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Abstract. We study the superconvergence of the finite volume method for a nonlinear
elliptic problem using linear trial functions. Under the condition of C-uniform meshes, we
first establish a superclose weak estimate for the bilinear form of the finite volume method.
Then, we prove that on the mesh point set S, the gradient approximation possesses the

superconvergence: maxP∈S |(∇u−∇uh)(P )| = O(h2)|ln h|3/2, where∇ denotes the average
gradient on elements containing vertex P . Furthermore, by using the interpolation post-
processing technique, we also derive a global superconvergence estimate in the H

1-norm
and establish an asymptotically exact a posteriori error estimator for the error ‖u− uh‖1.

Keywords: finite volume method; nonlinear elliptic problem; local and global supercon-
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1. Introduction

The finite volume method (FVM), also known as generalized difference method

[13], [25], [26], box scheme [4], [29] or covolume method [16], [22], has been widely

analyzed for various types of partial differential equations. The main benefit of this
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method is that it inherits some physical conservation laws of the original problem

locally, which is very desirable in practical applications, for example, computational

fluid mechanics. We refer to the monograph [26] for general presentation of the finite

volume method, and to [16], [11], [15], [14], [19], [24], [30], [32], [34] and the references

cited therein for details.

Superconvergence of the finite element method has long been an active research

area in scientific computation, since it is of practical importance in enhancing the

accuracy of numerical solutions [3], [1], [2], [8], [10], [9], [27], [31], [33], [35]. At

present, many superconvergence results have also been obtained for the finite vol-

ume method. For linear elliptic problems, Ewing et al. [19] obtain the H1 and W 1,∞

superconvergence estimates between the FVM solution and the linear interpolation

of the exact solution; Huang and Li [22] derive the H1 and W 1,∞ superconvergence

estimates for the error between the FVM solution and the corresponding finite ele-

ment (FEM) solution. Moreover, the superconvergence of the FVM solution in an

average gradient norm has been also obtained. See, for example, [13], [26], [28]. For

the linear elliptic and parabolic problems, Chou et al. [16] show the superconver-

gence estimates in the Lp-norm for the error between the FVM solution and the

corresponding FEM solution and between their gradients. All the superconvergence

results mentioned above are for linear elliptic problems.

In this paper, we consider the superconvergence of the FVM for the following

nonlinear elliptic problem of nonmonotone type:

(1.1)

{

−div(a(x, u)∇u) = f(x) in Ω,

u = 0 on ∂Ω,

where Ω is a convex bounded domain in R2 with Lipschitz continuous boundary ∂Ω,

the coefficient function a(x, u) > β1 > 0 in Ω. We do not assume the monotonicity

condition for problem (1.1) (see (2.3)).

Some authors have studied the FVM for problem (1.1). Li [25] first obtained

the error estimate in the H1-norm. Chatzipantelidis et al. [12] establish the error

estimates in the H1-, L2-, and L∞-norm. Bi [6] obtains the H
1 and W 1,∞ super-

close estimates for the error between the FVM solution and the corresponding FEM

solution. Bi and Ginting [7] also analyze the two-grid FVM and derived the error

estimates in a broken H1-norm. Moreover, Bergam et al. [5] give a residual type

a posteriori error estimate for the FVM solution.

To the authors’ best knowledge, there is no gradient superconvergence result avail-

able for the error between the FVM solution and the exact solution of nonlinear prob-

lem (1.1). Our main goal in this paper is to give some gradient superconvergence

results for the linear finite volume approximation to problem (1.1). By treating the
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FVM as a perturbation of the corresponding FEM, we first establish the superclose

weak estimate for the bilinear form ah(ω; ·, ·) of the FVM (see (2.8)),

(1.2) |ah(ω;u−Πhu,Π
∗
hvh)| 6 Ch2‖u‖3,p‖vh‖1,q ∀ vh ∈ Uh, 1 < p 6 ∞,

where ω ∈ W 1,∞(Ω), 1/p+ 1/q = 1, Πh is the usual linear interpolation operator,

Π∗
h is an interpolation operator from the trial function space Uh to the test function

space Vh. It is well known that such a superclose weak estimate plays an important

role in the superconvergence analysis of FEM [33], [35]. By using this weak estimate

and the Green’s function method [35], we can further derive

(1.3) ‖uh −Πhu‖1,∞ 6 C(u)h2|lnh|3/2.

Then, we consider the superconvergence at mesh points and prove the following

superconvergence result:

(1.4) max
P∈S

|(∇u −∇uh)(P )| 6 C(u)h2|lnh|3/2,

where S is the set of all interior mesh points, and ∇ denotes the average gradient

on elements containing point P . In order to obtain the global superconvergence, we

introduce the interpolation post-processing technique [27] and prove that

(1.5) ‖u−Q2huh‖1 6 C(u)h2,

where Q2h is the interpolation post-processing operator. Based on superconvergence

estimate (1.5), an asymptotically exact a posteriori error estimate is also given for

the error ‖u− uh‖1.

This paper is organized as follows. In Section 2, we introduce the finite volume

scheme and give some useful lemmas. In Section 3, we establish the superclose weak

estimate and derive the superconvergence estimates for the error uh−Πhu in the H
1-

and W 1,∞-norm. Section 4 is devoted to the discussion of mesh points and global

superconvergence in the H1-norm. Finally, in Section 5, some numerical experiments

are provided to illustrate our theoretical analysis.

Throughout this paper, we adopt the notation Wm,p(D) to stand for the usual

Sobolev spaces on subdomain D ⊂ Ω equipped with the norm ‖·‖m,p,D and the

semi-norm |·|m,p,D, and if p = 2, we set Wm,p(D) = Hm(D), ‖·‖m,p,D = ‖·‖m,D.

