A. T. ADEMOLA; M. O. OGUNDIRAN; P. O. ARAWOMO
Stability, Boundedness and Existence of Periodic Solutions to Certain Third Order Nonlinear Differential Equations

Persistent URL: http://dml.cz/dmlcz/144362

Terms of use:

© Palacký University Olomouc, Faculty of Science, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz
Stability, Boundedness and Existence of Periodic Solutions to Certain Third Order Nonlinear Differential Equations

A. T. ADEMOLA1a, M. O. OGUNDIRAN1b,
P. O. ARAWOMO2,

1Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria
2Department of Mathematics, University of Ibadan, Ibadan, Nigeria
ae-mail: ademola672000@yahoo.com
be-mail: adeolu74113@yahoo.com

(Received October 9, 2014)

Abstract

In this paper, criteria are established for uniform stability, uniform ultimate boundedness and existence of periodic solutions for third order nonlinear ordinary differential equations. In the investigation Lyapunov’s second method is used by constructing a complete Lyapunov function to obtain our results. The results obtained in this investigation complement and extend many existing results in the literature.

Key words: Third order, nonlinear differential equation, uniform stability, uniform ultimate boundedness, periodic solutions.

2010 Mathematics Subject Classification: 34C25, 34D20, 34D40, 65L06

1 Introduction

In order to describe and understand natural occurrence (or processes), we search for pattern of occurrences of these natural processes. Patterns that repeat are particularly useful and of interest, because we can predict their future behaviour. We meet with periodicity when something is repeated in time and in space. The sun rises everyday, the rotation of the planets, changes of seasons, high and low
tides, predator and pre-population, data with periodic influences are examples of cyclic or periodic patterns. Ancient astronomers and astrologers used these observations to regulate the activities of individuals, communities, nations or countries. Researches in mathematical, physical, biological and social sciences about these processes requires information about the existence and nonexistence, stability and instability, boundedness and unboundedness of solutions of the derived related models or systems.

Many works have been done by notable authors on the stability and boundedness of solutions of nonlinear ordinary differential equations, see for instance LaSalle and Lefschets [28], Reissig et. al [31], Rouche et. al [32], Yoshizawa [42, 43] which contain general results on the subject matters, and the papers of Ademola et. al [1]–[10], Afuwape and Adesina [11], Andres [12], Antošewicz [13], Bereketoğlu and Györi [15], Chuikwu [17], Ezeilo [18, 19, 20], Hara [21], Mehri and Shadman [23] Ogundare [29], Omeike [30], Swick [34], Tejumola [35, 36], Tunc [38, 40] and the references cited therein.

Up to now, according to our investigation in the relevant literatures, the problem of existence of periodic solutions for various nonlinear second and third order ordinary differential equations have been discussed in the literature by few authors; see for example, the paper of Ezeilo [18], Mehri et. al [22, 24, 26], Minhós [27], Shadman and Mehri [33] and Tunc et. al [37, 39]. These works were done using topological degree theory or the Leray–Schauder principle. The purpose of this paper is to establish criteria for existence of periodic, uniform stability, and uniform ultimate boundedness of solutions for the third order nonlinear ordinary differential equations

\[\dot{x} + \lambda \phi(t)g_1(x, \dot{x}, \ddot{x}, \sigma) = p(t, x, \dot{x}, \ddot{x}) \]

(1.1)

where \(g_1 \) are functions sufficiently smooth with respect to their arguments, \(\phi \) and \(p \) are \(\omega \) periodic functions and \(\lambda > 0 \) is a constant. Let \(x(t, \sigma) \), as in [22], be a solution of (1.1), where \(\sigma \) is a parameter. If \(\sigma = 0 \) and we assume further that

\[g_1(x, \dot{x}, \ddot{x}, 0) = f(x, \dot{x}, \ddot{x}) \dot{\ddot{x}} + g(x, \dot{x}) + h(x), \]

then equation (1.1) becomes

\[\dot{\ddot{x}} + \lambda \phi(t)[f(x, \dot{x}, \ddot{x}) \ddot{x} + g(x, \dot{x}) + h(x)] = p(t, x, \dot{x}, \ddot{x}). \]

(1.2)

Setting \(\dot{x} = y \) and \(\ddot{x} = z \) Eq. (1.2) becomes

\[\dot{x} = y, \quad \dot{y} = z, \quad \dot{z} = p(t, x, y, z) - \lambda \phi(t)[f(x, y, z)z + g(x, y) + h(x)] \]

