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Abstract. We derive some new results for preservation of various stochastic orders and
aging classes under weighted distributions. The corresponding reversed preservation prop-
erties as straightforward conclusions of the obtained results for the direct preservation
properties, are developed. Damage model of Rao, residual lifetime distribution, propor-
tional hazards and proportional reversed hazards models are discussed as special weighted
distributions to try some of our results.
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1. Introduction and preliminaries

Weighted distributions are useful to model data in situations where the distribu-

tion of the observed data does not coincide with the original distribution of the data.

A number of such instances were explained and described by Rao [17] and Patil and

Rao [16]. Recently, the study of some reliability aspects of weighted distributions

has attracted the attention of many researchers (cf. Kochar and Gupta [10], Nanda

and Jain [12], Navarro et al. [14] and Pakes et al. [15] among others). Numerous

research works have also been devoted to investigate the properties of weighted dis-

tributions in the context of stochastic orderings and aging classes (cf. Bartoszewicz

and Skolimowska [4], Misra et al. [11], B lażej [5], Bartoszewicz [3] and Izadkhah et

al. [7]). One of the main problems in some of these works was the problem of preser-

vation of stochastic orders and aging classes under univariate weighted distributions.

For example, using a representation of weighted distributions B lażej [5] and Bar-

toszewicz [3] obtained some results for preservation of several stochastic orders and
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aging classes. By appealing to some bivariate characterizations of stochastic orders

Misra et al. [11] derived a similar kind of results. Also, using some well-known char-

acterizations of aging classes by means of stochastic orders and using the concept of

the totally positivity (cf. Karlin [9]), Izadkhah et al. [6] presented some achievements

for preservation of a number of aging classes under weighting.

In this paper, using a technical lemma given in Barlow and Proschan [2], we develop

a complete study to get the preservation of several univariate stochastic orders and

aging classes under weighted distributions. In this context, a new approach will be

introduced, although some of the results obtained are similar to the previous results

in the literature (cf. Misra et al. [11]). In addition, according to Izadkhah et al. [6],

some special weighted distributions are proposed which are applied to some practical

situations, and we examine the derived results for those special cases (cf. Ahmad

and Kayid [1]). Another direction of this paper, which has not been investigated

in the literature before, is to provide the reversed preservation property of weighted

distributions. Throughout the paper, examples are also given to explain some useful

facts. The notation IA(t) stands for the indicator function of any set A in R. It will

be also assumed that
st
= denotes the equality of distributions.

Let X and Y be two random variables with absolutely continuous cumulative

distribution functions (cdf) F and G, probability density functions (pdf) f and g,

and survival functions (sf) F and G, respectively. Assume further that uX = sup{x :

F (x) < 1} and uY = sup{x : G(x) < 1} are the respective upper bounds of X and Y,

and lX = inf{x : F (x) > 0} and lY = inf{x : G(x) > 0} are their corresponding lower

bounds. For two nonnegative weight functions w1 and w2, the random variables Xw1

and Yw2
are called the weighted random variables associated with X and Y, which

have probability density functions (cf. Jain et al. [8])

f1(x) =
w1(x)f(x)

η1
and g1(x) =

w2(x)g(x)

η2
, x ∈ R,

respectively, where 0 < η1 = E(w1(X)) < ∞ and 0 < η2 = E(w2(Y )) < ∞. The

distribution functions of Xw1
and Yw2

are, respectively, obtained as

F1(x) =
A1(x)F (x)

η1
and G1(x) =

A2(x)G(x)

η2
, x ∈ R,

and their corresponding survival functions as

F 1(x) =
B1(x)F (x)

η1
and G1(x) =

B2(x)G(x)

η2
, x ∈ R,

where A1(x) = E(w1(X) | X 6 x), A2(x) = E(w2(Y ) | Y 6 x), B1(x) = E(w1(X) |

X > x), and B2(x) = E(w2(Y ) | Y > x).
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The random variable Xt = (X − t | X > t) for t < uX is called the residual

life of X having sf F t(x) = F (t + x)/F (t), x ∈ (0,∞). Also, the random variable

