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Newton transformations on null hypersurfaces

Cyriaque Atindogbé and Hans Tetsing Fotsing

Abstract. Any rigged null hypersurface is provided with two shape opera-
tors: with respect to the rigging and the rigged vector fields respectively.
The present paper deals with the Newton transformations built on both of
them and establishes related curvature properties. The laters are used to
derive necessary and sufficient conditions for higher-order umbilicity and
maximality we introduced in passing, and develop general Minkowski-type
formulas for the null hypersurface, supported by some physical models in
perfect-fluid space-times.

1 Introduction
It is a well-known fact that null hypersurfaces are exclusive objects of pseudo-
-Riemannian manifolds in the sense that they have no Riemannian counterpart
and hence are interesting on their own from a (differential) geometric point of
view. They also play an important role in general relativity namely in the study of
black hole horizons (regions of space-time which contains a huge amount of mass
compacted into an extremely small volume). From a more technical aspect, they
are hypersurfaces having (induced) metrics with (pointwise) vanishing determi-
nants and this degeneracy leads to several difficulties. In pseudo-Riemannian case,
due to the causal character of three categories of vector fields (namely, spacelike,
timelike and null), the induced metric on a hypersurface is a non-degenerate metric
tensor field or a degenerate symmetric tensor field depending on whether the normal
vector field is of the first two types or the third one. On non-degenerate hypersur-
faces one can consider all the fundamental intrinsic and extrinsic geometric notions.
In particular, a well defined (up to sign) notion of the unit orthogonal vector field is
known to lead to a canonical splitting of the ambient tangent space into two factors:
a tangent and an orthogonal one. Therefore, by respective projections, one has fun-
damental equations such as the Gauss, the Codazzi, the Weingarten equations, . . .
along with the second fundamental form, shape operator, induced connection, etc.
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formulas.
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The null hypersurface case is precisely when the normal vector field is null (also
called lightlike) and since (contrary to the non-degenerate counterpart) the nor-
mal vector bundle intersects (non trivially) with the tangent bundle, one cannot
find natural projector (and hence there is no preferred induced connection such as
Levi-Civita) to define induced geometric objects as usual. This degeneracy of the
induced metric makes it impossible to study them as part of standard submanifold
theory, forcing to develop specific techniques and tools. For the most part, these
tools are specific to a given problem, or sometimes with auxiliary non-canonical
choices on which, unfortunately, depends the constructed null geometry. Indeed,
Duggal and Bejancu in [12] introduced a non-degenerate screen distribution (or
equivalently a null transversal line vector bundle as we may see below) so as to get
a three factors splitting of the ambient tangent space and derive the main induced
geometric objects such as second fundamental forms, shape operators, induced con-
nections, curvature, etc. Unfortunately, the screen distribution is not unique and
there is no preferred one in general, unless some specific geometric conditions are
formulated to select and ensure uniqueness in exceptional cases [6], [5], [8], [7].
From above mentioned difficulties and compared to extensive research on global
Riemannian and Lorentzian geometries we find out that considerable works are
needed in null geometry to fill the gap.

One of the most important and central tools which have been extremely useful
in addressing issues on higher-order r-th mean curvature and related topics in Rie-
mannian geometry are Newton transformations [1], [2], [3], [4], [10], [15]. Since any
null hypersurface with a fixed rigging do carry two shape operators: with respect
to the rigging and the rigged vector fields respectively, we reasonably expect a role
of those transformations in the study of null hypersurfaces. Recently in [11], the
authors used above transformations of first type (thus, by duality considering the
screen structure but not the null hypersurface structure) and examine conditions
under which compact null hypersurfaces are totally umbilical in Robertson-Walker
(RW) space-times. In the present paper we consider Newton transformations built
on both of the two shape operators and establish related curvature properties and
derive necessary and sufficient conditions for higher-order umbilicity and maximal-
ity, along with general Minkowski-type formulas for null hypersurfaces. The paper
is organized as follows. Section 2 sets notations and definitions on riggings (nor-
malizations) and review basic properties on null hypersurfaces, followed by some
technical lemmas. Section 3 starts with introducing Newton transformations with
respect to the rigged vector field and establishes their basic properties and some
characterization results. The behaviour with respect to change in rigging is then
examined on these transformations and the section ends with establishing some
Minkowski-type integral formulas. In Section 4 we present some physical mod-
els in perfect-fluid space-times. The last section is concerned with the Newton
transformations with respect to the rigging vector field.

2 Preliminaries
Let (M̄, ḡ) be an (n+ 2)-dimensional Lorentzian manifold and M a null hypersur-
face in M . This means that at each p ∈ M , the restriction ḡp|TpM is degenerate,
that is there exists a non-zero vector U ∈ TpM such that ḡ(U,X) = 0 for all
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X ∈ TpM . Hence, in null setting, the normal bundle TM⊥ of the null hypersur-
face Mn+1 is a rank 1 vector subbundle of the tangent bundle TM , contrary to
the classical theory of non-degenerate hypersurfaces for which the normal bundle
has trivial intersection {0} with the tangent one and plays an important role in
the introduction of the main induced geometric objects on M . Let us start with
the usual tools involved in the study of such hypersurfaces according to [12]. They
consist in fixing on the null hypersurface a geometric data formed by a lightlike
section and a screen distribution. By screen distribution on Mn+1, we mean a
complementary bundle of TM⊥ in TM . It is then a rank n non-degenerate distri-
bution over M . In fact, there are infinitely many possibilities of choices for such
a distribution provided the hypersurface M be paracompact, but each of them is
canonically isomorphic to the factor vector bundle TM/TM⊥. For reasons that
will become obvious in few lines below, let denote such a distribution by S (N).
We then have

TM = S (N)⊕Orth TM⊥, (1)

where ⊕Orth denotes the orthogonal direct sum. From [12], it is known that for a
null hypersurface equipped with a screen distribution, there exists a unique rank 1
vector subbundle tr(TM) of TM̄ over M , such that for any non-zero section ξ of
TM⊥ on a coordinate neighbourhood U ⊂ M , there exists a unique section N of
tr(TM) on U satisfying

ḡ(N, ξ) = 1, ḡ(N,N) = ḡ(N,W ) = 0, ∀W ∈ S (N)|U . (2)

Then TM̄ is decomposed as follows:

TM̄ |M = TM ⊕ tr(TM) = {TM⊥ ⊕ tr(TM)} ⊕Orth S (N). (3)

We call tr(TM) a (null) transversal vector bundle along M . In fact, from (2) and
(3) one shows that, conversely, a choice of a transversal bundle tr(TM) determines
uniquely the screen distribution S (N). A vector field N as in (2) is called a
null transversal vector field of M . It is then noteworthy that the choice of a null
transversal vector field N along M determines both the null transversal vector
bundle, the screen distribution S (N) and a unique radical vector field, say ξ,
satisfying (2). Tangent vector fields to S (N) (resp. to TM⊥) are called horizontal
(resp. vertical). Now, to continue our discussion, we need to clarify the concept of
rigging for our null hypersurface.

Definition 1. Let M be a null hypersurface of a Lorentzian manifold. A rigging
forM is a vector field L defined on some open set containingM such that Lp /∈ TpM
for each p ∈M .

An outstanding property of a rigging is that it allows definition of geometric
objects globally onM . We say that we have a null rigging in case the restriction of L
to the null hypersurface is a null vector field. From now on we fix a null rigging N
for M . In particular this rigging fixes a unique null vector field ξ ∈ Γ(TM⊥)
called the rigged vector field, all of them defined in an open set containing M
(hence globally on M) such that (1), (2) and (3) hold. Whence, from now on,
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by a normalized (or rigged) null hypersurface we mean a triplet (M, g,N) where
g = ḡ|M is the induced metric on M and N a null rigging for M . In fact, in
case the ambient manifold M̄ has Lorentzian signature, at an arbitrary point p
in M , a real null cone Cp is invariantly defined in the (ambient) tangent space
TpM̄ and is tangent to M along a generator emanating from p. This generator
is exactly the radical fibre ∆p = TpM

⊥ and for each null rigging N for M and
each p ∈ M we have Np ∈ Cp \ ∆p. Actually, a lightlike hypersurface M of a
Lorentzian manifold is a hypersurface which is tangent to the lightlike cone Cp
at each point p ∈ M . Recall that a space-time (M̄, ḡ) is a connected Lorentzian
manifold which is “time-oriented”, i.e. a causal cone at each TpM̄ , p ∈ M̄ (the
“future” causal cone) has been continuously chosen. Hence, null hypersurfaces in
space-times can be naturally given an orientation by such a continuous districution
of causal cones Cp.

Let N be a null rigging of a null hypersurface of a Lorentzian manifold (M̄, ḡ)
and θ = ḡ(N, ·) the 1-form metrically equivalent to N defined on M̄ . Then, take

η = i?θ

to be its restriction to M , the map i : M ↪→ M̄ being the inclusion map. The
normalization (M, g,N) will be said to be closed if the 1-form η is closed on M .
It is easy to check that S (N) = ker(η) and that the screen distribution S (N) is
integrable whenever η is closed. On a normalized null hypersurface (M, g,N), the
Gauss and Weingarten formulas are given by

∇̄XY = ∇XY +BN (X,Y )N,

∇̄XN = −ANX + τN (X)N,

∇XPY =
?
∇XPY + CN (X,PY )ξ,

∇Xξ = −
?
AξX − τN (X)ξ,

for any X,Y ∈ Γ(TM), where ∇̄ denotes the Levi-Civita connection on (M̄, ḡ),
∇ denotes the connection on M induced from ∇̄ through the projection along

the rigging N and
?
∇ denotes the connection on the screen distribution S (N)

induced from ∇ through the projection morphism P of Γ(TM) onto Γ
(
S (N)

)
with respect to the decomposition (1). Now the (0, 2) tensors BN and CN are

the second fundamental forms on TM and S (N) respectively, AN and
?
Aξ are the

shape operators on TM and S (N) respectively and τN a 1-form on TM defined
by

τN (X) = ḡ(∇̄XN, ξ).

For the second fundamental forms BN and CN the following holds

BN (X,Y ) = g(
?
AξX,Y ), CN (X,PY ) = g(ANX,Y ) ∀X,Y ∈ Γ(TM), (4)

and
BN (X, ξ) = 0,

?
Aξξ = 0. (5)
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It follows from (5) that integral curves of ξ are pregeodesics in both M̄ and M , as
∇̄ξξ = ∇ξξ = −τN (ξ)ξ. Throughout the paper, and without explicit mention, we
consider these integral curves to be geodesics which means that

τN (ξ) = 0.

A null hypersurface M is said to be totally umbilical (resp. totally geodesic)
if there exists a smooth function ρ on M such that at each p ∈ M and for all
u, v ∈ TpM , BN (p)(u, v) = ρ(p)g(u, v) (resp. BN vanishes identically on M). These
are intrinsic notions on any null hypersurface in the following way. Note that N
being a null rigging for M , a vector field Ñ ∈ Γ(TM̄) is a null rigging for M if and
only if it is defined in an open set containing M and there exist a function ψ on M̄
and a section ζ of TM such that Ñ◦i = (ψN)◦i+ζ with the properties that φ = ψ◦i
is nowhere vanishing, being i the inclusion map, and 2φη(ζ) + ‖ζ‖2 = 0 along M .

Then we have (see [7] for details on changes in normalizations) BÑ = 1
ψ◦iB

N which
shows that total umbilicity and total geodesibility are intrinsic properties for M .
The total umbilicity and the total geodesibility conditions for M can also be written

respectively as
?
Aξ = ρP and

?
Aξ = 0. Also, the screen distribution S (N) is totally

umbilical (resp. totally geodesic) if CN (X,PY ) = λg(X,Y ) for all X,Y ∈ Γ(TM)
(resp. CN = 0), which is equivalent to AN = λP (resp. AN = 0). It is noteworthy

to mention that the shape operators
?
Aξ and AN are S (N)-valued.

The induced connection ∇ is torsion-free, but not necessarily g-metric unless M
is totally geodesic. In fact we have for all tangent vector fields X,Y and Z in TM ,

(∇Xg)(Y,Z) = BN (X,Y )η(Z) +BN (X,Z)η(Y ). (6)

Denote by R̄ and R the Riemann curvature tensors of ∇̄ and ∇, respectively.
Then the following are the Gauss-Codazzi equations [12, p. 93].〈

R̄(X,Y )Z, ξ
〉

= (∇XBN )(Y,Z)− (∇YBN )(X,Z)

+ τN (X)BN (Y, Z)− τN (Y )BN (X,Z), (7)〈
R̄(X,Y )Z,PW

〉
=
〈
R(X,Y )Z,PW

〉
+BN (X,Z)CN (Y, PW )

−BN (Y,Z)CN (X,PW ),〈
R̄(X,Y )ξ,N

〉
=
〈
R(X,Y )ξ,N

〉
= CN (Y,

?
AξX)− CN (X,

?
AξY )

− 2dτN (X,Y ),〈
R̄(X,Y )PZ,N

〉
=
〈
(∇XAN )Y, PZ

〉
−
〈
(∇YAN )X,PZ

〉
+ τN (Y )

〈
ANX,PZ

〉
− τN (X)

〈
ANY, PZ

〉
(8)

for all X,Y, Z,W ∈ Γ(TM |U ). The (shape) operator
?
Aξ is self-adjoint as the

second fundamental form BN is symmetric. However, this is not the case for the
operator AN as shown in the following lemma.

Lemma 1. For all X,Y ∈ Γ(TM),〈
ANX,Y

〉
−
〈
ANY,X

〉
= τN (X)η(Y )− τN (Y )η(X)− 2dη(X,Y ),

where (throughout)
〈
·, ·
〉

= ḡ stands for the Lorentzian metric.
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Proof. Recall that η = i?θ where θ = 〈N, ·〉. Taking the differential of θ and using
the Weingarten formula, we have for all X,Y ∈ Γ(TM),

2dη(X,Y ) = 2dθ(X,Y ) =
〈
∇̄XN,Y

〉
−
〈
∇̄YN,X

〉
= −

〈
ANX,Y

〉
+ τN (X)η(Y ) +

〈
ANY,X

〉
− τN (Y )η(X).

Hence, 〈
ANX,Y

〉
−
〈
ANY,X

〉
= τN (X)η(Y )− τN (Y )η(X)− 2dη(X,Y )

as announced. �

In case the normalization is closed the (connection) 1-form τN is related to the
shape operator of M as follows.

Lemma 2. Let (M, g,N) be a closed normalization of a null hypersurface M in a
Lorentzian manifold such that τN (ξ) = 0. Then

τN = −
〈
ANξ, ·

〉
.

Proof. Assume η = i?θ closed and let X, Y be tangent vector fields to M . The con-
dition X ·η(Y )−Y ·η(X)−η([X,Y ]) = 0 is equivalent to

〈
∇̄XN,Y

〉
=
〈
∇̄YN,X

〉
.

Then by the Weingarten formula, we get〈
−ANX,Y

〉
+ τN (X)η(Y ) =

〈
−ANY,X

〉
+ τN (Y )η(X).

In this relation, take Y = ξ to get

τN (X) = −
〈
ANξ,X

〉
+ τN (ξ)η(X)

which gives the desired formula as τN (ξ) = 0. �

The following relations (see a detailed proof in [6]) account for effects of the
rigging change N −→ Ñ|M = φN + ζ on the induced geometric objects described

in Section 2. Throughout, items with the symbol ∼ apply to Ñ .