(1.3)

where \(p \in C(\mathbb{R}^+ \times \mathbb{R}^3, \mathbb{R}) \), \(f \in C(\mathbb{R}^3, \mathbb{R}) \), \(g \in C(\mathbb{R}^2, \mathbb{R}) \), \(h \in C(\mathbb{R}, \mathbb{R}) \), \(\phi \in C(\mathbb{R}^+, \mathbb{R}) \), \(\mathbb{R}^+ = [0, \infty) \) and \(\mathbb{R} = (-\infty, \infty) \). The derivatives \(f_x(x, y, z) \), \(f_z(x, y, z) \), \(g_x(x, y) \), \(h'(x) \) and \(\phi'(t) \) exist and continuous for all \(t, x, y, z \) with \(h(0) = 0 \). The dots, as usual, stand for differentiation with respect to the independent variable \(t \). Motivation for this work come from the works of Mehri and Niksirat [22], Minhós [27] and Tunç [39] where results on periodicity were proved. According to our observation from the relevant literature, this paper is one of the few articles on the existence of periodic solutions for third order nonlinear differential equations where a complete Laypunov function is used.
2 Preliminaries

Consider a system of differential equations
\[
\frac{dX}{dt} = F(t, X)
\]
(2.1)

where \(X\) is an \(n\)-vector. Suppose that \(F(t, X)\) is continuous in \((t, X)\) on \(\mathbb{R}^+ \times \mathbb{D}\) where \(\mathbb{D}\) is a connected open set in \(\mathbb{R}^n\). Let \(C\) be a class of solutions of (2.1) which remain in \(\mathbb{D}\) and let \(X_0\) be an element of \(C\). We have the following results:

Lemma 2.1 [42] Suppose that there exists a Lyapunov function \(V(t, X)\) defined on \(\mathbb{R}^+\), \(\|X\| < H\) which satisfies the following conditions:

(i) \(V(t, 0) \equiv 0\);

(ii) \(a(\|X\|) \leq V(t, X) \leq b(\|X\|)\), \(a, b\) are continuous and increasing;

(iii) \(V(t, X) \leq -c(\|X\|)\) for all \((t, X) \in \mathbb{R}^+ \times D\).

Then the trivial solution \(X(t) \equiv 0\) of (2.1) is uniformly asymptotically stable.

Lemma 2.2 [41, 42] Suppose that there exists a Lyapunov function \(V(t, X)\) defined on \(\mathbb{R}^+, \|X\| \geq R\), where \(R\) may be large, which satisfies the following conditions:

(i) \(a(\|X\|) \leq V(t, X) \leq b(\|X\|)\), where \(a(r)\) and \(b(r)\) are continuous and increasing and \(a(r) \to \infty\) as \(r \to \infty\);

(ii) \(V(t, X) \leq -c(\|X\|)\), where \(c(r)\) is positive and continuous,

then the solution of (2.1) are uniformly ultimately bounded.

Lemma 2.3 [41, 42] If there exists a Lyapunov function satisfying the condition of Lemma 2.2, then (2.1) has at least a periodic solution of period \(\omega\).

3 Main Results

Assumptions In addition to the basic conditions on the functions \(f, g, h, p\) and \(\phi\), suppose that \(a, b, c, a_1, b_1, \delta, \mu_0, \mu_1\) and \(\epsilon_0\) are positive constants and that for all \(t \geq 0\):

(i) \(\mu_0 \leq \phi(t) \leq \mu_1, \max_{t \in \mathbb{R}^+} |\phi'(t)| \leq \epsilon_0\);

(ii) \(a \leq f(x, y, z) \leq a_1\) for all \(x, y, z\) and \(yf_x(x, y, 0) \leq 0\) for all \(x, y\);

(iii) \(b \leq g(x, y) \leq b_1\) for all \(x, y \neq 0\) and \(g_x(x, y) \leq 0\) for all \(x, y\);

(iv) \(h(0) = 0, \frac{h(x)}{x} \geq \delta\) for all \(x \neq 0\);

(v) \(h'(x) \leq c\) for all \(x\) and \(ab - c > 0\);
(vi) \(|p(t, x, y, z)| \leq \varphi(t) + \psi(t)(|x| + |y| + |z|)\) where \(\varphi\) and \(\psi\) are periodic functions of \(t\) satisfying
\[
\varphi(t) \leq M
\] (3.1a)

\[0 < M < \infty\] and there exists \(\epsilon_1 > 0\) such that
\[
0 \leq \psi(t) \leq \epsilon_1
\] (3.1b)

When \(p(t, x, y, z) \equiv 0\) (1.3) comes to be
\[
\dot{x} = y, \quad \dot{y} = z, \quad \dot{z} = -\lambda \phi(t)[f(x, y, z)z + g(x, y) + h(x)]
\] (3.2)
where \(f, g\) and \(h\) are the functions defined in Section 1. We have the following results.