X(t) = (t − X | X 6 t) for t > lX is known as the reversed residual life or the

inactivity time of X, which has sf F (t)(x) = F (t−x)/F (t), x ∈ [0,∞). The foregoing

characteristics are similarly defined for the random variable Y . The hazard rates

(hr) of X and Y are, respectively, given by rF (x) = f(x)/F (x), x ∈ (−∞, uX), and

rG(x) = g(x)/G(x), x ∈ (−∞, uY ). The reversed hazard rates (rh) of X and Y are

defined as qF (x) = f(x)/F (x), x ∈ (lX ,∞), and qG(x) = g(x)/G(x), x ∈ (lY ,∞),

respectively. The mean of random variables Xx and Yx, called the mean residual

lifetimes (mrl) of X and Y, are given, respectively, by

mF (x) =







∫

∞

x

F (t)

F (x)
dt, x < uX ,

0, x > uX ,
and mG(x) =







∫

∞

x

G(t)

G(x)
dt, x < uY ,

0, x > uY .

The reversed mean residual lifetimes (rmr) of X and Y are, respectively, defined as

the mathematical expectations of X(x) and Y(x), and are given by

αF (x) =







∫ x

lX

F (t)

F (x)
dt, x > lX ,

0, x 6 lX ,
and αG(x) =







∫ x

lY

G(t)

G(x)
dt, x > lY ,

0, x 6 lY .

According to Shaked and Shanthikumar [18] and Nanda et al. [13], we have the

following partial orders to be used throughout the paper. We use the convention

that a/0 = ∞ for a > 0, and also 0/0 = 0. The random variable X is smaller

than Y in:

(i) Usual stochastic order (X 6st Y ), if F (x) 6 G(x) for all x ∈ R, or equivalently,

if F (x) > G(x) for all x ∈ R.

(ii) Hazard rate order (X 6hr Y ), if rF (x) > rG(x) for all x ∈ R, or equivalently, if

[f(x)G(x)− g(x)F (x)] > 0 for all x ∈ R.

(iii) Reversed hazard rate order (X 6rh Y ), if qF (x) 6 qG(x) for all x ∈ R, or

equivalently, if [g(x)F (x) − f(x)G(x)] > 0 for all x ∈ R.

(iv) Mean residual life order (X 6mrl Y ), if mF (x) 6 mG(x) for all x ∈ R, or

equivalently, if [F (x)
∫

∞

x
G(t) dt−G(x)

∫

∞

x
F (t) dt] > 0 for all x ∈ R.

(v) Reversed mean residual life order (X 6rmr Y ), if αF (x) > αG(x) for all x ∈ R,

or equivalently, if [G(x)
∫ x

0
F (t) dt− F (x)

∫ x

0
G(t) dt] > 0 for all x ∈ R.

(vi) Increasing convex order (X 6icx Y ), if
∫

∞

x
F (t) dt 6

∫

∞

x
G(t) dt for all x ∈ R.

(vii) Increasing concave order (X 6icv Y ), if
∫ x

−∞
G(t) dt 6

∫ x

−∞
G(t) dt for all x ∈ R.

The following aging classes are defined as in Shaked and Shanthikumar [18]. The

random variable X is said to have:
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(i) Decreasing Mean Residual Life (DMRL) property, if the function mF (x) is

decreasing in x ∈ R, or equivalently, if
∫

∞

x
F (t) dt is log-concave on SX .

(ii) Increasing Reversed Mean Residual life (IRMR) property, if the function αF (x)

is increasing in x ∈ R, or equivalently, if
∫ x

lX
F (t) dt is log-concave on SX .

The nonnegative random variable X is said to have:

(iii) New Better than Used (NBU) property, if F (x)F (y) > F (x + y) for all x, y on

[0,∞).

(iv) New Better than Used in Expectation (NBUE) property, if mF (0) > mF (x) for

all x ∈ [0,∞).

(v) New Better than Used in Convex order (NBUC) property, if Xt 6icx X for all

t > 0.

2. Preservation of stochastic orders

In this section, we establish our main results for preservation of some stochastic

orders under weighted distributions. Then, the reversed implication that stochastic

orders of weighted distributions imply the stochastic orders of parent distributions,

will be discussed. By applying the following lemma and using the fact that the

parent distribution can be regarded, at least theoretically, as a weighted version

of the weighted distribution, each result for preservation under weighting can be

translated to the reversed direction. It is to be mentioned here that the problem of the

reversed preservation under weighting is important, because it provides information

about the original distribution of a weighted data set via a mathematical implication.