ξ̃ =
1

φ
ξ, BÑ (X,Y ) =

1

φ
BN (X,Y ), P̃ = P − 1

φ
g(ζ, ·)ξ

CÑ (X, P̃Y ) = φCN (X,PY )− g(∇Xζ, PY )

+

[
τN (X) +

X · φ
φ

+
1

φ
BN (ζ,X)

]
g(ζ, Y )

(9)

∇̃XY = ∇XY −
1

φ
BN (X,Y )ζ,

?
Aξ̃ =

1

φ

?
Aξ −

1

φ2
BN (ζ, ·)ξ (10)

AÑ = φAN −∇.ζ +

[
τN + d ln|φ|+ 1

φ
BN (ζ, ·)

]
ζ

for all tangent vector fields X and Y . Throughout the following ranges of indices
is used: i, j, l = 1, . . . , n, α, β = 0, 1, . . . , n, a, b = 0, 1, . . . , n+ 1.
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3 Newton transformations and Minkowski integral formulas with
respect to the rigged section

Due to the first relation in (4), it is noteworthy that among the two shape operators

carried out by the rigged null hypersurface M ,
?
Aξ is actually the one that encodes

at best its null geometry. We introduce in this section the Newton transformations
corresponding to it. The second one AN is instead more concerned with the screen
structure S (N) and will be considered subsequently.

3.1 Newton transformations of
?
Aξ

Let (M, g,N) be an (n+ 1)-dimensional normalized null hypersurface with rigged

vector field ξ. Relation (4) shows that
?
Aξ is a self-adjoint linear operator on each

fibre TpM (p ∈ M) and
?
Aξξ = 0. Then,

?
Aξ is diagonalizable and have (n + 1)

real-valued eigenfunctions
?
k0 = 0,

?
k1, . . . ,

?
kn called principal curvatures of the

null hypersurface with respect the shape operator
?
Aξ. With respect to a quasi-

orthonormal frame field {
?
E0 = ξ,

?
E1, . . . ,

?
En} of corresponding eigenvector fields

the matrix of
?
Aξ take the form

0 0 · · · 0

0
?
k1 · · · 0

...
...

. . .
...

0 0 · · ·
?
kn

 .

The function
?
H1 = 1

n+1 tr(
?
Aξ) is the mean curvature function of the null hyper-

surface and is a member of a familly of n + 1 similar invariants (
?
Hr)0≤r≤n called

r-th mean curvature given by

?
Hr =

(
n+ 1

r

)−1
σr(

?
k0, . . . ,

?
kn) and

?
H0 = 1 (constant function 1),

where for 1 ≤ r ≤ n, the algebraic invariant σr is the r-th elementary symmetric
polynomial given by

σr(
?
k0, . . . ,

?
kn) =

∑
0≤i1<···<ir≤n

?
ki1 · · ·

?
kir .

It follows that the characteristic polynomial of
?
Aξ is given by

P (t) = det(
?
Aξ − tI) =

n+1∑
a=0

(−1)a
(
n+ 1

a

)
?
Hrt

n+1−a.

Set
?
Sr = σr(

?
k0, . . . ,

?
kn) and

?
Sαr = σr(

?
k0, . . . ,

?
kα−1,

?
kα+1, . . . ,

?
kn).



64 Cyriaque Atindogbé and Hans Tetsing Fotsing

Definition 2. Let r be an integer such that 1 ≤ r ≤ n. The null hypersurface M
is r-umbilical (resp. r-maximal) if

?
Sir =

?
Sjr ∀i, j ∈ {1, . . . , n} (resp.

?
Hr = 0).

Remark 1. 1. As we show below (18) both r-maximality and r-total umbilicity
are independent of the rigging.

2. The r-total umbilicity (respectively, r-maximality) generalize the totally um-
bilical (respectively, maximal) obtained when r = 1. But, it is easy to check
that any totally umbilical hypersurface is r-totally umbilical for all r.

3. For a 4-dimensional null hypersurface (i.e. n = 3), total umbilicity and 2-total
umbilicity are equivalent.

Example 1.Consider the 6-dimensional space M̄ = R6 endowed with the Lorentzian
metric

ḡ = −(dx0)2 + (dx1)2 + exp 2x0[(dx2)2 + (dx3)2] + exp 2x1[(dx4)2 + (dx5)2],

(x0, . . . , x5) being the usual rectangular coordinates on M̄ . The only non-zero
Christoffel coefficients of the Levi-Civita connection of ḡ are

Γ2
02 = Γ3

03 = Γ4
14 = Γ5

15 = 1, Γ0
22 = Γ0

33 = − exp 2x0, Γ1
44 = Γ1

55 = exp 2x1.

Now, consider the hypersurface M of M̄ define by

M = {(x0, . . . , x5) ∈ R6 ; x0 + x1 = 0}.

Then, M is a null hypersurface of (M̄, ḡ) and the vector field N = − 1
2

(
∂
∂x0 + ∂

∂x1

)
is a null rigging for M with rigged vector field ξ = ∂

∂x0 − ∂
∂x1 and we have

S (N) = span{
?
E1,

?
E2,

?
E3,

?
E4} with

?
E1 = e−2x

0 ∂

∂x2
,

?
E2 = e−2x

0 ∂

∂x3
,

?
E3 = e−2x

1 ∂

∂x4
,

?
E4 = e−2x

1 ∂

∂x5
.

Then it is easy to check that

∇ ?
E1
ξ =

?
E1 ⇒

?
k1 = −1,

∇ ?
E2
ξ =

?
E2 ⇒

?
k2 = −1,

∇ ?
E3
ξ = −

?
E3 ⇒

?
k3 = 1,

∇ ?
E4
ξ = −

?
E4 ⇒

?
k4 = 1.

Hence, M is 2-totally umbilical but it is not totally umbilical.
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For each r = 0, . . . , n+1, the r-th Newton transformation
?
Tr : Γ(TM)→ Γ(TM)

of the endomorphism
?
Aξ, is given by

?
Tr =

r∑
a=0

(−1)a
?
Sa

?
Ar−aξ .

Inductively,
?
T0 = I and

?
Tr = (−1)r

?
SrI +

?
Aξ ◦

?
Tr−1,

where I denotes the identity map in Γ(TM). According to the Cayley-Hamilton

theorem, we have
?
Tn+1 = 0. By elementary algebraic computations, the following

is straightforward.

Proposition 1. (a)
?
Tr is self-adjoint and commute with

?
Aξ;

(b)
?
Tr

?
Eα = (−1)r

?
Sαr

?
Eα;

(c) tr(
?
Tr) = (−1)r(n+ 1− r)

?
Sr;

(d) tr
( ?
Aξ ◦

?
Tr−1

)
= (−1)r−1r

?
Sr;

(e) tr
( ?
A2
ξ ◦

?
Tr−1

)
= (−1)r

( ?
S1

?
Sr + (r + 1)

?
Sr+1

)
;

(f) tr(
?
Tr−1 ◦ ∇X

?
Aξ) = (−1)rX ·

?
Sr.

Proof. The first item is due to the fact that
?
Aξ is self-adjoint. We show (b) induc-

tively. In item (b) observe that the equality is trivial for r = 0. Assume that (b)

holds for r− 1 and observe that
?
Sαr =

?
Sr −

?
kα

?
Sαr−1. Then using the above and the

well-known iterative relation characterizing the
?
Tr, we get,

?
Tr

?
Eα = (−1)r

?
Sr

?
Eα +

?
Aξ ◦

?
Tr−1

?
Eα

= (−1)r
( ?
Sr −

?
kα

?
Sαr−1

) ?
Eα

= (−1)r
?
Sαr

?
Eα

which shows (b). Through the above proof of b we see that (−1)r
?
Sαr are eigenfunc-

tions associated to
?
Eα for each α and then we have

tr(
?
Tr) = (−1)r

n∑
α=0

?
Sαr

and each of the
(
n+1
r

)
degree r monomials of

?
Sr can be counted (n + 1)

(
n
r

)
times

in the above summation. Thus
n∑
α=0

?
Sαr =

(n+ 1)
(
n
r

)(
n+1
r

) ?
Sr = (n+ 1− r)

?
Sr
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and (c) is proved. By using the iterative formula of
?
Tr,

tr
( ?
Aξ ◦

?
Tr−1

)
= tr(

?
Tr) + (−1)r

?
Sr tr(I)

= (−1)r
(

(n+ 1− r)
?
Sr + (n+ 1)

?
Sr

)
= (−1)r−1r

?
Sr,

that is (d). Item (e) is immediate as

tr
( ?
A2
ξ ◦

?
Tr−1

)
= tr(

?
Aξ ◦

?
Tr) + (−1)r

?
Sr tr(

?
Aξ)

= (−1)r
( ?
S1

?
Sr + (r + 1)

?
Sr+1

)
.