Theorem 3.1 If assumptions (i)–(v) hold true, then the trivial solutions of (3.2) is uniformly asymptotically stable.

Theorem 3.2 If assumptions (i)–(vi) hold, then the solution of \((x(t), y(t), z(t))\) of (1.3) is uniformly ultimately bounded.

Theorem 3.3 If the assumptions of Theorem 3.2 hold, then (1.3) has a periodic solution of period \(\omega\).

Corollary 3.4 If assumptions (i)–(v) hold and (vi) is replaced by \(p(t) \in C(\mathbb{R}^+, \mathbb{R})\) periodic in \(t\) of period \(\omega\), and bounded above by a finite constant,

(i) then the solution \((x(t), y(t), z(t))\) of (1.3) is uniformly ultimately bounded.

(ii) If Corollary 3.4 (i) holds good, then (1.3) has a periodic solution of period \(\omega\).

Remark 3.5

(i) Whenever \(\lambda \phi(t)f(x, y, z) = a, \lambda \phi(t)g(x, y) = g(y), \lambda \phi(t)h(x) = cx\) and \(p(t, x, y, z) = p(t)\), equation (1.3) reduces to the case discussed by Minhós in [27].

(ii) If \(\lambda \phi(t)f(x, y, z) = c_2(t)\) and \(\lambda \phi(t)g(x, y) = c_1(t)y\), (1.3) specializes to that studied by Tunç in [39].

(iii) In the case \(\lambda \phi(t)f(x, y, z) = \psi(y), \lambda \phi(t)g(x, y) = k^2 + \phi(x), p(t, x, y, z) = e(t)\), system (1.3) reduces to that discussed by Mehteri and Shadman in [24, 25].

(iv) If \(p(t, x, y, z) = 0\) equation (1.1) specializes to (3.1) discussed in [22]. Also, if \(\lambda \phi(t)f(x, y, z) = f(y)h(z)\) and \(g(x, y) = 0 = h(x)\), equation (1.3) specializes to (3.3) discussed also in [22].

(v) In [22, 25, 26, 39] Leray–Schauder approach was used by these authors to establish existence of periodic solutions to the third order ordinary differential equations considered. In this paper Lyapunov’s second method is used, by constructing a complete Lyapunov function, to obtain criteria for existence of periodic solutions. Thus, our assumptions are completely different.
The main tool used in this investigation is the continuously differentiable function

\[
2V = 2[\alpha_1 + a\lambda \phi(t)]\lambda \phi(t) \int_0^x h(\xi) d\xi + 4\lambda \phi(t)yh(x) + 2a\alpha_2\lambda \phi(t)xy
+ 4\lambda \phi(t) \int_0^y g(x, \tau) d\tau + 2[\alpha_1 + a\lambda \phi(t)]\lambda \phi(t) \int_0^y \tau f(x, \tau, 0) d\tau + 2z^2
+ \alpha_2y^2 + \alpha_2b\lambda \phi(t)x^2 + 2\alpha_2xz + 2[\alpha_1 + a\lambda \phi(t)]yz
\]

(3.3)

where \(\alpha_1\) and \(\alpha_2\) are positive constants satisfying

\[
c < \alpha_1 b < ab\lambda\mu_0
\]

(3.4a)

and

\[
\alpha_2 < \min \left\{ b\lambda\mu_0, \lambda\mu_0(ab\lambda\mu_0 - c)A_0, \frac{1}{2}(a\lambda\mu_0 - \alpha_1)A_1 \right\}
\]

(3.4b)

where

\[
A_0 = \left[1 + a\lambda\mu_0 + \lambda\mu_0\delta^{-1} \left(\frac{g(x, y)}{y} - b \right) \right]^{-1}
\]

and

\[
A_1 = \left[1 + \lambda\mu_0\delta^{-1} \left(f(x, y, z) - a \right) \right]^{-1}.
\]

Remark 3.6 The differentiable function \(V = V(t, x, y, z) = V(t, x(t), y(t), z(t))\) defined in (3.3) is similar to the one used in [7].