Let η = E(w(X)), B(x) = E(w(X) | X > x), A(y) = E(w(X) | X 6 y) and

C(x, y) = E(w(X) | x < X 6 y). Suppose that Xw is the weighted version of X

with the weight function w which has pdf fw and cdf Fw.

Lemma 1. Let T = Xw and for ν(x) = 1/w(x) let C∗(x, y) = E(ν(T ) | x <

T 6 y). Then C∗(x, y) = 1/C(x, y) for all x 6 y ∈ R. Furthermore, Tν =st X, where

Tν is the weighted version of T with weight function ν.

P r o o f. Note that

C(x, y) = η
Fw(y)− Fw(x)

F (y)− F (x)
.

For all x 6 y ∈ R, we get

C∗(x, y) =

∫ y

x

ν(t)fw(t)

Fw(y)− Fw(x)
dt =

∫ y

x
f(t) dt

η(Fw(y)− Fw(x))

=
1

η

F (y)− F (x)

Fw(y)− Fw(x)
=

1

C(x, y)
.
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Denote η∗ = E(ν(T )), B∗(x) = E(ν(T ) | T > x) and A∗(y) = E(ν(T ) | T 6 y).

Then, using the identity C∗(x, y) = 1/C(x, y), by letting y → ∞, x → ∞ and

(x, y) → (−∞,∞), one at a time, we obtain, respectively, B∗(x) = 1/B(x), A∗(y) =

1/A(y), and η∗ = 1/η. �

Now, we will pay our attention to the well-known usual stochastic order. Preser-

vation properties of this order were considered in Theorem 3.1 of Misra et al. [11]

and Theorem 11 of Bartoszewicz and Skolimowska [4]. The following result is a char-

acterization of the usual stochastic order.

Theorem 1. Let wi be non-increasing (non-decreasing) for some i = 1, 2; and let

w2(x)/η2 6 (>)w1(x)/η1 for all x ∈ R. Then

X 6st Y ⇔ Xw1
6st Yw2

.

P r o o f. Suppose that wi is non-increasing for some i = 1, 2; and let w2(t)/η2 6

w1(t)/η1 for all t ∈ R. Then, for all x ∈ R, we get

F1(x)−G1(x) =

∫ x

−∞

(f1(t)− g1(t)) dt

=

∫ x

−∞

(w1(t)

η1
f(t)−

w2(t)

η2
g(t)

)

dt

>

∫ x

−∞

wi(t)

ηi
(f(t)− g(t)) dt

=

∫

∞

−∞

hi(t) dW (t),

where hi(t) = wi(t)I(−∞,x](t)/ηi, and W (t) = F (t) − G(t). Obviously, hi(t) is non-

negative and by assumption it is non-increasing in t. We know that X 6st Y gives
∫ x

−∞
dW (t) > 0 for all x ∈ R. Hence, Lemma 7.1 (b) in Barlow and Prochan [2]

directly provides the proof. �

The case when w1 = w2 = w gives the following corollary.

Corollary 1. Let w be a monotone function for which E(w(X)) = E(w(Y )).

Then X 6st Y if and only if Xw 6st Yw.

E x a m p l e 1. Let X and Y denote the lifetimes of two devices having cumulative

distribution functions F and G, respectively. Take w(x) = I(t0,∞)(x), where t0 ∈

SX ∩ SY is a time point at which F (t0) = G(t0). Then, observe that Xw
st
= (X |

X > t0) and Yw
st
= (Y | Y > t0). From Corollary 1, by the known properties of the
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usual stochastic order, X 6st Y if and only if Xt0 6st Yt0 , where Xt0 and Yt0 are

the residual lifetimes associated with X and Y , respectively. Similarly, by taking

w(x) = I(0,t0](x) such that F (t0) = G(t0), we conclude that X 6st Y if and only if

X(t0) >st Y(t0), where X(t0) and Y(t0) are the reversed residual lifetimes of X and Y ,

respectively.