Finally,

g(
?
Tr−1(∇X

?
Aξ)

?
Ei,

?
Ei) = g(

?
Tr−1∇X

?
ki

?
Ei,

?
Ei)− g(

?
Tr−1 ◦

?
Aξ∇X

?
Ei,

?
Ei)

= X(
?
ki)g(

?
Tr−1

?
Ei,

?
Ei)

= (−1)r−1X(
?
ki)

?
Sir−1

and η(
?
Tr−1(∇X

?
Aξ)ξ) = 0. Hence

tr(
?
Tr−1 ◦ ∇X

?
Aξ) = (−1)r−1

n∑
i=1

X(
?
ki)

?
Sir−1 = (−1)r−1X(

?
Sr),

which completes the proof. �

Now, we get the following.

Proposition 2. Let r be an integer such that 1 ≤ r ≤ n. A non-maximal point
p ∈M is r-umbilical if and only if

∀i ∈ {1, . . . , n},
?
Sir(p) = (r + 1)

?
Sr+1(p)
?
S1(p)

.

Proof. Just observe that
?
Sr+1 =

?
Sir+1 +

?
ki

?
Sir. �

Remark 2. For a large class of null hypersurfaces, namely closed null hypersurfaces,
the above proposition cannot be applied globally as they do admit (at least) one
maximal point [14, Remark 10, page 7].

From now on, only Lorentzian ambient manifolds will be in consideration. Re-
call that to a normalized null hypersurface (Mn+1, g,N) is associated a (nondegen-
erate) metric gη = g+η⊗η [9]. The ambient manifold being Lorentzian, the induced
metric g on M has signature (0, n). It follows that the hypersurface M equipped
with the associated metric gη is a Riemannian manifold. Let (e0 = ξ, e1, . . . , en)
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be a gη-orthonormal basis of Γ(TM) with S (N) = span{e1, . . . , en}. The diver-

gence of the operator
?
Tr : Γ(TM)→ Γ(TM) is the vector field div∇(

?
Tr) ∈ Γ(TM)

defined as the trace of the End(TM)-valued operator ∇
?
Tr and given by

div∇(
?
Tr) = tr(∇

?
Tr) =

n∑
α,β=0

gα,βη (∇
?
Tr)(eα, eβ) =

n∑
α=0

(∇eα
?
Tr)eα.

By using the definition of the covariant derivative of a tensor and using (6),

g((∇eα
?
Aξ)

?
Tr−1eα, X) = g(

?
Tr−1eα, (∇eα

?
Aξ)X)− η(X)BN (eα,

?
Aξ ◦

?
Tr−1eα).

Hence

n∑
α=0

g((∇eα
?
Aξ)

?
Tr−1eα, X) =

n∑
α=0

g(
?
Tr−1eα, (∇eα

?
Aξ)X)

− η(X) tr
( ?
A2
ξ ◦

?
Tr−1

)
.

(11)

Proposition 3. For all X ∈ Γ(TM),

g(div
?
Tr, X) =

r−1∑
a=0

n∑
i=1

ḡ
(
R̄(ei, ξ)

?
Taei,

?
Ar−1−aξ X

)
+

r−1∑
a=0

(
τN (

?
Ar−1−aξ X) tr(

?
Aξ ◦

?
Ta)− τN (P (

?
Aξ ◦

?
TaX))

)
+ (−1)rη(X)

(
n∑
i=1

?
Sir−1

?
k2i − ξ(

?
Sr)

) (12)

Proof. Using iterative formula,

div∇(
?
Tr) = (−1)r div(

?
SrI) + div(

?
Aξ ◦

?
Tr−1)

= (−1)r
n∑
α=0

(
(eα ·

?
Sr)eα + (∇eα

?
Aξ)

?
Tr−1eα

)
+

?
Aξ(div

?
Tr−1).

Hence by using (11) we get

g(div∇(
?
Tr), X) = g(div

?
Tr−1,

?
AξX) + (−1)rPX(

?
Sr)− η(X) tr

( ?
A2
ξ ◦

?
Tr−1

)
+

n∑
α=0

g
( ?
Tr−1eα, (∇eα

?
Aξ)X

)
. (13)

By using the Gauss-Codazzi equation (8) with the substitutions

X ←− eα, Y ←− X, Z ←−
?
Tr−1eα,
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we get

g
( ?
Tr−1eα, (∇eα

?
Aξ)X

)
= ḡ
(
R̄(eα, X)

?
Tr−1eα, ξ

)
+ g
( ?
Tr−1eα, (∇X

?
Aξ)eα

)
+BN (eα,

?
Tr−1eα)τN (X)

−BN (X,
?
Tr−1eα)τN (eα).

(14)

Observe that
n∑
α=0

g
( ?
Tr−1eα, (∇X

?
Aξ)eα

)
= tr(

?
Tr−1 ◦ ∇X

?
Aξ), (15)

and using this along with (13), (14), (15) and Proposition 1, we obtain

g(div∇(
?
Tr), X) = g(div

?
Tr−1,

?
AξX) + (−1)r−1η(X)ξ(

?
Sr)

+

n∑
α=0

(
ḡ(R̄(eα, X)

?
Tr−1eα, ξ)−BN (X,

?
Tr−1eα)τN (eα)

)
+ τN (X) tr

( ?
Aξ ◦

?
Tr−1

)
− η(X) tr

( ?
A2
ξ ◦

?
Tr−1

)
= g(div

?
Tr−1,

?
AξX) + (−1)r−1η(X)ξ(

?
Sr)

+

n∑
α=0

ḡ(R̄(eα, X)
?
Tr−1eα, ξ)

− τN
(
P (

?
Aξ ◦

?
Tr−1X)

)
+ τN (X) tr

( ?
Aξ ◦

?
Tr−1

)
− η(X) tr

( ?
A2
ξ ◦

?
Tr−1

)
.

By using the above iterative formula and Proposition 1, we deduce (12). �

Remark 3. Taking r = 1 in (12) and X = ξ, we get

Ric(ξ) = ξ(
?
S1) + τN (ξ)

?
S1 −

n∑
i=1

?
k2i . (16)

In case the ambient manifold M̄ is a space form and τN = 0, the vector field div
?
Tr

is TM⊥-valued, that is g(div∇(
?
Tr), X) = 0 for all X ∈ TM , and

ξ(
?
Sr) = (−1)r−1 tr

( ?
A2
ξ ◦

?
Tr−1

)
.

Also (setting X = ξ) the following partial differential equation holds for each
r = 1, . . . , n+ 1

(−1)r−1ξ(
?
Sr) + τN (ξ) tr(

?
Aξ ◦

?
Tr−1)− tr(

?
A2
ξ ◦

?
Tr−1) = 0; (17)

or equivalently

ξ(
?
Sr) + r

?
Srτ

N (ξ)−
n∑
i=1

?
k2i

?
Sαr−1 = 0.
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From the above equation, we recover the well-known fact that for totally umbilical
null hypersurfaces with principal curvature (umbilicity factor) ρ in a space form,
the following partial differential equation holds [12, p. 108]:

ξ(ρ) + ρτN (ξ)− ρ2 = 0.

We also derive the following.

Theorem 1. Let (Mn+1, g,N) be a normalized null hypersurface of a Lorentzian
space form (M̄(c)n+2, ḡ) with rigged vector field ξ and τN = 0. Then

(a) For each r ∈ {1, . . . , n}, M is r-maximal if and only if the endomorphism
?
A2
ξ ◦

?
Tr−1 is trace-free.

(b) M is maximal if and only if M is totally geodesic.

(c) If M is r-maximal for some r = 1, . . . , n, then M is s-maximal for all s ≥ r.