Lemma 3.7 Subject to assumptions (i)–(v), \(V(t, 0, 0, 0) = 0\); and there exist positive constants \(D_0 = D_0(a, b, c, \alpha_1, \alpha_2, \delta, \lambda, \mu_0)\) and \(D_1 = D_1(a, b, c, \alpha_1, \alpha_2, a_1, b_1, \lambda, \mu_1)\) such that

\[
D_0(x^2(t) + y^2(t) + z^2(t)) \leq V(t, x, y, z) \leq D_1(x^2(t) + y^2(t) + z^2(t)),
\]

(3.5a)

\[
V(t, x, y, z) \to +\infty \text{ as } x^2(t) + y^2(t) + z^2(t) \to \infty,
\]

(3.5b)

also, there exist positive constants \(D_2 = D_2(a, b, c, \alpha_1, \alpha_2, \delta, \epsilon_0, \lambda, \mu_0)\) and \(D_3 = D_3(a, \alpha_1, \alpha_2, \lambda, \mu_0)\) such that along any solution \((x(t), y(t), z(t))\) of (1.3)

\[
\dot{V} = \frac{d}{dt}V(t, x, y, z) \leq -D_2(x^2(t) + y^2(t) + z^2(t)) + D_3(|x| + |y| + |z|)|p(t, x, y, z)|.
\]

(3.5c)
Proof Obviously, \(V(t, 0, 0, 0) = 0 \) for all \(t \in \mathbb{R}^+ \). Since \(h(0) = 0 \) the function \(V \) defined in (3.3) can be rearranged in the form

\[
V = b^{-1} \lambda \phi(t) \int_0^x \left[\alpha_1 b - h'(\xi) + ab \lambda \phi(t) - h'(\xi) \right] h(\xi) d\xi + \alpha_2 y^2 \\
+ \frac{1}{2} (\alpha_1 y + z)^2 + b \lambda \phi(t) \left(y + b^{-1} h(x) \right)^2 \\
+ \frac{1}{2} (\alpha_2 x + a \lambda \phi(t) y + z)^2 + 2 b \lambda \phi(t) \int_0^y \left(\frac{g(x, \tau)}{\tau} - b \right) \tau d\tau \\
+ \int_0^y \left\{ \alpha_1 \left[\lambda \phi(t) f(x, \tau, 0) - \alpha_1 \right] + a \lambda^2 \phi^2(t) [f(x, \tau, 0) - a] \right\} \tau d\tau \\
+ \frac{\alpha_2}{2} \left(b \lambda \phi(t) - \alpha_2 \right) x^2
\]

Now, since \(\phi(t) \geq \mu_0 \) for all \(t \geq 0 \), \(f(x, y, z) \geq a \) for all \(x, y, z \), \(g(x, y) \geq by \) for all \(x \) and \(y \neq 0 \), \(h(x) \geq \delta x \) for all \(x \neq 0 \), and \(h'(x) \leq c \) for all \(x \), we have

\[
V \geq \frac{1}{2} \left[b^{-1} \delta \lambda \mu_0 (\alpha_1 b - c + ab \lambda \mu_0 - c) + \alpha_2 (b \lambda \mu_0 - \alpha_2) \right] x^2 \\
+ b^{-1} \lambda \mu_0 \left(\delta x + by \right) \frac{1}{2} \left[\alpha_1 (a \lambda \mu_0 - \alpha_1) + 2 \alpha_2 \right] y^2 \\
+ \frac{1}{2} (\alpha_1 y + z)^2 + \frac{1}{2} (\alpha_2 x + a \lambda \mu_0 y + z)^2.
\]

From (3.4a), (3.4b), \(\alpha_1 b > c, ab \lambda \mu_0 > c, a \lambda \mu_0 > \alpha_1 \) and \(b \lambda \mu_0 > \alpha_2 \), hence, there exist positive constants \(\delta_0, K_0, K_1, K_2 \) such that

\[
V \geq \delta_0 (x^2 + y^2 + z^2)
\]

for all \(t \in \mathbb{R}^+ \) and \((x, y, z) \in \mathbb{R}^3 \), where \(\delta_0 = \min\{K_0, K_1, K_2\} \),

\[
K_0 = \frac{\lambda \mu_0}{b} \min\{\delta, b\} + \frac{\delta \lambda \mu_0}{2b} (\alpha_1 b - c + ab \lambda \mu_0 - c) + \alpha_2 (b \lambda \mu_0 - \alpha_2) \\
+ \frac{1}{2} \min\{\alpha_1, a \lambda \mu_0, 1\},
\]

\[
K_1 = \frac{\alpha_1}{2} (a \lambda \mu_0 - \alpha_1) + \alpha_2 + \frac{1}{2} \min\{\alpha_1, 1\} + \frac{\lambda \mu_0}{b} \min\{\delta, b\} + \frac{1}{2} \min\{\alpha_1, a \lambda \mu_0, 1\}
\]

and

\[
K_2 = \frac{1}{2} \left[\min\{\alpha_1, 1\} + \min\{\alpha_1, a \lambda \mu_0, 1\} \right].
\]