Now, we discuss the problem of preservation of the hazard rate order and the

reversed hazard rate order under weighting. For similar results we refer the readers

to Misra et al. [11].

Theorem 2. Let w2/w1 be non-decreasing and let wi be non-decreasing for some

i = 1, 2. Then X 6hr Y implies Xw1
6hr Yw2

.

P r o o f. Denote dWx(t) = w(x, t) dt with w(x, t) = [f(x)g(t)−f(t)g(x)]I[x,∞)(t)

for all x ∈ R and for all t ∈ R. The hazard rate order between X and Y can be

translated to
∫

∞

y
dWx(t) > 0 for all y 6 x ∈ R. Note that X 6hr Y is equivalent to

f(x)/g(x) > F (x)/G(x) for all x ∈ R, and on the other hand X 6hr Y provides that

F (x)/G(x) is non-increasing for x ∈ R. Therefore, X 6hr Y implies that f(x)/g(x) >

F (y)/G(y) for all x 6 y ∈ R. In fact, this means that
∫

∞

y
dWx(t) > 0 for all

x 6 y ∈ R. As a result, X 6hr Y implies that
∫

∞

y
dWx(t) > 0 for all x ∈ R, and for all

y ∈ R. The assumption that w2/w1 is non-decreasing yields w1(x)w2(t) > w1(t)w2(x)

for all t > x ∈ R. Now, one has

f1(x)G1(x) − g1(x)F 1(x) =

∫

∞

x

[f1(x)g1(t)− g1(x)f1(t)] dt

=

∫

∞

x

(w1(x)w2(t)f(x)g(t)

η1η2
−

w1(t)w2(x)g(x)f(t)

η1η2

)

dt

>

∫

∞

x

wi(t)w3−i(x)

η1η2
[f(x)g(t)− f(t)g(x)] dt

=

∫

∞

−∞

hi(t)[f(x)g(t) − f(t)g(x)]I[x,∞)(t) dt

=

∫

∞

−∞

hi(t) dWx(t),

where hi(t) = (η1η2)
−1wi(t)w3−i(x). From the assumption of wi being non-

decreasing, we observe that hi is a non-decreasing function. Hence, Lemma 7.1

(a) of Barlow and Proschan [2] completes the proof. �

By applying Lemma 1 to Theorem 2 we derive the following corollary.
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Corollary 2. If w2/w1 is non-increasing and at least one of wi’s for i = 1, 2 is

non-increasing, then Xw1
6hr Yw2

implies X 6hr Y.

E x a m p l e 2 (Damage model of Rao). Suppose that Z1 and Z2 are two random

variables with density functions h1 and h2, respectively. We assume that Z1 is inde-

pendent of X and that Z2 is independent of Y . Visualize the random variable Xw1

as it records the amount of observation X only if Z1 = X (whenever the observed

values of Z1 and of X are equal) and imagine that Yw2
records the amount of observa-

tion Y only if Z2 = Y . Rao [17] showed that this is a situation, where the weighted

distributions can be applied (see also Patil and Rao [16] for more details). Here,

the weight functions are w1 = h1 and w2 = h2. If at least one of Zi’s for i = 1, 2

has a non-increasing density such that Z1 6lr Z2, then according to Corollary 2,

Xw1
6hr Yw2

implies X 6hr Y.

The following theorem is analogously derived.

Theorem 3. Let w2/w1 be non-decreasing and also let wi be non-increasing for

some i = 1, 2. Then X 6rh Y implies Xw1
6rh Yw2

.

P r o o f. As in the proof of Theorem 2, by appealing to the fact that X 6rh Y

is equivalent to
∫ x

−∞
[f(t)g(x) − f(x)g(t)] dt > 0 for all x ∈ R, and further be-

cause it is equivalent to G(x)/F (x) being non-decreasing in x, we obtain that
∫ y

−∞
dWx(t) > 0 for all x, y ∈ R, where dWx(t) = w(x, t) dt with w(x, t) =

[f(t)g(x)− f(x)g(t)]I(−∞,x)(t). The result will be obtained by using Lemma 7.1 (b)

of Barlow and Proschan [2]. �

Corollary 3. If w2/w1 is non-increasing and at least one of wi’s for i = 1, 2 is

non-decreasing, then Xw1
6rh Yw2

implies X 6rh Y.