The inner product and the norm in space L2(D) are denoted by (·, ·)D and ‖·‖D,

respectively. When D = Ω, we omit the index D. We will use the letter C to

represent a generic positive constant, independent of the mesh size h.
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2. Finite volume methods

2.1. Finite volume element approximation. Consider problem (1.1). As

usual, we assume that a(x, u) ∈ W 1,∞(Ω × R) and there exist positive constants

β1, β2, and β3 such that

β1 6 a(x, u) 6 β2, x = (x1, x2) ∈ Ω, u ∈ R,(2.1)

|a′x1
(x, u)|+ |a′x2

(x, u)|+ |a′u(x, u)| 6 β3, x ∈ Ω, u ∈ R.(2.2)

For properly smooth a(x, u) and f(x), the unique existence of weak and classical

solutions for problem (1.1) is proved in [17], [21], [20]. We assume that the solution

of problem (1.1) possesses the smoothness and boundedness required in our analysis.

R em a r k 2.1. In our analysis, the monotonicity condition

(2.3) (a(x, u)∇u − a(x, v)∇v,∇u −∇v) > α0‖∇u−∇v‖2, α0 > 0,

is not needed for a(x, u), and since the coefficient a(x, u) depends on x, the classical

Kirchhoff transformation (see, for instance, [23]) cannot be used in our study.

R em a r k 2.2. In the case of domain Ω with a smooth boundary ∂Ω, f being

a α-Hölder continuous function on Ω (0 < α 6 1), and a(x, u) ∈ C2(Ω × R), it is

shown in [17], [18] that the solution of problem (1.1) has the regularity u ∈ C2+α(Ω),

and the solution is unique.

Let Th =
⋃

{K} be a quasi-uniform triangulation of domain Ω with mesh size

h = maxhK , where hK is the diameter of the triangle K. The union of the triangles

of Th determines a polygonal domain Ωh ⊂ Ω whose boundary vertices lie on ∂Ω. If

Ω itself is a polygonal domain, we may have Ωh = Ω. If Ω is a domain with smooth

boundary ∂Ω, we assume that triangulation Th is such that for a positive constant C,

it holds that

dist(x, ∂Ω) 6 Ch2 ∀x ∈ ∂Ωh.

Concerning triangulation Th, we construct the barycenter dual partition T ∗
h by

connecting the barycenter to the midpoints of edges of each K ∈ Th by straight lines.

Thus, for each nodal point P in Th, there exists a polygonal K
∗
p surrounding P , and

K∗
p ∈ T ∗

h is called the dual element or the control volume at point P , see Figure 1.

For triangulations Th and T ∗
h , we define the following trial function space Uh and

test function space Vh, respectively,

Uh = {uh ∈ C0(Ω): uh|K ∈ P1(K) ∀K ∈ Th, uh|Ω\Ωh
= 0},

Vh = {vh ∈ L2(Ω): vh|K∗

p
= constant ∀P ∈ Nh, vh|Ω\Ωh

= 0},
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P

Figure 1. Dual element K∗
p around point P .

where P1(K) is the set of all linear polynomials on K and Nh is the set of all nodal

points of Th. Let Π
∗
h : Uh → Vh be the interpolation operator defined by

(2.4) Π∗
huh =

∑

P∈Nh

uh(P )χp ∀uh ∈ Uh,

where χp is the characteristic function of the dual element K
∗
p .

A standard weak form for problem (1.1) is to find u ∈ H1
0 (Ω) such that

(2.5) a(u;u, v) = (f, v) ∀ v ∈ H1
0 (Ω),

where

(2.6) a(ω;u, v) =

∫

Ω

a(x, ω)∇u · ∇v dx, (f, v) =

∫

Ω

fv dx.

This weak form is usually adopted for finite element approximations. However, for

the FVM, we need a new weak form. Let u be the solution of problem (1.1) and

v ∈ Vh. Then, by using Green’s formula, we have

(2.7) −

∫

∂K∗

p

n · (a(x, u)∇u)v ds =

∫

K∗

p

fv dx ∀K∗
p ∈ T ∗

h ,

where n is the outward unit normal vector on the concerned boundary. Motivated

by the weak form (2.7), we introduce the form

(2.8) ah(ω;u, v) = −
∑

K∗

p∈T∗

h

∫

∂K∗

p

n · (a(x, ω)∇u)v ds, ω, u ∈ H1(Ω), v ∈ Vh,

and define the finite volume approximation to problem (1.1) by finding uh ∈ Uh such

that

(2.9) ah(uh;uh, vh) = (f, vh) ∀ vh ∈ Vh.
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Note that for fixed ω, ah(ω;u, v) is linear in u and v. SinceΠ
∗
h is a one-to-onemapping

from Uh onto red Vh, the equivalent form of problem (2.9) is to find uh ∈ Uh such

that

(2.10) ah(uh;uh,Π
∗
hvh) = (f,Π∗

hvh) ∀ vh ∈ Uh,

which is the finite volume scheme to be used in our analysis. From (2.7) we know

that scheme (2.10) is consistent, and the following error equation holds:

(2.11) ah(u;u,Π
∗
hvh)− ah(uh;uh,Π

∗
hvh) = 0 ∀ vh ∈ Uh.

2.2. Some lemmas. Let Πhu be the usual linear interpolation approximation of

a continuous function u. In our analysis, the following approximation property, trace

inequality, and the inverse inequality will be used frequently [33], [35]:

‖u−Πhu‖m,p,K 6 Ch2−m
K ‖u‖2,p,K, 0 6 m 6 2,(2.12)

u ∈ W 2,p(K), 1 < p 6 ∞,

‖u‖0,p,∂K 6 Ch
−1/p
K (‖u‖0,p,K + hK‖∇u‖0,p,K),(2.13)

u ∈ W 1,p(K), 1 6 p 6 ∞,

‖uh‖l,p,K 6 Ch
m−l+2/p−2/q
K ‖uh‖m,q,K , uh ∈ P1(K), m 6 l,(2.14)

q 6 p, 1 6 p, q 6 ∞,

‖uh‖m,p,∂K 6 Ch
−1/p
K ‖uh‖m,p,K , uh ∈ P1(K),(2.15)

m = 0, 1, 1 6 p 6 ∞.