Furthermore, since \(\phi(t) \leq \mu_1, 0 \leq t < \infty \), \(f(x, y, z) \leq a_1 \) for all \(x, y \) and \(z \), \(g(x, y) \leq b_1 \) for all \(x \) and \(y \neq 0 \), \(h'(x) \leq c \) for all \(x \), and the fact that \(h(0) = 0 \),
(3.3) becomes
\[V \leq \frac{1}{2} \left[(\alpha_1 + a\lambda \mu_1)c\lambda \mu_1 + \alpha_2 b\lambda \mu_1 \right] x^2 \\
+ \left[\frac{1}{2} a_1 \lambda \mu_1 (\alpha_1 + a\lambda \mu_1) + \frac{1}{2} \alpha_2 + b_1 \lambda \mu_1 \right] y^2 + z^2 \\
+ 2(c\lambda \mu_1 + \frac{1}{2} a\alpha_2 \lambda \mu_1)xy + \alpha_2 xz + (\alpha_1 + a\lambda \mu_1)yz. \]

Recall that \(2mn \leq m^2 + n^2 \), hence, there exist positive constants \(\delta_1, K_3, K_4 \) and \(K_5 \) such that
\[V \leq \delta_1 (x^2 + y^2 + z^2) \] (3.7)
for all \(t \in \mathbb{R}^+ \) and \((x, y, z) \in \mathbb{R}^3\), where \(\delta_1 = \max\{K_3, K_4, K_5\} \), \(K_3 = \frac{1}{4}[a_2((a + b)\lambda \mu_1 + 1) + c\lambda \mu_1 (\alpha_1 + a\lambda \mu_1 + 2)] \), \(K_4 = \frac{1}{2}[a_1 + \alpha_2 + [\alpha_1(\alpha_1 + a\lambda \mu_1) + 2b_1 + a(1 + \alpha_2) + 2c\lambda \mu_1] \) and \(K_5 = \frac{1}{2}(\alpha_1 + \alpha_2 + a\lambda \mu_1) \).

Moreover, by estimate (3.6), we have \(V(t, 0, 0, 0) = 0 \) if and only if \(x^2 + y^2 + z^2 = 0 \), \(V(t, x, y, z) > 0 \) if and only if \(x^2 + y^2 + z^2 \neq 0 \), it follows that
\[V(t, x, y, z) \to +\infty \text{ as } x^2 + y^2 + z^2 \to \infty. \] (3.8)

Hence, from (3.6), (3.7) and (3.8) estimates (3.5a) and (3.5b) are satisfied with \(\delta_0 = D_0 \) and \(\delta_1 = D_1 \) in (3.6) and (3.7) respectively.

Besides, along any solution \((x(t), y(t), z(t))\) of (1.3)
\[V_{(1.3)} = a\alpha_2 \lambda \phi(t)y^2 + 2\alpha_2 yz + [\alpha_2 x + (\alpha_1 + a\lambda \phi(t))y + 2z]p(t, x, y, z) \\
+ \sum_{i=1}^{2} W_i - \sum_{i=3}^{4} W_i - \alpha_2 \lambda \phi(t) \left[\frac{g(x, y)}{y} - b \right] xy - \alpha_2 \lambda \phi(t) \left[f(x, y, z) - a \right] xz \] (3.9)

where
\[W_1 = \lambda \phi'(t) \left[(\alpha_1 + 2a\lambda \phi(t)) \int_0^x h(\xi) \, d\xi + 2 \int_0^y g(x, \tau) \, d\tau + 2yh(x) \right] + (\alpha_1 + 2a\lambda \phi(t)) \int_0^y tf(x, \tau, 0) \, d\tau + \frac{1}{2}(b\alpha_2 x^2 + 2a\alpha_2 xy + 2ayz) \];
\[W_2 = \lambda \phi(t) \left[2y \int_0^y g_2(x, \tau) d\tau + (\alpha_1 + a\lambda \phi(t)) y \int_0^y \tau f_2(x, \tau, 0) \, d\tau \right]; \]
\[W_3 = \alpha_2 \lambda \phi(t)xh(x) + \lambda \phi(t) [(\alpha_1 + a\lambda \phi(t))yg(x, y) - 2y^2 h'(x)] \]
\[+ [2\lambda \phi(t)f(x, y, z) - (\alpha_1 + a\lambda \phi(t))] z^2; \]
\[W_4 = (\alpha_1 + a\lambda \phi(t)) \lambda \phi(t)yz [f(x, y, z) - f(x, y, 0)]. \]