Proof. From (17),

(−1)r−1ξ(
?
Sr)− tr(

?
A2
ξ ◦

?
Tr−1) = 0,

as τN = 0. Then the first item is immediate. Now, take r = 1 in the same equation

(17) to get (b). Finally, if M is r-maximal then by the first item, tr
( ?
A2
ξ ◦

?
Tr−1

)
= 0.

Hence, Proposition 1 leads to

?
S1

?
Sr + (r + 1)

?
Sr+1 = 0,

which shows that
?
Sr = 0 implies

?
Sr+1 = 0 and the proof is complete. �

Recall that a pseudo-Riemannian manifold satisfies the null (resp. the reverse
null) convergence condition if Ric(V ) ≥ 0 (resp. Ric(V ) ≤ 0) for any null vector
field V .

Theorem 2. Let (M̄, ḡ) be a Lorentzian manifold. If for M̄ the null convergence
condition holds, then for any null hypersurface M of M̄ , M is maximal if and only
if M is totally geodesic.

Proof. Assume M is maximal. From (16) we have

Ric(ξ) = −
n∑
i=1

?
k2i ≥ 0 as

?
S1 = 0 .

Hence each
?
ki vanishes and M is totally geodesic. The converse is immediate. �
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3.2 Newton transformations and change of rigging
As stated above, N being a null rigging for M , a vector field Ñ ∈ Γ(TM̄) is a null
rigging for M if and only if it is defined in an open set containing M and there
exist a smooth function φ on M and a section ζ of TM such that Ñ ◦ i = φN + ζ
with the properties that φ is nowhere vanishing, being i the inclusion map, and
2φη(ζ) + ‖ζ‖2 = 0 along M (see [7] for details on changes in normalizations). For
each i, set

?

Ẽi = P̃
?
Ei =

?
Ei −

1

φ
g(ζ,

?
Ei)ξ and

?

Ẽ0 = ξ̃ :=
1

φ
ξ.

Lemma 3. (
?

Ẽ0, . . . ,
?

Ẽn) is a quasi-orthonormal basis of Γ(TM) which diagonalizes
?
Aξ̃ with eigenfunctions

?

k̃α = 1
φ

?
kα.

Proof. g(
?

Ẽ0,
?

Ẽα) = 1
φg(ξ,

?

Ẽα) = 0 and g(
?

Ẽi,
?

Ẽj) = g(
?
Ei,

?
Ej) = δij ,

?
Aξ̃ ξ̃ = 0 and

?
Aξ̃

?

Ẽi =
?
Aξ

?

Ẽi −
1

φ2
BN (ζ,

?

Ẽi)ξ

=
?
Aξ

?
Ei −

1

φ2
g(ζ,

?
Aξ

?
Ei)ξ

=
1

φ

?
ki

(
?
Ei −

1

φ
g(ζ,

?
Ei)ξ

)
=

1

φ

?
ki

?

Ẽi. �

Hence, through the change Ñ = φN + ζ,

?

k̃α =
1

φ

?
kα,

?

H̃r =
1

φr
?
Hr,

?

S̃r =
1

φr
?
Sr,

?

S̃ir =
1

φr
?
Sir (18)

and we have the next lemma.

Lemma 4. Let (Mn+1, g,N) be a normalized null hypersurface of a Lorentzian
manifold (M̄n+2, ḡ). Consider the change of normalization Ñ = φN + ζ. Then

?

T̃r =
1

φr
?
Tr −

1

φr+1

r−1∑
a=0

(−1)a
?
Sag

(
ζ,

?
Ar−aξ

)
ξ.

Proof. By use of second relation in (10) we have

?

T̃r =

r∑
a=0

(−1)a
?

S̃a
?
Ar−a
ξ̃

= (−1)r
?

S̃rI +

r−1∑
a=0

(−1)a
?

S̃a

(
1

φ
Aξ −

1

φ2
BN (ζ, ·)ξ

)r−a
.
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As r − a ≥ 1 and
?
Aξξ = 0,(

1

φ
Aξ −

1

φ2
BN (ζ, ·)ξ

)r−a
=

1

φr−a
Ar−aξ − 1

φr+1−aB
N (ζ,

?
Ar−a−1ξ )ξ.

This completes the proof. �

For each i, in view of (9) we get

∇̃ ?

Ẽi

?

Ẽi = ∇ ?

Ẽi

?

Ẽi −
1

φ
BN (

?

Ẽi,
?

Ẽi)ζ

= ∇ ?
Ei

?
Ei −

?
Ei

(
1

φ
g(ζ,

?
Ei)

)
ξ − 1

φ
g(ζ,

?
Ei)∇ ?

Ei
ξ − 1

φ
g(ζ,

?
Ei)∇ξ

?
Ei

+
1

φ
g(ζ,

?
Ei)∇ξ

1

φ
g(ζ,

?
Ei)ξ −

1

φ
BN (

?
Ei,

?
Ei)ζ

= ∇ ?
Ei

?
Ei −

?
ki
φ
g(ζ,

?
Ei)

?
Ei −

1

φ
g(ζ,

?
Ei)P∇ξ

?
Ei −

?
ki
φ
Pζ

+

[
1

φ
g(ζ,

?
Ei)τ

N (
?
Ei)−

?
Ei

(
1

φ
g(ζ,

?
Ei)

)
+

1

2
ξ

(
1

φ2
g(ζ,

?
Ei)

2

)
− 1

φ
g(ζ,

?
Ei)η(∇ξ

?
Ei)

]
ξ

Hence

∇̃ ?

Ẽi

?

Ẽi =
1

φ

( ?
kig(ζ,

?
Ei)

?
Ei − g(ζ,

?
Ei)

n∑
j=1

g(∇ξ
?
Ei,

?
Ej)

?
Ej −

?
ki

n∑
j=1

g(ζ,
?
Ej)

?
Ej

)
+∇ ?

Ei

?
Ei + η

(
∇̃ ?

Ẽi

?

Ẽi −∇ ?
Ei

?
Ei
)
ξ, (19)

and

η(∇̃ ?

Ẽi

?

Ẽi −∇ ?
Ei

?
Ei) =

1

φ
g(ζ,

?
Ei)τ

N (
?
Ei)−

?
Ei

(
1

φ
g(ζ,

?
Ei)

)
− 1

φ
g(ζ,

?
Ei)η(∇ξ

?
Ei) +

1

2
ξ

(
1

φ2
g(ζ,

?
Ei)

2

)
.

Lemma 5. Let (Mn+1, g,N) be a normalized null hypersurface of a Lorentzian

manifold (M̄n+2, ḡ) such that for a fixed r, ξ ·
?
Sir = 0 for i = 1, . . . , n. Consider the

change of normalization Ñ = φN + ζ, ζ|M ∈ Γ(TM), φ ∈ R. Then

div∇̃(
?

T̃r) =
1

φr
div∇(

?
Tr) + η(div∇̃(

?

T̃r)−
1

φr
div∇(

?
Tr))ξ

+
(−1)r

φr+1

n∑
j=1

n∑
i=1

(
?
Sjr −

?
Sir)

(
g(∇ξ

?
Ei,

?
Ej)g(ζ,

?
Ei) +

?
kig(ζ,

?
Ej)
) ?
Ej .

(20)
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In particular for r = 0, . . . , n, div∇̃
( ?
T̃r
)
− 1

φr div∇(
?
Tr) is TM⊥-valued if and only

if for each j = 1, . . . , n,

n∑
i=1

(
?
Sjr −

?
Sir)

(
g(∇ξ

?
Ei,

?
Ej)g(ζ,

?
Ei) +

?
kig(ζ,

?
Ej)
)

= 0. (21)

Proof. Observe that (∇̃ξ̃
?

T̃r)ξ̃ = (−1)r ξ̃(S̃r)ξ̃. Then

div∇̃(
?

T̃r) =

n∑
i=1

(∇̃ ?

Ẽi

?

T̃r)
?

Ẽi

=

n∑
i=1

(∇̃ ?

Ẽi

?

T̃r

?

Ẽi −
?

T̃r∇̃ ?

Ẽi

?