R em a r k 2.3. By decomposing the dual element K∗
p into several triangles, it is

easy to see that the trace inequality (2.13) and the inverse inequality (2.14) also hold

on the dual element K∗
p ∈ T ∗

h .

Furthermore, for the operator Π∗
h, we have the following lemma.

Lemma 2.1. For K ∈ Th, let τ ⊂ ∂K be an edge of K. Then, for vh ∈ Uh, 1 6

q 6 ∞, we have

∫

K

(vh −Π∗
hvh) = 0,

∫

τ

(vh −Π∗
hvh) ds = 0,(2.16)

‖vh −Π∗
hvh‖0,q,K 6 ChK‖∇vh‖0,q,K ,(2.17)

‖vh −Π∗
hvh‖0,q,∂K 6 Ch

1−1/q
K ‖∇vh‖0,q,K .(2.18)

578



P r o o f. Noting that vh is a linear function on K, formula (2.16) can be derived

by a direct calculation. For (2.17), let P be a vertex of K and K∗ = K∗
p ∩K a third

of K, then Π∗
hvh = vh(P ) on K∗. By using the inverse inequality, we have

‖vh −Π∗
hvh‖0,q,K∗ = ‖vh − vh(P )‖0,q,K∗

6 hK∗ |K∗|1/q|∇vh|0,∞,K∗ 6 ChK∗‖∇vh‖0,q,K∗ ,

which gives (2.17). Now let τ∗ = ∂K
⋂

∂K∗. Then, from (2.13) and (2.17) we obtain

that

‖vh −Π∗
hvh‖0,q,τ∗ 6 Ch

−1/q
K∗ (‖vh −Π∗

hvh‖0,q,K∗ + hK∗‖∇vh‖0,q,K∗)

6 Ch
1−1/q
K∗ ‖∇vh‖0,q,K∗ .

Thus, the proof is completed. �

Similarly, we prove the following approximation properties.

Lemma 2.2. Let K∗
p ∈ T ∗

h and vh ∈ Uh. Then we have

‖vh −Π∗
hvh‖0,q,K∗

p
6 Ch‖∇vh‖0,q,K∗

p
, 1 6 q 6 ∞,(2.19)

‖vh −Π∗
hvh‖0,q,∂K∗

p
6 Ch1−1/q‖∇vh‖0,q,K∗

p
, 1 6 q 6 ∞.(2.20)

The basic approach of our analysis is to consider the FVM as a perturbation of

the FEM [19], [34], so we need to give the difference between ah(ω;uh,Π
∗
hvh) and

a(ω;uh, vh).

In what follows, we will omit the variable x in a(x, u), except when its arising is

necessary.

Lemma 2.3. For any ω ∈ H1(Ω), w ∈ Uh +H2(Ω), vh ∈ Uh, we have

(2.21) ah(ω;w,Π
∗
hvh)− a(ω;w, vh) =

∑

K∈Th

∫

∂K

n · (a(ω)∇w)(Π∗
hvh − vh) ds

−
∑

K∈Th

∫

K

div(a(ω)∇w)(Π∗
hvh − vh) dx.

P r o o f. By Green’s formula, we have

∫

K

a(ω)∇w · ∇vh dx = −

∫

K

div(a(ω)∇w)vh dx+

∫

∂K

n · (a(ω)∇w)vh ds,
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and (see Figure 1)

∑

K∈Th

∫

K

div(a(ω)∇w)Π∗
hvh dx =

∑

K∈Th

∑

K∗

p∈T∗

h

∫

K∗

p∩K

div(a(ω)∇w)Π∗
hvh dx

=
∑

K∈Th

∫

∂K

n · (a(ω)∇w)Π∗
hvh ds+

∑

K∗

p∈T∗

h

∫

∂K∗

p

n · (a(ω)∇w)Π∗
hvh ds.

Substituting the above two identities into the definitions of a(ω;w, vh) and

ah(ω;w,Π
∗
hvh), the proof is completed. �

The following lemma shows that the finite volume form ah(ω;u,Π
∗
hv) is an h-

perturbation of the finite element form a(ω;u, v).

Lemma 2.4 ([12]). There exists a positive constant C such that for ωh, uh,

vh ∈ Uh,

|a(ωh;uh, vh)− ah(ωh;uh,Π
∗
hvh)| 6 Ch‖∇ωh · ∇uh‖0,p‖vh‖0,q,

where 1 6 p, q 6 ∞, 1/p+ 1/q = 1.

Lemma 2.5. Let ωh ∈ Uh and ‖∇ωh‖0,p 6 M , p > 2. Then for h small enough

we have that

(2.22) ah(ωh;uh,Π
∗
huh) > C‖∇uh‖

2 ∀uh ∈ Uh.

P r o o f. It follows from Lemma 2.4 and the inverse inequality that

|a(ωh;uh, uh)− ah(ωh;uh,Π
∗
huh)| 6 Ch‖∇ωh · ∇uh‖‖∇uh‖

6 Ch|∇ω|0,∞‖∇uh‖
2 6 Ch1−2/p‖∇ωh‖0,p‖∇uh‖

2 6 Ch1−2/pM‖∇uh‖
2.

Next, from the condition (2.1) we can see that

a(ωh;uh, uh) > β1‖∇uh‖
2 ∀ωh, uh ∈ Uh.

Thus, we obtain

ah(ωh;uh,Π
∗
huh) = a(ωh;uh, uh) + ah(ωh;uh,Π

∗
huh)− a(ωh;uh, uh)

> (β1 − Ch1−2/pM)‖∇uh‖
2.

This gives the conclusion of Lemma 2.5. �
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A direct calculation yields

(2.23) div(a(x, ω)∇w) = (a′x1
, a′x2

) · ∇w + a′ω∇ω · ∇w + a div∇w.