Now, for all \(t \in \mathbb{R}^+ \), \(\phi(t) \leq \mu_1, h(0) = 0, h'(x) \leq c \) for all \(x, g(x, y) \leq b_1 y \) for all \(x \) and \(y \neq 0 \) and \(f(x, y, z) \leq a_1 \) for all \(x, y, z \), it follows that
\[W_1 \leq K_7 \phi'(t)(x^2 + y^2 + z^2) \]
for all x, y, z where
\[
K_7 = \max \left\{ \frac{\lambda}{2} [(\alpha_1 + 2a\lambda_1 + 2) + \alpha_2 b] + a\alpha, \frac{\lambda}{2} [a_1 (\alpha_1 + 2a\lambda_1) + 2(b_1 + c)] + a(\alpha_2 + 1), a \right\}.
\]

It is clear from conditions (ii) and (iii) that $yf_x(x, y, 0) \leq 0$ for all x, y and $g_x(x, y) \leq 0$ for all x and y, so that
\[
W_2 \leq 0
\]
for all x, y, z. Furthermore, $h(x) \geq \delta x$ for all $x \neq 0$, $g(x, y) \geq by$ for all x and $y \neq 0$, $h'(x) \leq c$ for all x and $f(x, y, z) \geq a$ for all x, y, z, from these inequalities we obtain
\[
W_3 \geq \alpha_2 \lambda_0 \delta x^2 + \lambda_0 (\alpha_1 b - c + ab\lambda_0 - c) y^2 + (a\lambda_0 - \alpha_1) z^2
\]
for all x, y and z. Finally, since $yf_x(x, y, z) \geq 0$ for all x, y, z it follows that
\[
W_4 = (\alpha_1 + a\lambda_0 (t))\lambda_0 (t) y^2 f_x(x, y, \theta z) \geq 0
\]
\[
0 \leq \theta \leq 1 \text{ and } (\alpha_1 + a\lambda_0 (t))\lambda_0 (t) y^2 f_x(x, y, \theta z) = 0 \text{ when } z = 0. \]
Combining all estimates for W_i ($i = 1, 2, 3, 4$) into (3.9), we obtain
\[
\dot{V}(t) \leq K_8(|x| + |y| + |z|)|p(t, x, y, z)| + K_7\phi'(t)(x^2 + y^2 + z^2) - \frac{1}{2} \alpha_2 \lambda_0 \delta x^2
\]
\[
- [\lambda_0 (\alpha_1 b - c + ab\lambda_0 - c) - \alpha_2 (a\lambda_0 + 1)]y^2 - [a\lambda_0 - \alpha_1 - \alpha_2]z^2 - \sum_{i=5}^{6} W_i
\]
\[
(3.10)
\]
where $K_8 = \max \{\alpha_2, \alpha_1 + a\lambda_1, 2\}$, $W_5 = \frac{1}{2} \alpha_2 \lambda_0 \delta x^2 + \alpha_2 \lambda_0 |g(x, y) - by| x$ and $W_6 = \frac{1}{2} \alpha_2 \lambda_0 \delta x^2 + \alpha_2 \lambda_0 |f(x, y, z) - a| x z$. Since α_2, λ, μ_0 and δ are positive constants it is not difficult to show that
\[
W_5 \geq -\alpha_2 \delta^{-1} \lambda_0 \left[\frac{g(x, y)}{y} - b \right]^2 y^2 \text{ and } W_6 \geq -\alpha_2 \delta^{-1} \lambda_0 \left[f(x, y, z) - a \right]^2 z^2
\]
for all x, y and z. Using estimates W_5 and W_6 in (3.10) and applying the inequality in (3.4b), there exist positive constants K_9, K_{10} such that
\[
\dot{V}(t) \leq -K_{10}(x^2 + y^2 + z^2) + K_8(|x| + |y| + |z|)|p(t, x, y, z)|
\]
\[
(3.11)
\]
for all x, y, z where $K_{10} = K_9 - \varepsilon_0 > 0$ and $K_9 = \min \{\frac{1}{2} \alpha_2 \lambda_0 \delta, \lambda_0 (\alpha_1 b - c), \frac{1}{2} (a\lambda_0 - \alpha_1) \}$. This completes the proof of Lemma 3.7.

Proof of Theorem 3.1 Let $(x(t), y(t), z(t))$ be any solution of (3.2). By (3.3) it is clear that $V(t, 0, 0, 0) = 0$ for all $t \in \mathbb{R}^+$ and in view of estimates (3.6),
(3.7), (3.8) and (3.11) when \(p(t, x, y, z) = 0 \), all the hypotheses of Lemma 2.1 are satisfied, hence, by Lemma 2.1 the trivial solution of (3.2) is uniformly asymptotically stable. This completes the proof of Theorem 3.1. \(\square \)

Proof of Theorem 3.3 Suppose that \((x(t), y(t), z(t))\) be any solution of (1.3). From (3.11) and assumption (vi), we have

\[
\dot{V}_{(1.3)} \leq -K_{10}(x^2 + y^2 + z^2) + 3^{1/2}K_8(x^2 + y^2 + z^2)^{1/2} \varphi(t) + 3K_8(x^2 + y^2 + z^2) \psi(t)
\]

for all \(t \in \mathbb{R}^+ \) and \((x, y, z) \in \mathbb{R}^3\). In view of the estimates (3.1a) and (3.1b), there exist positive constants \(K_{11} \) and \(K_{12} \) such that

\[
\dot{V}_{(1.3)} \leq -K_{11}(x^2 + y^2 + z^2) + K_{12}(x^2 + y^2 + z^2)^{1/2}
\]

for all \(t \geq 0, \, x, y, z \), where \(K_{11} = K_{10} - 3K_8\epsilon_1 > 0 \) since \(\epsilon_1 \) is chosen sufficiently small and \(K_{12} = 3^{1/2}K_8M > 0 \). Now choose \((x^2 + y^2 + z^2)^{1/2} \geq K_{13} \), there exists a constant \(\delta_2 > 0 \) such that

\[
\dot{V}_{(1.3)} \leq -\delta_2(x^2 + y^2 + z^2)
\]

(3.12) for all \(x, y, z \) and \(t \geq 0 \), where \(K_{13} = 2K_{11}^{-1}K_{12} > 0 \) may be large and for all \(t \geq 0, \, x, y, z, \) and \(\delta_2 = \frac{1}{2}K_{11} \). Thus, by (3.6), (3.7), (3.8) and (3.12) all hypotheses of Lemma 2.2 hold true. Hence, by Lemma 2.2, the solution \((x(t), y(t), z(t))\) of (1.3) is uniformly ultimately bounded. \(\square \)

Proof of Theorem 3.3 Let \((x(t), y(t), z(t))\) be any solution of (1.3). Since the function \(V = V(t, x, y, z) \) defined in (3.3) satisfies the conditions of Theorem 3.2 so that the solutions of (3.3) are uniformly ultimately bounded and by Lemma 2.3 (1.2) and consequently (1.3) has at least a periodic solution of period \(\omega \). \(\square \)

Example 3.8 Consider the third order ordinary differential equation

\[
\ddot{x} + \frac{1}{4}(1 + \frac{1}{2 + \sin 4t}) \left[\frac{4\ddot{x}}{3 + |x\ddot{x}| + e^u} + 2\dot{x} + \frac{\dot{x}}{4 + |x\dot{x}|} + 3x + \frac{x}{1 + |x|} \right] = 0
\]

where

\[
u = \frac{1}{4 + |x\ddot{x}|}.
\]

Setting \(\dot{x} = y, \, \ddot{x} = z \), (3.13) becomes

\[
\dot{x} = y, \quad \dot{y} = z, \quad \dot{z} = \left(1 + \frac{\cos t}{2 + \sin 4t} \right) + (1 + \cos(t/2))(|x| + |y| + |z|)
\]

\[
- \frac{1}{4} \left[4z + \frac{z}{3 + |xy| + e^{u_1}} + 2y + \frac{y}{4 + |xy|} + 3x + \frac{x}{1 + |x|} \right]
\]

where

\[
u_1 = \frac{1}{4 + |yz|}.
\]
From (1.3) and (3.14), we have the following relations:

(i) \(\lambda = \frac{1}{4} > 0 \) as required from the basic condition,

(ii) \(\phi(t) = \left(1 + \frac{1}{2 + \sin 4t}\right) = \phi(t + \omega) \) for all \(t \in \mathbb{R}^+ \),

hence, \(\phi \) is periodic in \(t \) with period \(\omega \) (see Fig. 1). Also,

\[
0 < \frac{1}{2 + \sin 4t} \leq 1 \quad \text{for all } t \in \mathbb{R}^+,
\]

this implies that \(1 \leq \phi(t) \leq 2 \) for all \(t \), where \(1 = \mu_0 > 0 \) and \(2 = \mu_1 > 0 \).