We now concentrate on the preservation of the mean residual life order and the

reversed mean residual life order under weighted distributions (see also Theorem 2.2

in Izadkhah et al. [7] for similar results).

Theorem 4. Let B2/B1 be non-decreasing such that Bi is non-decreasing for

some i = 1, 2. Let X 6mrl Y . Then Xw1
6mrl Yw2

.

P r o o f. To start, we have

X 6mrl Y ⇔

∫

∞

x

[G(t)F (x)−G(x)F (t)] dt > 0 ∀x ∈ R,

⇔

∫

∞

−∞

[G(t)F (x)−G(x)F (t)]I[x,∞)(t) dt > 0 ∀x ∈ R,

⇔

∫

∞

y

dWx(t) > 0 ∀ y 6 x ∈ R,
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where dWx(t) = [G(t)F (x) −G(x)F (t)]I[x,∞)(t) dt. Note that

X 6mrl Y ⇔

∫

∞

x
F (t) dt

F (x)
6

∫

∞

x
G(t) dt

G(x)
∀x ∈ R,

⇔

∫

∞

x
F (t) dt

∫

∞

x
G(t) dt

6
F (x)

G(x)
∀x ∈ R.

In addition,

X 6mrl Y ⇔

∫

∞

x
F (t) dt

∫

∞

x
G(t) dt

6

∫

∞

y
F (t) dt

∫

∞

y
G(t) dt

∀x 6 y ∈ R.

Therefore, X 6mrl Y yields

∫

∞

y
F (t) dt

∫

∞

y
G(t) dt

6
F (x)

G(x)
∀x 6 y ∈ R.

The above inequality holds if and only if
∫

∞

y
dWx(t) > 0 for all x 6 y ∈ R. Thus,

X 6mrl Y implies that
∫

∞

y
dWx(t) > 0 for all x ∈ R and for all y ∈ R. Because

B2/B1 is non-decreasing, we get for all x ∈ R,

∫

∞

x

[G1(t)F 1(x) −G1(x)F 1(t)] dt

=

∫

∞

x

(B2(t)B1(x)

η1η2
G(t)F (x) −

B2(x)B1(t)

η1η2
G(x)F (t)

)

dt

>

∫

∞

x

B3−i(x)Bi(t)

η1η2
[G(t)F (x) −G(x)F (t)] dt

=

∫

∞

−∞

B3−i(x)Bi(t)

η1η2
[G(t)F (x) −G(x)F (t)]I[x,∞)(t) dt

=

∫

∞

−∞

hi(t) dWx(t),

where hi(t) = (η1η2)
−1B3−i(x)Bi(t), by the second assumption, is non-decreasing

in t. By Lemma 7.1 (a) of Barlow and Proschan [2] we deduce that
∫

∞

−∞
hi(t)×

dWx(t) > 0 for all x ∈ R. �

Corollary 4. If B2/B1 is non-increasing and if Bi is non-increasing for some

i = 1, 2, then Xw1
6mrl Yw2

implies X 6mrl Y.
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Theorem 5. Let Ai be non-increasing for some i = 1, 2 and let A2/A1 be non-

decreasing. Then X 6rmr Y implies Xw1
6rmr Yw2

.

P r o o f. We know that X 6rmr Y yields
∫ x

−∞
[F (t)G(x) − F (x)G(t)] dt > 0 for

all x ∈ R. Also, X 6rmr Y is equivalent to
∫ x

−∞
F (t) dt/

∫ x

−∞
G(t) dt being non-

increasing in x ∈ R. Therefore, in a manner similar to the discussion made in the

proof of Theorem 4, we get
∫ y

−∞
dW (t) > 0 for all x ∈ R and for all y ∈ R, where

dW (t) = [F (t)G(x) − F (x)G(t)]I(−∞,x](t) dt. Again, Lemma 7.1 (b) of Barlow and

Proschan [2] completes the proof. �

Corollary 5. If Ai is non-decreasing for some i = 1, 2 such that A2/A1 is non-

increasing, then Xw1
6rmr Yw2

implies X 6rmr Y.

We now study conditions under which the increasing convex order and the increas-

ing concave order are preserved by weighting.

Theorem 6. Let Bi be non-decreasing for some i = 1, 2 and let B2(x)/η2 >

B1(x)/η1 for all x ∈ R. Then X 6icx Y implies Xw1
6icx Yw2

.

P r o o f. By imposing the second assumption, we get, for all x ∈ R,

∫

∞

x

[G1(t)− F 1(t)] dt =

∫

∞

x

(B2(t)

η2
G(t)−

B1(t)

η1
F (t)

)

dt

>

∫

∞

x

Bi(t)

ηi
[G(t)− F (t)] dt

=

∫

∞

−∞

Bi(t)I[x,∞)(t)

ηi
[G(t)− F (t)] dt.

Now, take hi(t) = η−1
i Bi(t)I[x,∞)(t), which by assumption is increasing in t for all x.

Because of X 6icx Y , we have that
∫

∞

x
[G(t)−F (t)] dt > 0 for all x ∈ R. Lemma 7.1

(a) of Barlow and Proschan [2] is again applicable and gives the proof. �

Corollary 6. If Ai is non-increasing for some i = 1, 2 such that B2(x)/η2 6

B1(x)/η1 for all x ∈ R, then Xw1
6icx Yw2

implies X 6icx Y.

Parallelly with the result of Theorem 6 we have the following result.

Theorem 7. Let Ai be non-increasing for some i = 1, 2 and let A1(x)/η1 >

A2(x)/η2 for all x ∈ R. Then X 6icv Y implies Xw1
6icv Yw2

.

P r o o f. The proof is obtained as the proof of Theorem 6, by knowing that

X 6icv Y is equivalent to
∫ x

−∞
[F (t)−G(t)] dt > 0 for all x ∈ R, and then applying

Lemma 7.1 (b) of Barlow and Proschan [2]. �
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Corollary 7. If Ai is non-decreasing for some i = 1, 2 and if A1(x)/η1 6 A2(x)/η2

for all x ∈ R, then Xw1
6icv Yw2

gives X 6icv Y.

In order for conditions of Theorems 6 and 7 to be well satisfied, it is noticeable

here that a sufficient condition to get B2/η2 > B1/η1 is that the function B2/B1 is

non-decreasing and also a sufficient condition for A1/η1 > A2/η2 to be valid is that

A2/A1 is non-decreasing. Besides, if w1 and w2 are, respectively, non-decreasing and

non-increasing, then B1 and A2 have the same monotonic properties accordingly (see

Remark 2.2 in Misra et al. [11] for more detailed discussions).

3. Preservation of aging classes

In this section, using some representations of aging classes via stochastic orders

we develop some results for preservation of several aging classes under weighting.

Parallelly, some relevant characterizations are given. We will focus only on positive

aging classes. Results for negative aging classes which indeed are dual classes for the

classes that were defined in Section 1.1 can be similarly derived.

Theorem 8. Let w be non-increasing (non-decreasing) and let w(x)/η 6 (>)

w(x + t)/B(t) for all x > 0 and for all t > 0. Then X is NBU if and only if Xw is

NBU.

P r o o f. We know that X is NBU if and only if Xt 6st X for all t > 0. From

Lemma 2.1 (ii) in Izadkhah et al. [6], E(w(Xt + t)) = B(t). Taking w1(x) = w(x+ t)

and w2(x) = w(x), under the assumptions Xt 6st X is equivalent to (Xt)w1
6st Xw2

for all t > 0. By Lemma 2.2 of Izadkhah et al. [6], (Xt)w1

st
= (Xw − t | Xw > t) for

all t > 0. Thus, it follows that (Xw − t | Xw > t) 6st Xw for all t > 0, which means

that Xw is NBU. �

It is to be mentioned that when lX = 0, if w(t + x)/B(t) is increasing in t for all

x > 0, then w(x)/η 6 w(x+ t)/B(t) holds true for all x > 0 and for all t > 0.

Theorem 9. Let B be non-decreasing and let w(x)E(Xw) > B(x)E(X) for all

x > 0. Then X ∈ NBUE implies Xw ∈ NBUE.