Particularly, for uh ∈ Uh, since ∇uh is a constant on K, we have

(2.24) div(a(x, ω)∇uh) = ∇a(x, ω) · ∇uh, uh ∈ Uh.

An analysis of the FVM for solving (1.1) with a(x, u) = a(u) has been given in

[12]. We note that the techniques in [12], together with the application of identity

(2.24), can be used to establish the existence and uniqueness, and the H1- and L2-

norm error estimates of the FVM solution to problem (1.1) with coefficient a(x, u).

We collect these results in the following two lemmas without proof.

Lemma 2.6 ([12]). Let M > 0 be such that ‖f‖ 6 Mα−1. Then, for h small

enough, problem (2.10) has a solution uh in the ball

BM = {vh ∈ Uh : ‖∇vh‖0,p 6 M, 2 < p 6 2 + δ},

where α and δ appear in the inf-sup condition [12]: there exist constants α =

α(a(u),Ω) and δ = δ(a(u),Ω) such that for uh ∈ Uh, ωh ∈ BM ,

‖∇uh‖0,p 6 α sup
06=vh∈Uh

ah(ωh;uh,Π
∗
hvh)

‖∇vh‖0,q
, 2 < p 6 2 + δ, 1/p+ 1/q = 1.

Furthermore, if a′ω is Lipschitz continuous, then for sufficiently small data f and h,

the solution uh is unique.

Lemma 2.7 ([12]). Let u and uh be the solutions of problems (1.1) and (2.10),

respectively. Then, if γ = αβ3M < 1, we have for h small enough that

‖u− uh‖1 6 Ch, u ∈ H2(Ω), f ∈ L2(Ω),(2.25)

‖u− uh‖ 6 Ch2, u ∈ W 2,p(Ω), f ∈ H1(Ω), p > 2,(2.26)

where C = C(u, f) represents a positive constant which only depends on u and f .

The H1- and L2-norm error estimates of the FVM solution in Lemma 2.7 will be

used in our superconvergence analysis. An application of the H1-error estimate is to

bound uh in the W
1,∞-norm.

581



Lemma 2.8. Let u ∈ W 2,p(Ω), p > 2 and uh ∈ Uh be the solutions of problems

(1.1) and (2.10), respectively. Then, for h small enough, we have

|uh|1,∞ 6 C(u).

P r o o f. According to the inverse inequality, we have

(2.27) |uh|1,∞ 6 |uh −Πhu|1,∞ + |Πhu|1,∞ 6 Ch−1‖uh −Πhu‖1 + C|u|1,∞.

Note that |u|1,∞ 6 C|u|2,p, p > 2. In addition, from Lemma 2.7 we know

‖uh −Πhu‖1 6 ‖uh − u‖1 + ‖u−Πhu‖1 6 C(u)h+ Ch‖u‖2.

Hence, substituting this estimate into (2.27), the proof is completed. �

3. Superclose estimate of the interpolation function

In this section, we will give some superclose estimates for the interpolation func-

tion, which are very useful in our superconvergence analysis.

3.1. The interpolation weak estimate. We first establish the interpolation

weak estimate. To this end, we need to strengthen the triangulation condition.

Definition 3.1. Let Th be a quasi-uniform triangulation. Then Th is called

C-uniform if any two adjacent triangle elements of Th form an approximate parallel-

ogram in the sense that (see Figure 2)

(3.1) |
−−→
P1P2 +

−−→
P3P4|+ |

−−→
P2P3 +

−−→
P4P1| = O(h2).

P1 P2

P3P4

Figure 2. An approximate parallelogram.
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It is well known that the interpolation weak estimate plays an important role in

the superconvergence analysis of FEM [33], [35]. For FEM defined on C-uniform

triangle meshes, the following interpolation weak estimate has been established (see,

for example, [33], [35]): For any given ω ∈ W 1,∞(Ω),

(3.2) |a(ω;u−Πhu, v)| 6 C(ω)h2‖u‖3,p‖v‖1,q ∀ v ∈ Uh, 1 < p 6 ∞, 1/p+1/q = 1,

where C(ω) is a positive constant which only depends on ‖ω‖1,∞.

Now we give a similar weak estimate for the FVM.

Theorem 3.1. Let triangulation Th be C-uniform, and u ∈ W 3,p(Ω), ω ∈

W 1,∞(Ω). Then, we have

(3.3) |ah(ω;u−Πhu,Π
∗
hv)| 6 C(ω)h2‖u‖3,p‖v‖1,q

∀ v ∈ Uh, 1 < p 6 ∞, 1/p+ 1/q = 1,

where C(ω) is a positive constant which depends on ‖ω‖1,∞.

P r o o f. Let aM be the value of a(x, ω(x)) at the midpoint of edge τ ⊂ ∂K.

Obviously, we have

|a(x, ω)− aM | 6 hK |a(x, ω)|1,∞ 6 C(ω)hK , x ∈ τ.

From Lemma 2.3, we obtain for v ∈ Uh that

(3.4) ah(ω;u−Πhu,Π
∗
hv)− a(ω;u−Πhu, v)

=
∑

K∈Th

∫

∂K

n · (a(ω)− aM )∇(u −Πhu)(Π
∗
hv − v) ds

+
∑

K∈Th

∫

∂K

n · (aM∇(u −Πhu))(Π
∗
hv − v) ds

+
∑

K∈Th

(−div(a(ω)∇(u −Πhu)),Π
∗
hv − v)K

= E1 + E2 + E3.

We need to estimate E1 ∼ E3. Using (2.12)–(2.13) and (2.18), we first obtain

|E1| 6
∑

K∈Th

hK |a(x, ω)|1,∞‖∇(u−Πhu)‖0,p,∂K‖v −Π∗
hv‖0,q,∂K

6 C(ω)h2‖u‖2,p‖v‖1,q.
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Next, we write (noting that (Π∗
hv − v)|∂Ωh

= 0)

E2 =
∑

K∈Th

∑

τ⊂∂K\∂Ωh

∫

τ

n · (aM∇(u−Πhu))(Π
∗
hv − v) ds.

Let τ be an interior edge, that is, a common side of two adjacent elements K and K ′.

Since n|τ∩∂K = −n|τ∩∂K′ and aM∇u(Π∗
hv − v) is continuous across edge τ (except

for the midpoint), it follows from (2.16) and aM∇Πhu being constant that

E2 =
∑

K∈Th

∑

τ⊂∂K\∂Ωh

∫

τ

−n · (aM∇Πhu)(Π
∗
hv − v) ds = 0.

Finally, to estimate E3, let w
c be the piecewise constant approximation of function

w on Th, which satisfies

(3.5) ‖w − wc‖0,p,K 6 ChK‖w‖1,p,K , 1 6 p 6 ∞.

Moreover, from (2.23) and (2.16) we find that

E3 =
∑

K∈Th

(−∇a(ω) · ∇(u−Πhu)− a(ω)div∇(u−Πhu),Π
∗
hv − v)K

= −
∑

K∈Th

(∇a(ω) · ∇(u−Πhu),Π
∗
hv − v)K

−
∑

K∈Th

(a(ω)div∇u− (a(ω)div∇u)c,Π∗
hv − v)K

6 C|a(ω)|1,∞
∑

K∈Th

hK(‖u‖2,p,K + ‖u‖3,p,K)‖v −Π∗
hv‖0,q,K

6 C(ω)h2‖u‖3,p‖v‖1,q.

Substituting estimates E1 ∼ E3 into (3.4), we complete the proof by using (3.2). �

3.2. Superclose estimates for Πhu−uh. By means of the interpolation weak es-

timate in Theorem 3.1, we can obtain some important superclose results for Πhu−uh

in the H1- and W 1,∞-norm.
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Theorem 3.2. Let triangulation Th be C-uniform, and u and uh be the solutions

of problems (1.1) and (2.10), respectively, and u ∈ H3(Ω). Then we have

(3.6) ‖Πhu− uh‖1 6 C(u)h2‖u‖3.

P r o o f. Let θ = uh−Πhu. Then, from Lemma 2.5 and the error equation (2.11)

we can obtain that

(3.7) C‖uh −Πhu‖
2
1 6 ah(uh;uh −Πhu,Π

∗
h(uh −Πhu))

= ah(uh;uh − u,Π∗
hθ) + ah(uh;u−Πhu,Π

∗
hθ)

= ah(uh;uh,Π
∗
hθ)− ah(uh;u,Π

∗
hθ) + ah(uh;u−Πhu,Π

∗
hθ)

= ah(u;u,Π
∗
hθ)− ah(uh;u,Π

∗
hθ) + ah(uh;u−Πhu,Π

∗
hθ) = F1 + F2.

To estimate F1 = ah(u;u,Π
∗
hθ)− ah(uh;u,Π

∗
hθ), we need the following results:

(3.8) |a(u)− a(uh)| =

∣

∣

∣

∣

∫ 1

0

d

dt
a(tu+ (1− t)uh) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

a′u(tu+ (1 − t)uh) dt(u− uh)

∣

∣

∣

∣

6 |a′u|∞|u− uh|.

In addition, (a(u)− a(uh))∇u and θ are continuous across ∂K∗
p , which implies that

(3.9)
∑

K∗

p∈T∗

h

∫

∂K∗

p

n · (a(u)− a(uh))∇uθ ds = 0 ∀ θ ∈ Uh.

Thus, it follows from (3.8)–(3.9), the trace inequality, (2.20), and Lemma 2.7 that

F1 = −
∑

K∗

p∈T∗

h

∫

∂K∗

p

n · (a(u)− a(uh))∇uΠ∗
hθ ds

= −
∑

K∗

p∈T∗

h

∫

∂K∗

p

n · (a(u)− a(uh))∇u(Π∗
hθ − θ) ds

6 |a′u|∞|∇u|∞
∑

K∗

p∈T∗

h

‖u− uh‖0,∂K∗

p
‖Πhθ − θ‖0,∂K∗

p

6 C
∑

K∗

p∈T∗

h

(‖u− uh‖0,K∗

p
+ h‖∇(u− uh)‖0,K∗

p
)‖θ‖1,K∗

p

6 C(‖u− uh‖+ h‖∇(u− uh)‖)‖θ‖1 6 C(u)h2‖θ‖1.

For F2, from ‖uh‖1,∞ 6 C(u) and the weak estimate (3.3) we know that

F2 = ah(uh;u−Πhu,Π
∗
hθ) 6 C(u)h2‖u‖3‖θ‖1.

Substituting estimates F1 and F2 into (3.7), the proof is completed. �
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A direct result of Theorem 3.2 are the following optimal error estimates in the Lp-

and W 1,p-norm.

Theorem 3.3. Let triangulation Th be C-uniform, and u and uh be the solutions

of problems (1.1) and (2.10), respectively. Then, we have

‖u− uh‖0,p 6 Cp(u)h
2, u ∈ H3(Ω), 1 < p < ∞,(3.10)

‖u− uh‖0,∞ 6 C(u)|lnh|1/2h2, u ∈ H3(Ω) ∩W 2,∞(Ω),(3.11)

‖u− uh‖1,p 6 C(u)h, u ∈ H3(Ω) ∩W 2,p(Ω), 1 < p 6 ∞.(3.12)

P r o o f. Using the embedding theory and (3.6), we obtain

‖u− uh‖0,p 6 ‖u−Πhu‖0,p + ‖Πhu− uh‖0,p

6 ‖u−Πhu‖0,p + Cp‖Πhu− uh‖1

6 Cph
2(‖u‖2,p + ‖u‖3), 1 < p < ∞.

Furthermore, from the discrete embedding inequality in finite element space [35], we

have

‖vh‖0,∞ 6 C|lnh|1/2‖vh‖1 ∀ vh ∈ Uh,

which, together with (3.6), yields that

‖u− uh‖0,∞ 6 ‖u−Πhu‖0,∞ + ‖Πhu− uh‖0,∞

6 ‖u−Πhu‖0,∞ + C|ln h|1/2‖Πhu− uh‖1

6 C(u)h2(‖u‖2,∞ + |lnh|1/2‖u‖3).

In addition, the inverse inequality implies that

‖u− uh‖1,p 6 ‖u−Πhu‖1,p + ‖Πhu− uh‖1,∞

6 ‖u−Πhu‖1,p + Ch−1‖Πhu− uh‖1

6 C(u)(h‖u‖2,p + h‖u‖3).

The proof is completed. �

R em a r k 3.1. Bi [6] gives the following L∞-norm error estimate:

‖u− uh‖0,∞ 6 C(u)|lnh|h2.

Obviously, our result (3.11) is better than the above one.
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Below we consider the superconvergence estimate in space W 1,∞(Ω). To this end,

we need to introduce the regularized Green function [33], [35].

For any given z ∈ Ω, let δzh ∈ Uh be the regularized δ-function which satisfies

(δzh, vh) = vh(z), z ∈ Ω ∀ vh ∈ Uh.

For any appointed direction L, define the direction derivative

∂zv(z) = lim
∆z→0,∆z‖L

v(z +∆z)− v(z)

|∆z|
,

where the notation∆z ‖ Lmeans that the increment∆z is parallel to the direction L.

Then, for given ω ∈ W 1,∞(Ω), there exists a regularized Green function of derivative

type ∂zG
z(x) ∈ H1

0 (Ω) ∩H2(Ω) such that

a(ω; v, ∂zG
z) = (∂zδ

z
h, v) ∀ v ∈ H1

0 (Ω).

Let ∂zG
z
h ∈ Uh be the finite element approximation of ∂zG

z such that

a(ω; vh, ∂zG
z − ∂zG

z
h) = 0 ∀ vh ∈ Uh.

Clearly, we have

(3.13) a(ω; vh, ∂zG
z
h) = a(ω; vh, ∂zG

z) = (∂zδ
z
h, vh) = ∂zvh(z) ∀ vh ∈ Uh.

The following boundedness estimates have been given in [33], [35]:

(3.14) ‖∂zG
z
h‖1 6 Ch−1|lnh|1/2; ‖∂zG

z
h‖1,1 6 C|ln h|,

where C is a positive constant independent of z ∈ Ω.

Theorem 3.4. Let triangulation Th be C-uniform, and u and uh be the solutions

of problems (1.1) and (2.10), respectively, and u ∈ W 3,∞(Ω). Then, we have

(3.15) ‖Πhu− uh‖1,∞ 6 Ch2|lnh|3/2‖u‖3,∞.

P r o o f. Let gzh = ∂zG
z
h. From (3.13) and Lemma 2.3 we have

(3.16) ∂z(uh −Πhu)(z) = a(uh;uh − Πhu, g
z
h)

= a(uh;uh −Πhu, g
z
h)− ah(uh;uh −Πhu,Π

∗
hg

z
h) + ah(uh;uh −Πhu,Π

∗
hg

z
h)

=
∑

K∈Th

∫

∂K

n · (a(uh)∇(uh −Πhu))(g
z
h −Π∗

hg
z
h) ds

+
∑

K∈Th

(−div(a(uh)∇(uh −Πhu)), g
z
h −Π∗

hg
z
h)K

+ ah(uh;uh −Πhu,Π
∗
hg

z
h) = S1 + S2 + S3.
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Thus, it follows from (2.16), (2.13), (2.18), Theorem 3.2, and (3.14) that

S1 =
∑

K∈Th

∫

∂K

n · ((a(uh)− ac(uh))∇(uh −Πhu))(g
z
h −Π∗

hg
z
h) ds

6 C
∑

K∈Th

hK |a(uh)|1,∞‖∇(uh −Πhu)‖0,∂K‖gzh −Π∗
hg

z
h‖0,∂K

6 Ch1/2|∇uh|∞‖∇(uh −Πhu)‖h
1/2‖gzh‖1 6 Ch2|lnh|1/2‖u‖3.

Moreover, from (2.24), (2.17), Theorem 3.2, and (3.14) we know

S2 6 C
∑

K∈Th

|a(uh)|1,∞‖uh −Πhu‖1,K‖gzh −Π∗
hg

z
h‖0,K

6 C(u)h2‖u‖3h‖g
z
h‖1 6 C(u)h2|lnh|1/2‖u‖3.

Furthermore, according to the error equation (2.11), we may write

(3.17) S3 = ah(uh;uh −Πhu,Π
∗
hg

z
h)

= ah(uh;uh − u,Π∗
hg

z
h) + ah(uh;u−Πhu,Π

∗
hg

z
h)

= ah(uh;uh,Π
∗
hg

z
h)− ah(uh;u,Π

∗
hg

z
h) + ah(uh;u−Πhu,Π

∗
hg

z
h)

= ah(u;u,Π
∗
hg

z
h)− ah(uh;u,Π

∗
hg

z
h) + ah(uh;u−Πhu,Π

∗
hg

z
h)

= S31 + S32.

From (3.8), (3.9), (2.20), and Theorem 3.3 we find that

S31 = ah(u;u,Π
∗
hg

z
h)− ah(uh;u,Π

∗
hg

z
h)

= −
∑

K∗

p∈T∗

h

∫

∂K∗

p

n · (a(u)− a(uh))∇uΠ∗
hg

z
h ds

= −
∑

K∗

p∈T∗

h

∫

∂K∗

p

n · (a(u)− a(uh))∇u(Π∗
hg

z
h − gzh) ds

6 |a′u|∞|∇u|∞‖u− uh‖0,∞
∑

K∗

p∈T∗

h

‖Π∗
hg

z
h − gzh‖0,1,∂K∗

p

6 C(u)‖u− uh‖0,∞
∑

K∗

p∈T∗

h

‖gzh‖1,1,K∗

p

6 C(u)h2|lnh|1/2‖gzh‖1,1 6 C(u)h2|lnh|3/2.

For S32, the weak estimate (3.3) implies that

S32 = ah(uh;u−Πhu,Π
∗
hθ) 6 C(uh)h

2‖u‖3,∞‖gzh‖1,1 6 C(u)h2|ln h|.
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Hence,

S3 = S31 + S32 6 C(u)h2|lnh|3/2.

Substituting estimates S1 ∼ S3 into (3.16), we complete the proof. �

4. Mesh points and global superconvergence in W 1,∞
-norm

In this section, we first give the gradient superconvergence on mesh points. Then,

by using the interpolation post-processing technique, we further derive a global super-

convergence result, and establish an asymptotically exact a posteriori error estimator

in the W 1,∞-norm.

4.1. Gradient superconvergence on mesh points. Let P0 be an interior nodal

point surrounded by elements K1, . . . ,Km, Ki = △P0PiPi+1. Denote by Ni the

midpoint of a common edge P0Pi of two adjacent elements Ki−1 and Ki (see Figure 3

for the m = 6 case). It is well known that if the triangle meshes are C-uniform, the

midpoint Ni is the optimal stress point [35], that is (set K0 = Km),

(4.1)
∣

∣∇u(Ni)−
1
2 [∇Πhu|Ki−1

+∇Πhu|Ki
]
∣

∣ 6 Ch2‖u‖3,∞,Ki−1∪Ki
, i = 1, . . . ,m.

P0

P1

P2

P3

P4

P5

P6

N1

N2

N3N4

N5

N6

Figure 3. C-uniform triangle elements around node P0.

In the existing literature, the set of optimal stress points on triangle meshes only

has the midpoints of the interior edges. See, for example, [26], [35]. Below we prove

that any interior mesh point P is also an optimal stress point if C-uniform meshes

are used.

589



Lemma 4.1. Assume that the triangulation Th is C-uniform. Then

(4.2)

∣

∣

∣

∣

1

m

m
∑

i=1

(Ni − P0)

∣

∣

∣

∣

6 Ch2.

P r o o f. Let Pi1 = Pi2 if i1 = i2 (mod m), and vector
−−→
P0Pi = Pi − P0. Since

Ni =
1
2 (P0 + Pi), we have

(4.3)
1

m

m
∑

i=1

(Ni − P0) =
1

2m

m
∑

i=1

(Pi − P0) =
1

2m

m
∑

i=1

−−→
P0Pi.

By the vector operation rule and C-uniform condition (3.1), we can obtain (see

Figure 3 for m = 6) that

m
∑

i=1

−−−−−−→
Pi+1Pi+2 =

−−→
P2P3 +

−−→
P3P4 +

−−→
P4P5 +

−−→
P5P6 +

−−→
P6P1 +

−−→
P1P2 =

−→
0 ,

and |
−−→
P0Pi +

−−−−−−→
Pi+1Pi+2| 6 Ch2, i = 1, 2, . . . ,m.

Hence,

(4.4)

∣

∣

∣

∣

m
∑

i=1

−−→
P0Pi

∣

∣

∣

∣

=

∣

∣

∣

∣

m
∑

i=1

(
−−→
P0Pi +

−−−−−−→
Pi+1Pi+2)

∣

∣

∣

∣

6 Ch2.

Now, Lemma 4.1 follows from (4.3) and (4.4). �

Denote by ∇Πhu(P ) the arithmetic mean of the gradient ∇Πhu on elements con-

taining mesh point P .

Theorem 4.1. Assume that the triangulation Th is C-uniform, and u ∈ W 3,∞(Ω).

Then, any interior mesh point P is also an optimal stress point, that is,

(4.5) |∇u(P )−∇Πhu(P )| 6 Ch2‖u‖3,∞,E,

where E is the union of elements containing point P .

P r o o f. Let P0 be an interior mesh point (see Figure 3). First, from (4.1) we

have (setting K0 = Km) that

(4.6)

∣

∣

∣

∣

1

m

m
∑

i=1

∇u(Ni)−∇Πhu(P0)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

m

m
∑

i=1

∇u(Ni)−
1

m

m
∑

i=1

∇Πhu|Ki

∣

∣

∣

∣

=
1

m

∣

∣

∣

∣

m
∑

i=1

∇u(Ni)−
1

2

( m
∑

i=1

∇Πhu|Ki−1
+

m
∑

i=1

∇Πhu|Ki

)
∣

∣

∣

∣

6
1

m

m
∑

i=1

∣

∣

∣
∇u(Ni)−

1

2
(∇Πhu|Ki−1

+∇Πhu|Ki
)
∣

∣

∣
6 Ch2‖u‖3,∞,E.
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Next, let ∂u = ∂xu or ∂yu. Then, by means of the Taylor expansion, we obtain

∂u(Ni) = ∂u(P0) +∇∂u(P0) · (Ni − P0) +Ri,

where the remainder term |Ri| 6 Ch2‖u‖3,∞,Ki−1∪Ki
. Hence,

1

m

m
∑

i=1

(∂u(Ni)− ∂u(P0)) =
1

m
∇∂u(P0) ·

m
∑

i=1

(Ni − P0) +
1

m

m
∑

i=1

Ri.

So, from Lemma 4.1 we have that

∣

∣

∣

∣

1

m

m
∑

i=1

∇u(Ni)−∇u(P0)

∣

∣

∣

∣

6 Ch2‖u‖3,∞,E,

which, together with (4.6), completes the proof. �

Now, combining Theorems 3.4 and 4.1, we immediately obtain the following su-

perconvergence result.

Theorem 4.2. Assume that the triangulation Th is C-uniform, u and uh are the

solutions of problems (1.1) and (2.10), respectively, and u ∈ W 3,∞(Ω). Then, we

have

(4.7) max
P∈S

|∇u(P )−∇uh(P )| 6 Ch2|lnh|3/2‖u‖3,∞,

where S is the set of all interior mesh points.

4.2. Global superconvergence in H1-norm. In order to derive the global

superconvergence approximation to solution u, we need to introduce the interpolation

post-processing technique proposed by Lin et al. in [27].

Let T2h be a coarser mesh triangulation of domain Ω with the mesh size 2h.

The triangulation Th is a refined triangulation of T2h obtained by connecting the

midpoints of all edges of elements in T2h. We assume that T2h is C-uniform. It is

easy to see that the triangulation Th is C-uniform if T2h is. Let Q2h be the piecewise

quadratic interpolation operator defined on T2h by

Q2hu(zi) = u(zi), i = 1, 2, . . .

where {zi} are the vertices and the midpoints of edges of all elements in T2h. Note

that each interpolation node of Q2h is also the vertex of an element in Th.
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Lemma 4.2 ([27]). The interpolation operator Q2h satisfies

Q2hu = Q2hΠhu, u ∈ H2(Ω),

‖u−Q2hu‖1 6 Ch2‖u‖3,

‖Q2hvh‖1 6 C‖vh‖1 ∀ vh ∈ Uh.

Let uh be the FVM solution. Then, the interpolation post-processed solution is

defined by Q2huh.

Theorem 4.3. Let the triangulation T2h be C-uniform, u and uh be the solutions

of problems (1.1) and (2.10), respectively, and u ∈ H3(Ω). Then, we have the

following superconvergence estimate:

‖u−Q2huh‖1 6 Ch2‖u‖3.

P r o o f. From Lemma 4.2 we have

‖u−Q2huh‖1 = ‖u−Q2hu+Q2hΠhu−Q2huh‖1

6 ‖u−Q2hu‖1 + ‖Q2h(Πhu− uh)‖1

6 Ch2‖u‖3 + C‖Πhu− uh‖1.

The proof is completed by using Theorem 3.2. �

It is very important for a numerical method to have a computable a posteriori error

bound, so that we can assess and enhance the accuracy of the numerical solution by

an adaptive algorithm in practical applications. By virtue of the superconvergence

result of Theorem 4.3, we can further derive an asymptotically exact a posteriori

error estimator for the error ‖u− uh‖1.

Define the error estimator E(uh) = ‖uh − Q2huh‖1. Obviously, E(uh) is a com-

putable quantity in terms of the FVM solution uh.

Theorem 4.4. Assume that the conditions of Theorem 4.5 hold. Then, E(uh) is

an asymptotically exact a posteriori error estimator for the error ‖u− uh‖1, namely

(4.8) lim
h→0

‖uh −Q2huh‖1
‖u− uh‖1

= 1.

P r o o f. Using the triangle inequality, we obtain

‖u− uh‖1 − ‖u−Q2huh‖1 6 E(uh) 6 ‖u− uh‖1 + ‖u−Q2huh‖1,
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or

(4.9) 1−
‖u−Q2huh‖1
‖u− uh‖1

6
E(uh)

‖u− uh‖1
6 1 +

‖u−Q2huh‖1
‖u− uh‖1

.

From Theorem 4.3, we know that ‖u − Q2huh‖1 = O(h2). However, for the FVM

solution, generally speaking, we only have ‖u − uh‖1 = O(h). Thus, letting h → 0

in (4.9), the proof is completed. �

5. Numerical example

In this section, we will present a numerical example to illustrate the theoretical

analysis.

Let us consider problem (1.1) with the data:

a(x, u) = 1 +
x1x2

1 + u2
, u(x) = x3.5

1 lnx1 x3.5
2 lnx2,

and the source term f = −div(a(x, u)∇u). For simplicity, we take Ω = [0, 1]2.

In the numerical experiment, we first partition the domain Ω into square meshes

with mesh size h = 1/N , and then we obtain the C-uniform triangle meshes by

perturbing randomly the inner nodes of the square meshes within h2 and dividing

each derived quadrilateral into two triangles (see Figure 4). The refined meshes

are obtained by successively halving the mesh size h. The finite volume equa-

tion (2.10) is reduced to a nonlinear system of algebraic equations A(U)U = F ,

where U is a vector whose entries are the values of uh at the mesh points. We

have used a fixed point type iteration to solve this system, that is, we solve the lin-

earization system A(U (k−1))U (k) = F , where U (k−1) is the previous iteration vector.

The fixed point iteration continues until a tolerance of |U (k) − U (k−1)| < 10−6 or

|A(U (k−1))U (k) − F | < 10−6 is reached.

Figure 4. C-uniform triangle meshes.
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Let eh = max
P∈S

|∇u(P ) − ∇uh(P )| (or eh = ‖u − Q2huh‖1) be the computational

error with mesh size h. The numerical convergence rate is computed by using the

formula r = ln(eh/eh/2)/ ln 2. Denote by σ = ‖uh−Q2huh‖1/‖u−uh‖1 the efficiency

index of an a posteriori error estimator ‖uh −Q2huh‖1. Table I gives the numerical

results with successively halved mesh size h. We see that for approximations∇uh and

Q2huh, a convergence rate of O(h2)-order is achieved as the theoretical prediction

and the a posteriori error estimator is efficient, that is, σ ≈ 1, as h → 0.

max |∇u(P )−∇uh(P )| ‖u−Q2huh‖1 estimator

mesh h error rate error rate σ-index

1/8 0.6635 – 0.3421 – 3.82

1/16 1.6796e-1 1.982 8.6479e-2 1.984 2.21

1/32 4.2428e-2 1.985 2.1815e-2 1.987 2.12

1/64 1.0710e-2 1.986 0.5488e-2 1.991 1.13

1/128 2.7041e-3 1.986 1.3801e-3 1.992 1.11

Table I. The convergence rate and the estimator.
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