Moreover,

\[
\max_{t \in \mathbb{R}^+} |\phi'(t)| = \frac{4 \cos 4t}{(2 + \sin 4t)^2} \leq 2 \quad \forall t \in \mathbb{R}^+,
\]

where \(2 = \epsilon_0 > 0 \).

![Fig. 1. Periodic function \(\phi(t) \) for all \(t \in \mathbb{R}^+ \)](image)

(iii) \(f(x, y, z) = 4 + \frac{1}{3 + |xy| + \exp u_1} \).

But

\[
0 \leq \frac{1}{3 + |xy| + \exp u_1} \leq 1 \quad \forall x, y, z,
\]

it follows that

\[
4 \leq f(x, y, z) \leq 5 \quad \text{for all } x, y, z
\]

where \(4 = a > 0 \) and \(5 = a_1 > 0 \).

Furthermore, for \(x > 0 \), we have

\[
yf_x(x, y, z) = \frac{-y^2}{[3 + |xy| + \exp u_1]^2} \leq 0 \quad \text{for all } x, y, z.
\]

Also, for \(z > 0 \), we have

\[
yf_z(x, y, z) = \frac{y^2 \exp u_1}{[4 + |yz|][3 + |xy| + \exp u_1]^2} \geq 0 \quad \text{for all } x, y, z.
\]
(iv) \(g(x, y) = 2y + \frac{y}{4 + |xy|} \).

But
\[
0 < \frac{1}{4 + |xy|} \leq 1 \quad \text{for all } x \text{ and } y,
\]
this implies that
\[
2 \leq \frac{g(x, y)}{y} \leq 3 \quad \text{for all } x \text{ and } y \neq 0,
\]
where \(2 = b > 0 \) and \(3 = b_1 > 0 \).

For \(x > 0 \)
\[
g_x(x, y) = \frac{-y^2}{[4 + |xy|]^2} \leq 0 \quad \text{for all } x, y
\]

(v) \(h(x) = 3x + \frac{x}{1 + |x|} \),

it is clear from this relation that \(h(0) = 0 \). Also, since
\[
\frac{1}{1 + |x|} > 0 \quad \text{for all } x,
\]
if follows that
\[
\frac{h(x)}{x} \geq 3 \quad \text{for all } x \neq 0
\]
where \(3 = \delta > 0 \). Moreover, for \(x > 0 \),
\[
h'(x) = 3 + \frac{1}{(1 + |x|)^2}.
\]
Noting that
\[
\frac{1}{(1 + |x|)^2} \leq 1 \quad \text{for all } x,
\]
it follows that
\[
h'(x) \leq 4 \quad \text{for all } x
\]
where \(4 = c > 0 \), and \(ab > c \) implies that \(2 > 1 \).

(vi) \(\varphi(t) = 1 + \frac{\cos t}{2 + \sin 4t} = \varphi(t + \omega), \) for all \(t \in \mathbb{R}^+ \)
so that the function \(\varphi \) is periodic in \(t \) with period \(\omega \). See also, in Fig. 2.

Moreover,
\[
-1 \leq \frac{\cos t}{2 + \sin 4t} \leq 1 \quad \text{for all } t
\]
this implies that
\[
\varphi(t) \leq 2 = M < \infty \quad \text{for all } t.
\]
(vii) Finally, \(\psi(t) = 1 + \cos(t/2) \), a periodic function of \(t \) (see Fig. 3).

Since \(-1 \leq \cos(t/2) \leq 1\) for all \(t \), it follows that \(0 \leq \psi(t) \leq 2 \) for all \(t \) where \(2 = \epsilon_1 > 0 \)

All the assumptions of Theorem 3.1, Theorem 3.2 and Theorem 3.3 are all satisfied, thus by Theorem 3.1 the trivial solution of (3.14) (when \(p = 0 \)) is uniformly asymptotically stable, by Theorem 3.2 the solution \((x(t), y(t), z(t))\) of (3.14) is uniformly ultimately bounded and by Theorems 3.2 and 3.3, system (3.14) has a periodic solution of period \(\omega \).

Acknowledgement The authors would like to express their sincere gratitude to the referees for their invaluable corrections, comments and suggestions.

References

Stability, boundedness and existence of periodic solutions

[12] Andres, J.: Boundedness results for solutions of the equation \(\ddot{x} + ax + g(x)\dot{x} + h(x) = p(t) \) without the hypothesis \(h(x) \operatorname{sgn}x \geq 0 \) for \(|x| > R\). Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 80, 8 (1986), 533–539.

