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Abstract. The concept of α-ideals in posets is introduced. Several properties of α-ideals
in 0-distributive posets are studied. Characterization of prime ideals to be α-ideals in 0-
distributive posets is obtained in terms of minimality of ideals. Further, it is proved that
if a prime ideal I of a 0-distributive poset is non-dense, then I is an α-ideal. Moreover, it
is shown that the set of all α-ideals α Id(P ) of a poset P with 0 forms a complete lattice.
A result analogous to separation theorem for finite 0-distributive posets is obtained with
respect to prime α-ideals. Some counterexamples are also given.
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1. Introduction

Grillet and Varlet [4] introduced 0-distributive lattices as a generalization of dis-

tributive lattices. The theory of 0-distributive lattices was further studied by Bala-

subramani and Venkatanarasimhan [1] and Jayaram [7]. Cornish [2] introduced and

studied the properties of α-ideals in distributive lattices. Generalization of the con-

cept of α-ideals in 0-distributive lattices is carried out by Jayaram [7]. In fact, he

proved the separation theorem for prime α-ideals in the case of 0-distributive lattices

as follows.

Theorem A (Jayaram [7]). Let I be an α-ideal of a 0-distributive lattice L and S

be a meet subsemilattice of L such that I ∩S = ∅. Then there exists a prime α-ideal

G of L such that I ⊆ G and G ∩ S = ∅.

Additional properties of α-ideals in 0-distributive lattices were obtained by Pawar

and Mane [12] and Pawar and Khopade [11].
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In Section 2 of this paper, we show several results concerning α-ideals, which are

extensions of the results concerning lattices and semilattices given in Pawar and

Mane [12] and Pawar and Khopade [11] to posets, especially to 0-distributive posets.

In Section 3, we prove that the set of all α-ideals of a poset with 0 is a complete

lattice. Further, we generalize Theorem A for finite 0-distributive posets.

We begin with necessary concepts and terminology. For notation and terminology

not mentioned here the reader is referred to Grätzer [3].

Let P be a poset and A ⊆ P . The set Au = {x ∈ P ; x > a for every a ∈ A}

is called the upper cone of A. Dually, we have the concept of the lower cone Al

of A. We shall write Aul instead of {Au}l and dually. The upper cone {a}u is simply

denoted by au and {a, b}u is denoted by (a, b)u. Similar notation is used for lower

cones. Further, for A,B ⊆ P, {A ∪ B}u is denoted by {A,B}u and for x ∈ P , the

set {A ∪ {x}}u is denoted by {A, x}u. Similar notation is used for lower cones. We

note that A ⊆ Aul and A ⊆ Alu. If A ⊆ B, then Bl ⊆ Al and Bu ⊆ Au. Moreover,

Alul = Al, Aulu = Au and {au}l = {a}l = al.

A poset P with 0 is called 0-distributive, see Joshi and Waphare [9], if (x, y)l =

{0} = (x, z)l imply {x, (y, z)u}l = {0} for x, y, z ∈ P . Dually, we have the concept

of a 1-distributive poset.

A nonempty subset I of a poset P is called an ideal if a, b ∈ I implies (a, b)ul ⊆ I,

see Halaš [5]. A proper ideal I is called prime, if (a, b)l ⊆ I implies that either a ∈ I

or b ∈ I, see Halaš and Rach̊unek [6]. Dually, we have the concepts of a filter and

a prime filter. Given a ∈ P , the subset al = {x ∈ P ; x 6 a} is an ideal of P

generated by a, denoted by (a]. We shall call (a] a principal ideal. Dually, a filter

[a) = au = {x ∈ P ; x 6 a} generated by a is called a principal filter. It is known

that the set of all ideals of a poset P , denoted by Id(P ), forms a complete lattice

under set inclusion, see Halaš and Rach̊unek [6]. A nonempty subset Q of P is called

an up directed set, if Q∩ (x, y)u 6= ∅ for any x, y ∈ Q. Dually, we have the concept of

a down directed set. If an ideal I (filter F ) is an up (down) directed set of P , then

it is called a u-ideal (l-filter).

For a nonempty subset A of a poset P with 0, define a subset A⊥ of P as follows:

A⊥ = {z ∈ P ; (a, z)l = {0} ∀ a ∈ A}.

If A = {x}, then we write a⊥ instead of {a}⊥. We note that A ⊆ A⊥⊥ and x ∈ x⊥⊥.

Further, A⊥ =
⋂

a∈A

a⊥ and A ∩ A⊥ = {0}. Moreover, if A ⊆ B, then B⊥ ⊆ A⊥.

An ideal I of a poset P is said to be an α-ideal, if x⊥⊥ ⊆ I for all x ∈ I. We

denote the set of all α-ideals of P by α Id(P ).
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2. α-ideals in 0-distributive posets

In this section, we study α-ideals, prime and minimal prime ideals in a 0-

distributive poset. We begin by proving a characterization of 0-distributive posets.

Lemma 2.1. A poset P is 0-distributive if and only if (x, y)ul
⊥

= x⊥ ∩ y⊥ for

all x, y ∈ P .

P r o o f. Let P be a 0-distributive poset and let a ∈ (x, y)ul
⊥
. Since x, y ∈ (x, y)ul,

we get (a, x)l = {0} = (a, y)l, which implies a ∈ x⊥∩y⊥. Hence (x, y)ul
⊥
⊆ x⊥∩y⊥.

To show the converse inclusion, suppose that a ∈ x⊥ ∩ y⊥. We have (a, x)l =

{0} = (a, y)l and by 0-distributivity, we get {a, (x, y)u}l = {0}. Let z ∈ (x, y)ul.

Then clearly (a, z)l = {0}. Thus a ∈ (x, y)ul
⊥
, which gives x⊥ ∩ y⊥ ⊆ (x, y)ul

⊥
.

Therefore (x, y)ul
⊥
= x⊥ ∩ y⊥.

Conversely, suppose (x, y)ul
⊥

= x⊥ ∩ y⊥ for all x, y ∈ P . To prove that P is

0-distributive, let us assume that (a, x)l = {0} = (a, y)l for a, x, y ∈ P . Let z ∈

{a, (x, y)u}l. Then clearly (z, x)l = {0} = (z, y)l and z ∈ (x, y)ul. By assumption,

z ∈ x⊥ ∩ y⊥ = (x, y)ul
⊥
and z ∈ (x, y)ul, which yield z ∈ (x, y)ul ∩ (x, y)ul

⊥
= {0}.

Therefore z = 0 and the 0-distributivity of P follows. �

For an ideal I of a poset P define a subset I ′ of P as follows:

I ′ = {x ∈ P ; a⊥ ⊆ x⊥ for some a ∈ I}.

The following is a characterization of an ideal I to be an α-ideal in terms of I ′ in

a 0-distributive poset.

Theorem 2.2. Let I be a u-ideal of a 0-distributive poset P . Then I ′ is the

smallest α-ideal containing I. Moreover, an ideal I of P is an α-ideal if and only if

I = I ′.

P r o o f. First we show that I ′ is an ideal. For this, assume that x, y ∈ I ′ and

z ∈ (x, y)ul. We have to show that z ∈ I ′. Since x, y ∈ I ′, there exist a, b ∈ I such

that a⊥ ⊆ x⊥ and b⊥ ⊆ y⊥, and hence a⊥∩ b⊥ ⊆ x⊥∩y⊥. Therefore by Lemma 2.1,

a⊥ ∩ b⊥ ⊆ (x, y)ul
⊥
. Since I is a u-ideal, there exists an element c ∈ (a, b)u and

c ∈ I. Now, c ∈ (a, b)u implies c⊥ ⊆ a⊥ ∩ b⊥, which gives c⊥ ⊆ (x, y)ul
⊥
. Since

z ∈ (x, y)ul, we have (x, y)ul
⊥
⊆ z⊥. Hence c⊥ ⊆ z⊥ and therefore z ∈ I ′.

Now, we show that I ′ is an α-ideal. Let x ∈ I ′, i.e., there exists a ∈ I such that

a⊥ ⊆ x⊥. We show that x⊥⊥ ⊆ I ′. Suppose on the contrary that x⊥⊥ 6⊆ I ′. Then

there exists an element y ∈ P such that y ∈ x⊥⊥ and y /∈ I ′. Observe that a⊥ 6⊆ y⊥,

since a⊥ ⊆ y⊥ and a ∈ I imply that y ∈ I ′, a contradiction to the fact that y /∈ I ′.
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Thus a⊥ 6⊆ y⊥. So, there exists b ∈ a⊥ and b /∈ y⊥. Since a⊥ ⊆ x⊥, we have b ∈ x⊥

and b /∈ y⊥, which is a contradiction to the fact that y ∈ x⊥⊥. Hence x⊥⊥ ⊆ I ′.

The inclusion I ