayleigh-Ritz procedure using as search space the

column span of EI . For a randomly chosen index set, this space has no a priori

relation with A and thus H is probably a relatively poor approximation of A in

comparison with, for example, a Krylov subspace approximation.

R em a r k 3.8. In this particular situation it is an advantage if H does not ap-

proximate A very well, because A0 should be close to A, not H . Notice also that

A0 has zero entries at positions (i, j) for all i, j ∈ I, and is thus always sparser
than A. A priori knowledge of A may lead to a more sophisticated choice of the

index set(s) I. If the goal is to approximate the largest eigenvalues of A, the index
set I could be chosen such that the smallest diagonal entries of A are selected to be
put in H . Consequently, A0 will share with A the largest diagonal entries, and this

may increase its approximation quality. This is illustrated in Figure 2.

Figure 2. Approximating a matrix A from structural engineering from below by a sparser
matrix A0 by subtracting from A a definite matrix H ; the sparsity plot of A (with
3648 nonzero entries) is on the left and that of A0 (with 968 nonzero entries) on
the right. See the experiments with this pair of matrices in Section 4.4.

R em a r k 3.9. Notice that rank(A0) 6 2(n−m). Especially for large m this may

greatly simplify the computation of the eigendata of A0 and of Ak for small values

of k.
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R em a r k 3.10. Although A itself is positive definite, A0 generally is not. It can

be made positive definite by adding a Schur complement at the position of the zero

block, as was done in (52). Since the Schur complement block is the smallest cor-

rection to A0 that makes it positive semi-definite, the result would still approximate

A from below. However, its computation involves the evaluation of the inverse of an

(n − m) × (n − m) matrix. It is not clear if the additional computational effort is

well spent. Also without the Schur complement, A0 has as many positive as negative

eigenvalues and is likely to perform better than A0 = 0.

The rather crude approach that we have just described is easy to implement, and

it can be applied in the context of the multilevel version of SPAM mentioned in

Section 2.4.2: the solution of the inner iteration is done using SPAM itself, with an

approximation of A0 that is based on a larger index set than the one that was used

to construct A0 itself.

3.2.2. Natural construction of approximations from below. A situation in

which approximations from below are naturally available is the setting of discretized

partial differential equations including an elliptic term, either by the finite difference

method or the finite element method [7]. Then removing the positive definite discrete

elliptic operator, either completely or partially, from the total discrete operator, re-

sults in an approximation from below. Indeed, let Ω ⊂ R
3 be a domain, and consider

as an example the problem of finding eigenmodes for the linear operator L, defined by

(63) L(u) = λu where L(u) = −ε div(K∇u) + cu, and u = 0 on ∂Ω.

Here ε > 0 is a parameter, K : Ω → M
3×3(R) maps Ω into the symmetric positive

definite matrices, and c ∈ C(Ω) is nonnegative. Discretizing this equation with the

finite difference method will lead to an algebraic eigenvalue problem of the form

εKx+Mx = ξx. The matrix K that represents the discretized diffusion is positive

definite. Although sparse, it will generally have more fill-in than the diagonal matrix

M that represents the reaction term, and, if ε is small enough, have smaller entries.

Thus, the total discretized operator A = K +M has A0 = M as a candidate for the

approximation matrix: its action is cheaper than the action of A and A − A0 = K

is positive definite. A similar strategy can also be employed in the finite element

method, when so-called mass lumping is used in the assembly of the mass matrices.

R em a r k 3.11. In this context, the algebraic method can be used to approximate

the smallest eigenvalue of A by applying it to αI − A with α such that αI − A is

positive semi-definite. Even though the largest eigenvalue usually has no physical

relevance, together they would provide good estimates for the condition number of

the A, which is indeed of interest.
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3.3. Cutting off the bandwidth. Here we describe an obvious choice of ap-

proximating matrices that was used in [21] to illustrate the effectiveness of their

method. It concerns symmetric banded matrices. Apart from the approach that we

will now describe, in the numerical illustrations of Section 4 we also intend to apply

our algebraic approximations from below to these matrices.

Given 0 6 ε 6 1 and 1 6 q 6 n− 1, define a matrix A = (Aij) by

(64) Aij =





i if i = j;

εq if 1 6 |i− j| 6 q;

0 otherwise.

In [21] it is proposed to choose as approximating matrix for A a matrix A0 of the

same type with a smaller half-bandwidth q̃ < q. For instance,

A =




1 ε ε2

ε 2 ε ε2

ε2 ε 3 ε

ε2 ε 4


 , then A0 =




1 ε

ε 2 ε

ε 3 ε

ε 4


 .

For each eigenvalue θ of A0 there is an eigenvalue λ of A with

(65) |λ− θ| 6 εq0+1 − εq+1

1− ε

√
n.

Indeed, the difference A−A0 is zero except for the bands q0 +1 to q. Each non-zero

row contains at most the numbers εq0+1 to εq, and (65) follows from the Bauer-

Fike [2] theorem and the finite geometric series sum formula. Thus, for values of ε

small enough, A0 may be a good candidate to approximate A even though it is

generally not an approximation from below. Nevertheless, its eigenvalues are close

to the eigenvalues of A and its action is cheaper than the action of A. The number

of floating point operations required to compute Av is approximately twice as much

as for an approximation A0 having half the bandwidth of A. In other words, each

two matrix-vector products A0 are approximately equally costly as a single product

with A.

Cutting off the bandwidth in this fashion makes sense especially if the decay of

the size of the off-diagonal entries in relation to their distance to the main diagonal

is quick enough. Apart from the example above, this is the case in many applications

where the boundary element method [30] is used to approximate integral equations.

Notice that for such applications also the approach from Section 3.2.1 can be applied,

resulting both in sparse and low rank approximating matrices A0.
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4. Numerical illustrations

In the previous sections, we have compared SPAM with both the Jacobi-Davidson

method and the Lanczos method. We have also studied ways how to define an

appropriate approximate matrix A0 in the context of the SPAM method. Since the

choice A0 = 0 will effectively lead to the Lanczos method, our starting point in the

upcoming numerical illustrations will be to consider SPAM as a boosted version of the

Lanczos method. This is, of course, particularly justified if A0 is an approximation

of A from below. As discussed in Section 2.5, SPAM can also be considered an

attempt to enhance the Jacobi-Davidson method with one-step approximation as

preconditioning. Therefore, we will also present a comparison of SPAM and this

version of Jacobi-Davidson. We end this section with a discussion of the numerical

results.

4.1. Objectives. First, we list the methods and abbreviations that we use to

describe them.

⊲ Lanczos (see Section 2.3);

⊲ JD(l): Jacobi-Davidson using l steps of MinRES to approximate the solution of

the exact correction equation (30) in augmented form;

⊲ JD(1, l): Jacobi-Davidson with one step approximation as preconditioner (see Sec-

tion 2.5.2) using the matrix A0, and l steps of MinRES to approximate the solution

of the correction equation (30), with A replaced by A0;

⊲ Full SPAM: each eigenproblem for Ak solved in full precision;

⊲ SPAM(1): eigenproblem for Ak approximated with one step of the Jacobi-

Davidson method, correction equation (34) in augmented form solved to full

precision (see Section 2.5.3);

⊲ SPAM(1, l): using l steps of MinRES to approximate the solution of the correction

equation for SPAM(1).

R em a r k 4.1. To minimize the size of the legends in the pictures, we sometimes

write LZS for Lanczos, FSP for Full SPAM, SP(1) for SPAM(1), S12 for SPAM(1,2),

JD13 for JD(1,3), etcetera.

In the experiments, we will give illustrations of the following aspects of SPAM.

⊲ When a nonzero approximation A0 of A from below is used, less outer iterations

of Full SPAM are needed to arrive close to the dominant eigenvalue of A than

with the choice A0 = 0, which is equivalent to the Lanczos method with a random

start vector.
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⊲ Even if the Lanczos method is started with the same approximation of the dom-

inant eigenvector of A0 as Full SPAM, Full SPAM method will still outperform

Lanczos in terms of the number of outer iterations.

⊲ Also for other eigenvalues, Full SPAM outperforms Lanczos; this may be expected

because in Full SPAM the Ritz Galerkin subspace will be forced in the direction

of the appropriate eigenvector in every iteration. In Lanczos, this is done only

by means of the start vector. Of course, Lanczos allows efficient implicit restart

strategies [26], but also Full SPAM may be restarted. We feel that the comparison

would become diffuse and thus we refrain from incorporating restarts.

⊲ We investigate the effect of approximating the desired eigenvector of Ak with just

one step of the Jacobi-Davidson method, i.e., we will be comparing Full SPAM

with SPAM(1).

⊲ SPAM(1, l) will be compared with JD(1, l), both started with the same initial

vector, i.e., the relevant eigenvector of A0; i.e., both methods will spend the same

number l of matrix-vector products in their inner iteration, where in SPAM(1, l),

the matrix will be Ak, and in JD(1, l), the matrix will be A0. From the viewpoint of

this paper, this is the comparison that is of most interest. Not only is JD(1, l) the

closest related to SPAM(1, l), the difference between the two is solely the fact that

the action of A from the outer loop is taken into the inner iteration of SPAM(1, l),

whereas in JD(1, l), this is not done. See the discussion in, and particularly at the

end of Section 2.5.4.

⊲ Finally, we compare SPAM(1, l) with JD(l). This is perhaps the comparison that

the authors of SPAM [21] had in mind: in the inner iteration of JD(l) the original

matrix A is used, whereas in SPAM(1, l) it will be Ak.

We will comment on the computational costs of an inner iteration in comparison

to having no such costs (as in Lanczos) or the full costs (Jacobi-Davidson), although

these costs may depend very much on the specific problem and the available approx-

imations and even on hardware parameters like available memory.

4.2. Lanczos versus full SPAM: Reaction-Diffusion problem, various

eigenvalues. In this section we will compare Lanczos with Full SPAM. Our com-

parison is, for the time being, only in terms of the number of outer iterations. A first

naive comparison uses a random start vector for Lanczos, but from then onwards, we

will start Lanczos with the appropriate eigenvector of A0. The approximate matrix

A0 will be constructed using both the approaches described in Sections 3.2.1 and

3.2.2. For this, we discretized the one-dimensional version of (63) on Ω = [0, 1] using

finite differences with grid size h = 1/33 with the parameters ε = 1/332, K = 1,

and c(x) = x(1− x)e3x. The resulting 32× 32 algebraic eigenproblem is of the form

Ax = λx, where A = D + R is the sum of the tridiagonal discretized diffusion D
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and the diagonal discretized reaction R. With the approach from Section 3.2.2 we

approximate the largest eigenvalue and with the approach from Section 3.2.1 the

smallest eigenvalue.

Natural approximation from below. The left picture of Figure 3 illustrates

the typical convergence of the Lanczos method with a random start vector. We

display the k Ritz values at outer iteration k as circles above the value k of the

iteration number on the horizontal axis. Due to the interlacing property, eigenvalue

approximations “converge” to either side of the spectrum, and this is emphasized

by the connecting lines between Ritz values for different values of k, both upwards

and downwards. In view of Theorem 3.1 we could also say that this picture be-

longs to SPAM with choice A0 = 0. In the right picture of Figure 3, we show in

a similar fashion the convergence of SPAM, using A0 = R as the approximate ma-

trix, as suggested in Section 3.2.2. We see that the convergence towards the largest

eigenvalues is stimulated. The costs for this faster convergence is solving a diagonal

plus rank 2k eigenproblem in iteration step k. There exist efficient methods for such

eigenproblems based on the secular equation and Newton’s method.

Figure 3. Lanczos method (left) with a random start vector, versus SPAM (right) with the
discretized reaction term as approximating matrix A0, and the largest eigenvalue
of A as target.

Algebraic approximation from below. We also tested the algebraic approach

from Section 3.2.1 to construct approximations from below. We created a rank-12

approximation A0 of A based on the largest diagonal elements of A. Full SPAM and

Lanczos were started with the dominant eigenvector of A0 in order to approximate its

dominant eigenvalue. The leftmost picture in Figure 4 shows that the incorporation

of an approximation A0 into Full SPAM has an effect that carries beyond that of

creating a better start vector for Lanczos. In the rightmost picture of Figure 4, the

same was done for the matrix 6I −A, which is positive definite and has the smallest
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eigenvalue of A as dominant eigenvalue. Also here, SPAM outperforms Lanczos in

terms of the number of outer iterations. In the middle two pictures of Figure 4, we

plotted the absolute error in the second and fifth largest eigenvalues of A. The results

are shown from iteration 2 and 5 onwards, respectively, because the Ritz-Galerkin

method produces approximations of the second and fifth largest eigenvalues from

that iteration onwards. Again, Full SPAM clearly outperforms Lanczos in both

cases. Note that, when using Full SPAM to approximate the p-th largest eigenvalue,

the Ritz-Galerkin subspace in the outer iteration is in each step expanded with the

eigenvector belonging to the p-th largest eigenvalue of Ak. For a fair comparison,

we also started Lanczos with the eigenvector of A0 belonging to the p-th largest

eigenvalue.

Figure 4. From left to right: Lanczos and Full SPAM approximating the largest, the second,
the fifth, and the smallest eigenvalue of A, using algebraic rank-12 approximation
from below (for the smallest eigenvalue, we applied both the methods to 6I−A).
Lanczos and Full SPAM used the same start vector in each experiment.

4.3. Lanczos versus Full SPAM and SPAM(1): Banded matrices. In this

section we not only compare Lanczos with Full SPAM, but also with SPAM(1), by

which we mean that the eigenproblem for Ak in Full SPAM is approximated using one

step of the Jacobi-Davidson method, as explained in Section 2.5.3. The correction

equation that results is still solved to full precision. For our experiments, we took the

banded matrix from Section 3.3 of size 32×32 and with q = 5 and ε = 0.5. In [21], it

was suggested to take for A0 the matrix A with a number of its outer diagonals put

to zero. We repeated that experiment with A0 equal to the diagonal of A, so that

here too, Ak is diagonal plus a rank-2k perturbation. The comparison of Lanczos,

Full SPAM and SPAM(1) is depicted in the left graph in Figure 5. This comparison

is initially in favor of Lanczos. This may be due to the fact that the difference A−A0

is indefinite: it has only eleven nonnegative eigenvalues. In the middle left picture we
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took the tridiagonal part as approximation. This approximation is indeed positive

definite and gives better results. Taking the simple algebraic approximation A0 from

below from Section 3.2.1 based on the three largest diagonal entries of A, which is

of rank 6, gives comparable results, but its low rank and higher sparsity make this

choice more interesting. In the right graph in Figure 5, the largest eigenvalue of

αI −A was approximated with the approximation from below that kept the largest

three diagonal entries of αI − A, and thus the smallest three diagonal entries of A.

In all cases, the positive effect of incorporating an approximation A0 goes beyond

delivering a good start vector for Lanczos. Also in all cases, there is virtually no

difference between Full SPAM and SPAM(1).

Figure 5. Lanczos versus Full SPAM and SPAM(1) with diagonal (left), tridiagonal (middle
left), and with algebraic rank-6 approximation from below (both middle right and
right). In the three leftmost pictures, the target was the largest eigenvalue, on
the right it was the smallest eigenvalue (i.e., the largest of αI − A).

4.4. Lanczos versus Full SPAM and SPAM(1): matrices from struc-

tural engineering. As a next set of experiments, we took some matrices from the

Harwell-Boeing collection of test matrices. They have their origin in the area of

structural engineering and are called bcsstk04, bcsstk07 and bcsstk10 and have re-

spective sizes 132 × 132, 420× 420 and 1024 × 1024. As approximating matrix A0

we took approximations from below keeping respectively the largest 12, 20 and 180

diagonal entries. Recall that in Figure 2 we displayed the sparsity plots of A and

A0 for bcsstk04.mtx. As was the case for the banded matrix in the previous section,

Full SPAM and SPAM(1) behave virtually the same, and need less outer iterations

than the Lanczos method to arrive at a given accuracy.

Conclusions. The main goal of the experiments so far was, first of all, to inves-

tigate if Full SPAM is competitive with the Lanczos method in terms of the number

of iterations in the outer loop. Solving the eigenproblems for Ak in the inner loop,
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even if this were not be done to full precision, makes SPAM always more expensive

than Lanczos. The experiments in Figures 3, 4, 5 and 6 show that this is the case

for different matrices A and different types of approximations A0. Not only for the

largest, but also for other eigenvalues of A. Secondly, we have illustrated that the

use of one step of the Jacobi-Davidson method to approximate the eigenvalue prob-

lem for Ak in the inner iteration for SPAM hardly influences its behavior. We will

now investigate what happens if the linear system in SPAM(1) is approximated with

a small number of steps of the Minimal Residual method, MinRES [18].

Figure 6. Lanczos versus Full SPAM and SPAM(1) for bcsstk04, bcsstk07 and bcsstk10,
with approximating matrices from below. All three methods used the same start
vector.

4.5. Lanczos versus SPAM(1, l): approximating the correction equation

of SPAM(1) usingMinRES. In this section we investigate the use of l iterations of

the MinRES method [18] for approximating the solution of the Jacobi-Davidson cor-

rection equation (34) for the eigenproblem for Ak in the inner iteration of SPAM(1).

Each iteration of MinRES requires one matrix vector product with Ak, which, for

small values of k, will be approximately as costly as a matrix vector product with A0.

The initial vector of all methods to which the comparison is applied, i.e., the eigen-

vector of interest of A0, will still be computed in full precision. The resulting method

is abbreviated by SPAM(1, l).

R em a r k 4.2. In SPAM(1, 1), MinRES produces an approximation of the Jacobi-

Davidson correction equation (34) for Ak in the one-dimensional Krylov subspace

with the right-hand side of that correction equation as start vector. Since this is the

current residual from the outer iteration, the expansion is the same as for the Lanczos

method. We will therefore not display the convergence curves of SPAM(1, 1).

In the light of the previous remark, it is reasonable to expect that SPAM(1, l) will

represent a transition between Lanczos and SPAM(1). Thus, for reference, in the
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experiments to come, we display the convergence graphs of Lanczos and SPAM(1)

in solid black lines without any additional symbols. The experiments concern four

of the situations that we have already studied. First, we approximated the smallest

eigenvalue of the reaction-diffusion problem. For the other three experiments we

approximated the largest eigenvalue: in the second, we took the banded matrix

with low rank approximation from below, and in the third and fourth the matrices

bcsstk07 and bcsstk10 with the respective approximations from the previous section.

The results are displayed in Figure 7 and confirm the expectations. Even for l = 2

and l = 3, SPAM(1, l) resembles SPAM(1) much more than it resembles Lanczos.

Figure 7. Lanczos and SPAM(1) compared with SPAM(1, l) for small values of l. Left:
reaction-diffusion problem, smallest eigenvalue. Other pictures: largest eigen-
value. Middle left: banded matrix; middle right: bcsstk07; right: bcsstk10. The
graphs for Lanczos and SPAM(1) can also be found in Figures 4, 5, and 6.

It depends, however, very much on the actual application if the gain in the number

of iterations is not undone by the costs of l steps of MinRES per outer iteration

with the matrix Ak. For instance, in the banded matrix example (second picture in

Figure 7), the matrix A itself has 322 nonzero entries and is of full rank, whereas

A0 has only 33 nonzero elements and is of rank 6, and especially when k is small,

the action of Ak will not be very much more expensive than the action of A0. This,

however, brings us to the next question that we would like to investigate, which is,

whether using Ak in the k-th inner iteration instead of A0 all along, is going to make

any difference, because this is what distinguishes SPAM from Jacobi-Davidson with

one-step approximation as preconditioner. As argued in Section 2.5.4, if SPAM is

going to to better, then probably not by very much.

4.6. Comparing SPAM(1, l) with one-step preconditioned Jacobi-David-

son. In the k-th inner iteration of SPAM(1, l), the Jacobi-Davidson correction equa-

tion (34) for Ak is solved using l steps of MinRES. We will now compare this with
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the Jacobi-Davidson method with one-step approximation as preconditioner, as was

described in Section 2.5.2. This means that in each inner iteration, the initial ap-

proximation A0 is used instead of Ak. We will still apply l steps of MinRES to solve

the corresponding correction equation and denote the resulting method by JD(1, l).

Since one of the aims of SPAM was to save on the costs of the matrix-vector products

in the inner iteration, we will also apply Jacobi-Davidson without preconditioning,

and approximate the exact correction equation (30) with matrix A by performing l

steps of MinRES as well, and denote this method by JD(l). Thus, the differences be-

tween these three methods lie in the inner iteration: SPAM(1, l), JD(1, l) and JD(l)

all apply l steps of MinRES per inner iteration step, to a linear equation with matri-

ces Ak, A0, and A, respectively. Note that in [21], no explicit comparison of SPAM

with Jacobi-Davidson was made, even though the methods are so closely related.

Figure 8. Comparing SPAM(1, l) with JD(1, l) and JD(l). The eigenvalue problems are
exactly the same as the corresponding ones in Figure 7, and the curves for
SPAM(1, l) can be found there as well.

As expected, JD(l) is the clear winner in all experiments, although the difference

from JD(1, l) and SPAM(1, l) is not enough to automatically disqualify the latter

two. Since the matrix-vector products in their inner iterations are, in general, con-

siderably cheaper than in JD(l), both methods could be competitive. Having said

this, the difference between JD(1, l) and SPAM(1, l) is quite small and not always in

favor of SPAM(1, l), even though SPAM(1, l), much more so than JD(1, l), uses the

information that is available from the outer iteration also in its inner iteration. As

argued already in Section 2.5.4, this may actually be less effective than using only the

best information that is available from the outer iteration, as the Jacobi-Davidson

method does. So far, the numerical experiments are in favor of using Jacobi-Davidson

with one-step preconditioning instead of SPAM(1, l).
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5. Conclusions

The experiments above illustrate mathematical aspects of SPAM as a method

for approximating eigenvalues of a Hermitian matrix. Using approximations from

below, SPAM can be seen as a boosted version of the Lanczos method in the sense

that convergence towards the largest eigenvalues is stimulated. Since Lanczos itself

is often used to provide a good start vector for Jacobi-Davidson, SPAM is therefore

a good candidate for this task, too. Since the difference between SPAM and Jacobi-

Davidson with one step approximation is small, it may be preferred to use the latter,

especially since the latter is even easier to use. There does not seem to be a significant

gain in re-using the action of A on the orthogonal complement U of the current Ritz
vector u within V also in the inner iterations in comparison with only re-using the
action of A on u, as Jacobi-Davidson with one step approximation does. This does

not mean that the original idea of the authors [21] of SPAM, to save on the costs of the

inner iterations of for instance Jacobi-Davidson, was incorrect. It may well pay off to

do so, but this may be done with Jacobi-Davidson with one step approximation just

as well. Thus, the main conclusion of this paper is that the value of SPAM probably

lies in providing good initial approximations for the Jacobi-Davidson method.
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