Ẽi) + (−1)r ξ̃(S̃r)ξ̃.

By the second item in Proposition 1,

∇̃ ?

Ẽi

?

T̃r

?

Ẽi = (−1)r
?

S̃ir∇̃ ?

Ẽi

?

Ẽi + (−1)r
(
∇̃ ?

Ẽi

?

S̃ir
) ?
Ẽi.

Then thanks to (19) and by direct calculation, we get

∇̃ ?

Ẽi

?

T̃r

?

Ẽi =
(−1)r

φr+1

?
Sir

( ?
kig(ζ,

?
Ei)

?
Ei −

n∑
j=1

(
g(ζ,

?
Ei)g(∇ξ

?
Ei,

?
Ej) +

?
kig(ζ,

?
Ej)
) ?
Ej

)
+

1

φr
∇ ?
Ei

?
Tr

?
Ei + η(∇̃ ?

Ẽi

?

T̃r

?

Ẽi −
1

φr
∇ ?
Ei

?
Tr

?
Ei)ξ

+ (−1)r
( ?
Sir

?
Ei(1/φ

r)− 1

φ
g(ζ,

?
Ei)ξ(

?
Sir/φ

r)
) ?
Ei

in which the last term vanishes due to ξ ·
?
Sir = 0 and φ ∈ R. Now (19) and Lemma 4

yield

?

T̃r∇̃ ?

Ẽi

?

Ẽi =
1

φr
?
Tr∇̃ ?

Ẽi

?

Ẽi −
1

φr+1

r−1∑
a=0

(−1)a
?
Sag(

?
Ar−aξ , ∇̃ ?

Ẽi

?

Ẽi)ξ

=
(−1)r

φr+1

?
ki

?
Sirg(ζ,

?
Ei)

?
Ei

+
(−1)r+1

φr+1

n∑
j=1

?
Sjr
(
g(ζ,

?
Ei)g(∇ξ

?
Ei,

?
Ej) +

?
kig(ζ,

?
Ej)
) ?
Ej

+
1

φr
?
Tr∇ ?

Ei

?
Ei + η

( ?
T̃r∇̃ ?

Ẽi

?

Ẽi −
1

φr
?
Tr∇ ?

Ei

?
Ei
)
ξ.

The desired expression follows from direct substitution. The last claim is immediate
by cancelling the screen term represented by the last summation in (20). �
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Theorem 3. Let (Mn+1, g,N) be a normalized null hypersurface of a Lorentzian

manifold (M̄n+2, ḡ), and r ∈ {1, . . . , n} such that ξ ·
?
Sir = 0 for i = 1, . . . , n. Then

div∇̃
( ?
T̃r
)
− 1
φr div∇(

?
Tr) is TM⊥-valued for any change of normalization Ñ = φN+ζ

with φ ∈ R, if and only if any point of M is r-umbilical or both maximal and
(r + 1)-maximal.

Proof. Let r ∈ {1, . . . , n} and div∇̃
( ?
T̃r
)
− 1

φr div∇(
?
Tr) ∈ Γ(RadTM) for any

change of normalization Ñ = φN + ζ. Then by (21),

n∑
i=1

(
?
Sjr −

?
Sir)

(
g(∇ξ

?
Ei,

?
Ej)g(ζ,

?
Ei) +

?
kig(ζ,

?
Ej)
)

= 0, ∀j = 1, . . . , n.

Consider the particular changes Ñ = N +
?
El for l = 1, . . . , n. Then for each l,

(
?

Sjr −
?
Slr)g(∇ξ

?
El,

?
Ej) +

n∑
i=1

(
?
Sjr −

?
Sir)

?
kiδlj = 0, ∀j = 1, . . . , n,

and setting j = l yields
?
S1

?
Slr − (r + 1)

?
Sr+1 = 0.

By Proposition 2 we deduce that any non-maximal point of M is r-umbilical.
The converse is straightforward. �

3.3 Minkowski integral formulas

Using Newton transformations with respect to the shape operator
?
Aξ we intro-

duce some Minkowski-type integral formulas on null hypersurfaces of Lorentzian
manifolds carrying some conformal Killing vector field.

Recall that when a manifold M is provided with a linear connection D and X
is a section of the tangent bundle of M , the map DX : Γ(TM)→ Γ(TM) given by
TpM 3 Yp 7→ DYpXp is an endomorphism at each point p ∈ M . The divergence
of X (with respect to D) is defined as the trace of DX, that is

divD(X) = tr(DX).

In particular on semi-Riemannian manifolds the default (natural) connection used
in calculating the divergence is the Levi-Civita connection.

Let (Mn+1, g,N) be a normalized null hypersurface of a Lorentzian manifold
(M̄n+2, ḡ) with rigged vector field ξ and τN = 0. Let∇ denote the linear connection
induced by the rigging N and assume K ∈ Γ(TM) is a conformal Killing vector
field with smooth conformal factor 2Φ. For each r ∈ {0, . . . , n+ 1} we have

div∇(
?
TrK) = tr(∇

?
TrK) =

n∑
i=1

g(∇ ?
Ei

?
TrK,

?
Ei) + ḡ(∇ξ

?
TrK,N).
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But

g(∇ ?
Ei

?
TrK,

?
Ei) =

?
Ei · g(

?
TrK,

?
Ei)− g(K,

?
Tr∇ ?

Ei

?
Ei)− η(

?
TrK)BN (

?
Ei,

?
Ei)

=
?
Ei · g(K,

?
Tr

?
Ei) + g(K, (∇ ?

Ei

?
Tr)

?
Ei)− g(K,∇ ?

Ei

?
Tr

?
Ei)

− η(
?
TrK)BN (

?
Ei,

?
Ei)

= g(K, (∇ ?
Ei

?
Tr)

?
Ei) + (−1)r

?
Sirg(∇ ?

Ei
K,

?
Ei)

+ η(K)BN (
?
Ei,

?
Tr

?
Ei)− η(

?
TrK)BN (

?
Ei,

?
Ei).

As LKg = 2ϕg we have g(∇ ?
Ei
K,

?
Ei) = ϕg(

?
Ei,

?
Ei). Hence

div∇(
?
TrK) = g(div∇(

?
Tr),K) + ϕ

(
(−1)r−1

?
Sr + tr(

?
Tr)
)

+ η(K) tr
( ?
Aξ ◦

?
Tr − (−1)r

?
Sr

?
Aξ

)
+ η(∇ξ

?
TrK)

= g(div∇(
?
Tr),K) + (−1)r(n− r)

?
Srϕ

+ η(K) tr
( ?
A2
ξ ◦

?
Tr−1

)
+ η(∇ξ

?
TrK).

Now using Proposition 1 leads to

div∇(
?
TrK) = g(div∇(

?
Tr),K) + η(∇ξ

?
TrK)

+ (−1)r
(
cr

?
Hrϕ+ c′r

?
Hr+1η(K)− c′′r

?
H1

?
Hrη(K)

)
.

(22)

where

cr = (n− r)
(
n+ 1

r

)
, c′r = (n+ 1)

(
n

r

)
, c′′r = (n+ 1)

(
n+ 1

r

)
.

Also, a straightforward computation gives

η(∇ξ
?
TrK) = (−1)rξ(

?
Srη(K)) + (−1)r

?
Srτ

N (ξ)η(K)− ḡ(
?
TrK,ANξ).

We deduce the following.

Theorem 4. Let (Mn+1, g,N) be a normalized null hypersurface of a space-time
(M̄n+2, ḡ) with rigged vector field ξ and τN = 0, carrying a compactly supported
conformal Killing vector field K with smooth conformal factor 2Φ. Then, for each
r = 1, . . . , n+ 1, the following holds∫

M

(
g(div

?
Tr−1,K) + η(∇ξ

?
Tr−1K)

)
dV

= (−1)r
∫
M

(
cr−1

?
Hr−1ϕ+ η(K)(c′r−1

?
Hr − c′′r−1

?
H1

?
Hr−1)

)
dV, (23)

where dV = iNdV̄ and dV̄ is the (fixed) volume element on M̄ with respect to ḡ
and the given orientation.
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In particular for horizontal conformal Killing vector fields K on M we have∫
M

(
g(div

?
Tr−1,K)

)
dV = (−1)r

∫
M

(
cr−1

?
Hr−1ϕ

)
dV. (24)

Proof. Since K is compactly supported, by Stoke’s Theorem,∫
M

div∇(
?
TrK) dV = 0

and (23) is straightforward from (22). Now, assume K to be tangent to the screen
structure S (N). Then η(K) = 0. Also, as τN = 0 we have from Lemma 2 and (4)

that CN (ξ,
?
Tr−1K) = 0. Therefore

∇ξ(
?
Tr−1K) =

?
∇ξ(

?
Tr−1K) + CN (ξ,

?
Tr−1K)ξ =

?
∇ξ

?
Tr−1K ∈ S (N).

Hence η
(
∇ξ

?
Tr−1K

)
= 0 and the relation (24) follows (23). �

Remark 4. In Theorem 4 and below, the condition compactly supported may be
removed and replaced by compact null hypersurface without boundary.

Corollary 1. Let (Mn+1, g,N) be a normalized null hypersurface of a space-time
(M̄n+2, ḡ) with rigged vector field ξ and τN = 0, carrying a compactly supported
conformal Killing vector field K with smooth conformal factor 2Φ. Suppose that
for some r = 1, . . . , n+ 1 the following condition holds∫

M

g(div
?
Tr−1,K) dV = 0.

Then∫
M

(
cr−1

?
Hr−1Φ + c′r−1ḡ(K,N)

?
Hr − c′′r−1ḡ(K,N)

?
H1

?
Hr−1

)
dV

= (−1)r
∫
M

η(∇ξ
?
Tr−1K) dV. (25)

In particular, (25) always holds when the ambient space-time (M̄n+2, ḡ) has
constant sectional curvature and for the conformal factor 2Φ we have∫

M

Φ dV = − 1

n

∫
M

η(∇ξK) dV. (26)

Moreover, if the conformal Killing vector field K is horizontal then
∫
M

Φ dV = 0.

Formula (25) is the r-th Minkowski-type formula of the null hypersurface M , with

respect to the shape operator
?
Aξ.
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Proof. Setting
∫
M
g(div

?
Tr−1,K) dV to 0 in (23) leads to (25). From Remark 3 we

know that when the ambient manifold has constant sectional curvature, div∇(
?
Tr−1)

is TM⊥-valued and the vanishing condition is fulfilled. Finally, set r = 1 in (25)

to get (26), using the fact that c0 = n, c′0 = c′′0 and
?
H0 = 1. If in addition the

conformal Killing vector field is tangent to the screen structure then by the screen
Gauss formula and and τN = 0 we have CN (ξ, ·) = 0 and then ∇ξK ∈ S (N), that
is η(∇ξK) = 0 and the last claim follows. �

Corollary 2. Let (Mn+1, g,N) be a normalized null hypersurface of a space-time
(M̄n+2, ḡ) with rigged vector field ξ and τN = 0, carrying a compactly supported
conformal Killing vector field K with smooth conformal factor 2Φ. If M is r-totally

umbilical for some r = 1, . . . , (n + 1) and satisfies both ξ ·
?
Sir = 0 for i = 1, . . . , n

and the r-th Minkowski-type formula (25), then the same is true for all rigging of
the form Ñ = ψN + ζ with constant ψ.

Proof. Consider from N a rigging Ñ = ψN+ζ. We pointed out in Theorem 3 that

div∇̃
?

T̃r−1 −
1

ψr−1
div∇

?
Tr−1 ∈ Γ(RadTM).

Thus, g(div∇̃
?

T̃r−1,K) = 1
ψr−1 g(div∇

?
Tr−1,K). It follows that for constant ψ we

have ∫
M

g(div∇̃
?

T̃r−1,K) =
1

ψr−1

∫
M

g(div∇
?
Tr−1,K),

which shows that integrals from both sides vanish or not, simultaneously. �

4 Physical models
As usual, stationary and axisymmetric perfect fluid metrics are studied under the
assumption of the existence of a conformal Killing vector field. Let (M̄4, ḡ) be the
Einstein static fluid space-time with metric

ds2 = −dt2 + (1− %2)−1d%2 + %2
(
dθ2 + sin2 θ dφ2

)
,

with the fluid four-velocity vector ua = δa0 (a = 0, 1, 2, 3). This space-time admits
a conformal Killing vector field

Ka = (1− %2)1/2 cos t δa0 − %(1− %2)1/2 sin t δa1 .

In fact in this space-time, the relation

% = cos t, t ∈
]
0,
π

2

[
defines a compact null hypersurface M for which the kernel of the degenerate
induced metric g is spanned by the null conformal Killing vector field K. In other
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words, (M, g) is a compact totally umbilical null hypersurface. Indeed, consider
the vector field

Na = − 1

2%2
(1− %2)−1/2

[
cos t δa0 + % sin t δa1

]
.

This is a null rigging with associated screen structure S (N) = span(∂θ, ∂φ). It

is easy to check that τN = 0 and
?
AK =

[
(1 − %2)1/2 sin t

]
P where P denotes the

projection morphism of TM onto S (N). The Newton transformations are given
by

?
T0 = I,

?
Tr = (1− %2)r/2 sinr t

[ r∑
a=0

(−1)a
(

3

a

)]
P, r = 1, 2, 3.

The scale factor is given by Φ = −(1− %2)1/2 sin t. Also, for all r ≥ 1,∫
M

g(div
?
Tr−1,K) dV = 0

and ḡ(K,N) = 1 and by direct calculation, we get
∫
M

Φ dV = −2π which is non-
zero. Observe that the conformal Killing vector field K is not compactly supported
in M .

In general, when interested by perfect-fluid solutions of Einstein’s field equa-
tions, it is well-known that there exist coordinates {t, x, y, z} such that U = ∂y and
T = ∂z are two Killing vector fields and in which the metric takes the form

ds2 =
1

S2(t, x)

[
−dt2 + dx2 + F (t, x)

(
P−1(t, x) dy2 + P (t, x)(dz +W (t, x) dy)2

)]
.

Let us consider the 1-forms {θa} such that

θ0 =
1

S(t, x)
dt θ1 =

1

S(t, x)
dx

θ2 =
1

S(t, x)

√
F (t, x)

P (t, x)
dy θ3 =

1

S(t, x)

√
F (t, x)P (t, x)(dz +W (t, x) dy),

and let Sαβ stand for the components of the Einstein tensor in the {θa} cobasis.
Then the Einstein field equations can be written in terms of the Sαβ and due
to the symmetries inherent to this setting we are led to three inequivalent Lie
algebras [16]. The Lie algebra A is given by

[U, T ] = 0, [U,K] =
1

2
(c+ b)U, [T,K] =

1

2
(c− b)T,

where b and c are arbitrary (possibly vanishing) constants and K is a conformal
Killing vector field given by

K = ∂t +
1

2
(c+ b)yU +

1

2
(c− b)zT.
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The line element in this case has the form

ds2 =
1

S2(t, x)

[
−dt2 + dx2 + F (x)P−1(x)e−(b+c)t dy2

+ F (x)P (x)e(b−c)t
(
dz +W (x)e−bt dy

)2]
.

Similarly, for the Lie Algebra B we have

[U, T ] = 0, [U ;K] =
1

2
cU + aT, [T,K] =

1

2
cT,

where a is a non-vanishing constant and K is a conformal Killing vector field given
by

K = ∂t +
1

2
cyU +

(
ay +

1

2
cz
)
T.

The corresponding line element has the form

ds2 =
1

S2(t, x)

[
−dt2 + dx2

+ F (x)e−ct
(
P−1(x) dy2 + P (x)(dz + [W (x) + at] dy)2

)]
.

Finally for the Lie algebra VII (so named because it corresponds to the Bianchi
type VII in Bianchi’s classification of three-dimensional Lie algebra) the product
is defined by

[U, T ] = 0, [U ;K] =
1

2
cU − aT, [T,K] = aU +

1

2
cT,

where a 6= 0 and c are constant and K is a conformal Killing vector field given by

K = ∂t +

(
1

2
cy + az

)
U +

(
−ay +

1

2
cz

)
T.

For each conformal Killing vector field K in above three (non equivalent) Lie alge-
bras, the scale factor Φ is given by

Φ = −S,t
S
.

Now, for each Lie algebra, consider the two distributions

DU,K = span{U,K}, DT,K = span{T,K}

involving the conformal Killing vector field K. For the Lie algebra A the two dis-
tributions DU,K and DT,K are both integrable. For the Lie algebra B, only DT,K

is integrable and for the Lie algebra VII, none of them is integrable. Let M be any
compact null hypersurface without boundary in the perfect-fluid space-time. As-
sume N is a rigging for M with screen structure S (N) = DU,K or DT,K according
to the Lie algebra A or S (N) = DT,K when dealing with the Lie algebra B. Then
K is a horizontal conformal Killing vector field in the rigged null hypersurface M .
If the ds2 have constant sectional curvature and τN is vanishing, we get thanks to
Corollary 1 that ∫

M

S,t
S

dV = 0.
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5 Newton transformation of the null hypersurface with respect
to the shape operator AN

Throughout this section the normalization is assumed to be closed. In this case
Lemma 1 asserts that〈

ANX,Y
〉
−
〈
ANY,X

〉
= τN (X)η(Y )− τN (Y )η(X) (27)

for all X,Y ∈ Γ(TM). It follows that the operator AN is symmetric when re-
stricted to the screen structure S (N). The ambient manifold will also consid-
ered to be Lorentzian which implies that the screen structure is Riemannian. Let
(E0 = ξ, E1, . . . , En) be a quasi-orthonormal frame field of TM with S (N) =
span{E1, . . . , En}. Then the matrix of AN has the form

0 0 · · · 0
? k1 · · · 0
...

...
. . .

...
? 0 · · · kn

 (28)

where k0, k1, . . . , kn are the principal curvatures of the null hypersurface M with
respect to the shape operator AN . The scalar function H1 = 1

n+1 tr(AN ) is the
mean curvature of the null hypersurface with respect to AN . For 0 ≤ r ≤ n+1, the
r-th mean curvature of the null hypersurface with respect to the shape operator AN
is defined by

Hr =

(
n+ 1

r

)−1
σr(k0, . . . , kn) and H0 = 1,

and Sr =
(
n+1
r

)
Hr.

The characteristic polynomial of AN is given by

P (t) = det(AN − tI) =

n+1∑
a=0

(−1)a
(
n+ 1

a

)
Hat

n+1−a.

In a similar way as for the operator
?
Aξ the Newton transformations Tr (0 ≤ r ≤

n+ 1) of the null hypersurface M with respect to AN are given by

Tr =

r∑
a=0

(−1)a
(
n+ 1

a

)
HaA

r−a
N .

Inductively,

T0 = I and Tr = (−1)r
(
n+ 1

r

)
HrI +AN ◦ Tr−1,

and the following items are straightforward.

Proposition 4. (a) The transformations Tr (0 ≤ r ≤ n + 1) are self-adjoint
on S (N) and commute with AN .
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(b) TrEi = (−1)rSirEi.

(c) tr(Tr) = (−1)r(n+ 1− r)Sr.

(d) tr(AN ◦ Tr−1) = (−1)r−1rSr.

(e) tr(A2
N ◦ Tr−1) = (−1)r(S1Sr + (r + 1)Sr+1).

We prove the following.

Proposition 5. For all X ∈ Γ(TM),

g(div∇(Tr), X) = g
(
div∇(Tr−1), ANX

)
− (−1)r

(
g(X,N)ξ(Sr)− S0

r−1X(k0)
)

+ g((∇ξAN )Tr−1ξ,X)

+

n∑
i=1

{
ḡ(R̄(Ei, X)Tr−1Ei, N) + η(X)BN (Ei, AN ◦ Tr−1Ei)

+ g(ANX,Ei)τ
N (Ei)− kiτN (ξ)

+ Ei
(
τN (Tr−1Ei)η(X)− τN (X)η(Tr−1Ei)

)
− τN (Tr−1Ei)η(∇EiX) + τN (∇EiX)η(Tr−1Ei)

− τN (∇EiTr−1Ei)η(X) + τN (X)η(∇EiTr−1Ei)
}
. (29)

Proof. Using iterative formula,

div∇(Tr) = (−1)r div∇(SrI) + div∇(AN ◦ Tr−1)

=

n∑
α=0

(
(−1)r(eα · Sr)eα + (∇eαAN )Tr−1eα

)
+AN (div∇(Tr−1)).

Hence, using (27),

g(div∇(Tr), X) = (−1)rPX(Sr) + g
(
div∇(Tr−1), ANX

)
− τN (X)η(div∇(Tr−1))

+ τN (div∇(Tr−1))η(X) +

n∑
α=0

g
(
(∇eαAN )Tr−1eα, X

)
. (30)

Also

g
(
(∇EiAN )Tr−1Ei, X

)
= g
(
Tr−1Ei, (∇EiAN )X

)
+ (−1)rη(X)kiS

i
r−1B

N (Ei, Ei)

+ τN (∇EiX)η(Tr−1Ei)− τN (Tr−1Ei)η(∇EiX)

+ τN (X)η(∇EiTr−1Ei)− τN (∇EiTr−1Ei)η(X)

+ Ei
(
τN (Tr−1Ei)η(X)− τN (X)η(Tr−1Ei)

)
. (31)

Apply the Gauss-Codazzi equation (7) with the substitutions

X → Ei, Y → X, Z → Tr−1Ei,
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to get

g
(
Tr−1Ei, (∇EiAN )X

)
= ḡ
(
R̄(Ei, X)Tr−1Ei, N

)
− kiτN (X)

+ g
(
(∇XAN )Ei, Tr−1Ei

)
+ g(ANX,Ei).

(32)

Also, we have

n∑
i=1

g
(
Tr−1Ei, (∇XAN )Ei

)
= (−1)r−1

n∑
i=1

Sir−1X(ki)

= (−1)r−1
(
X(Sr − S0

r−1X(k0)
)
.

(33)

Now, feeding back (33) into (32) and then the resulting expression into (31) we
obtain by substitution in (30) the desired expression (29). �

For the rest of the section we assume τN = 0 which is equivalent to saying that
the starred entries in the matrix of AN (see (28)) are zero, that is ANξ = 0. Then

g(div∇(Tr), X) =

r−1∑
a=0

n∑
i=1

ḡ
(
R̄(Ei, N)TaEi, A

r−1−a
N X

)
− η(X)

(
tr(

?
Aξ ◦AN ◦ Tr−1) + (n+ 1− r)−1ξ

(
tr(Tr)

))
.

In particular when the ambient manifold is Lorentzian with constant sectional
curvature c we have

g(div∇(Tr), X) = η(X)
(
c tr(Tr−1)+(−1)rcSr−1−tr(

?
Aξ ◦AN ◦Tr−1)−(−1)rξ(Sr)

)
.

(34)
Now we state the following

Theorem 5. Let (Mn+1, g,N) be a closed normalization of a null hypersurface of
a Lorentzian space form (M̄(c)n+2, ḡ) with rigged vector field ξ and τN = 0. Then,
for all r = 0, . . . , n+ 1, div∇(Tr) is TM⊥-valued and

ξ(Sr) + c(n+ 1− r)Sr−1 = (−1)r−1 tr(
?
Aξ ◦AN ◦ Tr−1). (35)

Proof. Let X ∈ χ(M). We have

g(div∇(Tr), X) = g(div∇(Tr), PX)

(34)
= η(PX)

(
c tr(Tr−1) + (−1)rcSr−1

− tr(
?
Aξ ◦AN ◦ Tr−1)− (−1)rξ(Sr)

)
= 0

as η(PX) = 0, which shows that div∇(Tr) is TM⊥-valued. It follows from the
same equation (34) setting X := ξ and using the third item in Proposition 4 that
(35) holds. �
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