P r o o f. First, notice that X ∈ NBUE if and only if
∫

∞

x
[f(t)E(X)−F (t)] dt > 0

for all t > 0. We have, for all x > 0, that

∫

∞

x

[fw(t)E(Xw)− Fw(t)] dt =

∫

∞

x

(w(t)E(Xw)

η
f(t)−

B(t)F (t)

η

)

dt
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>

∫

∞

x

B(t)

η
[E(X)f(t)− F (t)] dt =

∫

∞

0

B(t)I[x,∞)(t)

η
[E(X)f(t)− F (t)] dt,

where the inequality follows from the second assumption. Set h(t)= η−1B(t)I[x,∞)(t).

From the first assumption, h is non-decreasing in t for all x > 0. Lemma 7.1 (a) of

Barlow and Proschan [2] is applicable providing the proof of the theorem. �

Corollary 8. If B is non-increasing and if w(x)E(Xw) 6 B(x)E(X) for all x > 0,

then Xw ∈ NBUE implies X ∈ NBUE.

Theorem 10. Let X be DMRL. If B is non-decreasing and w/B is non-

decreasing, then Xw is DMRL.

P r o o f. We know that X is DMRL if and only if the mean residual life of X

i.e., mF (x) =
∫

∞

x
F (t) dt/F (x) is non-increasing in x. We get

d

dx
mF (x) =

f(x)

F (x)

∫

∞

x
F (t) dt

F (x)
− 1.

Thus, X is DMRL if and only if for all x ∈ R,

(3.1)

∫

∞

x

[F (x)f(t) − F (t)f(x)] dt > 0,

which is equivalent to
∫

∞

y
dWx(t) > 0 for all y 6 x ∈ R, where dWx(t) = w(x, t) dt

where w(x, t) = [F (x)f(t) − F (t)f(x)]I[x,∞)(t). Note that, by using (3.1) and by

definition, we have

X is DMRL ⇔

∫

∞

x
F (t) dt

F (x)
>

∫

∞

y
F (t) dt

F (y)
∀x 6 y ∈ R,

⇔
F (x)

f(x)
>

∫

∞

x
F (t) dt

F (x)
∀x ∈ R.

Using the above inequalities, we obtain

X is DMRL ⇒
F (x)

f(x)
>

∫

∞

y
F (t) dt

F (y)
∀x 6 y ∈ R,

⇔

∫

∞

y

[F (x)f(t) − F (t)f(x)] dt > 0 ∀x 6 y ∈ R,

⇔

∫

∞

y

dWx(t) > 0 ∀x 6 y ∈ R.

463



Therefore, X ∈ DMRL provides that
∫

∞

y
dWx(t) > 0 for all x ∈ R and for all

y ∈ R. It can be here written by assumption that

∫

∞

x

[Fw(x)fw(t)− Fw(t)fw(x)] dt

=

∫

∞

x

(B(x)w(t)f(t)F (x)

η2
−

B(t)w(x)f(x)F (t)

η2

)

dt

>

∫

∞

x

B(t)w(x)

η2
[F (x)f(t)− F (t)f(x)] dt

=

∫

∞

−∞

B(t)w(x)

η2
[F (x)f(t)− F (t)f(x)]I[x,∞)(t) dt =

∫

∞

−∞

h(t) dWx(t),

where h(t) = η−2B(t)w(x), which is non-decreasing by assumption. Hence, Lem-

ma 7.1 (a) of Barlow and Proschan [2] can be applied to obtain the proof. �

Corollary 9. If B is non-increasing and if w/B is non-decreasing, then Xw ∈

DMRL implies X ∈ DMRL.

E x a m p l e 3 (Proportional hazards model). Consider the model G(x) = [F (x)]θ ,

θ > 0. This model is referred to as the PHR model in the literature. The cdf

G is easily shown to be a weighted version of F induced by the weight function

w(x) = [F (x)]θ−1 from which we get B(x) = θ−1[F (x)]θ−1. It can be readily seen

that if θ ∈ (0, 1], then the assumptions of Theorem 10 hold. Thus, if F has the

DMRL property then G has the DMRL property.

Theorem 11. Let X be IRMR, let A be non-increasing and also let A/w be

non-decreasing. Then Xw is IRMR.

P r o o f. We know that X is IRMR if and only if the reversed mean residual life

of X i.e., the function α given by α(x) =
∫ x

−∞
F (t) dt/F (x) is non-decreasing in x.

It is obvious that
d

dx
α(x) = 1−

f(x)

F (x)

∫ x

−∞
F (t) dt

F (x)
.

So, X is IRMR if and only if

(3.2)

∫ x

−∞

[F (x)f(t)− F (t)f(x)] dt > 0 ∀x ∈ R,

which means that
∫ y

−∞
dWx(t) > 0 for all x 6 y ∈ R, where dWx(t) = [F (x)f(t) −

F (t)f(x)]I(−∞,x](t) dt. Furthermore,

X is IRMR ⇔

∫ y

−∞
F (t) dt

F (y)
6

∫ x

−∞
F (t) dt

F (x)
∀ y 6 x ∈ R.
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Therefore, using the above equivalence relation and via (3.2), if X is IRMR then

∫ y

−∞
F (t) dt

F (y)
6

F (x)

f(x)
∀ y 6 x ∈ R,

which is equivalent to
∫ y

−∞
dWx(t) > 0 for all y 6 x ∈ R. That is

∫ y

−∞
dWx(t) > 0

for all x ∈ R and for all x ∈ R. In other direction, we deduce by assumption that,

for all x ∈ R,

∫ x

−∞

[Fw(x)fw(t)− Fw(t)fw(x)] dt

=

∫ x

−∞

(A(x)w(t)F (x)f(t)

η2
−

A(t)w(x)f(x)F (t)

η2

)

dt

>

∫ x

−∞

A(t)w(x)

η2
[F (x)f(t)− F (t)f(x)] dt

=

∫

∞

−∞

A(t)w(x)

η2
[F (x)f(t)− F (t)f(x)]I(−∞,x](t) dt =

∫

∞

−∞

h(t) dWx(t),

where h(t) = η−2A(t)w(x), which is non-increasing by assumption. At the end, by

Lemma 7.1 (b) of Barlow and Proschan [2] it follows that
∫

∞

−∞
h(t) dWx(t) > 0 for

all x ∈ R, which completes the proof. �

Corollary 10. If A is non-decreasing and if A/w is non-increasing, then Xw ∈

IRMR implies X ∈ IRMR.

E x a m p l e 4 (Proportional reversed hazards model). The model of G(x) =

[F (x)]θ , θ > 0, is well-known in the literature as the PRHR model. The distri-

bution function G is a weighted version of F with the weight w(x) = [F (x)]θ−1,

which gives A(x) = θ−1[F (x)]θ−1. It can be readily seen that if θ ∈ (0, 1], then the

assumptions of Theorem 11 hold. As a result, if F is IRMR then G is IRMR.

Theorem 12. Let X ∈ NBUC. If B is non-decreasing in x, and B(x)/η >

B(t+ x)/B(t) for all x > 0 and for all t > 0. Then Xw ∈ NBUC.

P r o o f. Let t > 0 be fixed. Then, X ∈ NBUC implies that Xt 6icx X for all

t > 0. By an application of Lemma 2.1 in Izadkhah et al. [6], for w1(x) = w(t + x)

and w2(x) = w(x), we have B1(x) = B(t + x), η1 = B(t) and also we know that

B2(x) = B(x) and that η2 = η. Now, Theorem 6 gives Xw >icx (Xt)w1
. From

Lemma 2.2 of Izadkhah et al. [6], (Xt)w1

st
= (Xw − t | Xw > t) for all t > 0. Hence,

Xw >icx (Xw − t | Xw > t), for all t > 0, which provides the proof directly. �
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Corollary 11. If B is non-increasing and B(x)/η 6 B(t + x)/B(t) for all t > 0

and for all x > 0, then Xw ∈ NBUC yields X ∈ NBUC.

Assume that lX = 0 and that B is log-concave on (0,∞). Then B(x)/η >

B(t+ x)/B(t) for all t > 0 and for all x > 0. It is to be mentioned here that if

w is non-decreasing then B is also non-decreasing as discussed after Corollary 7.
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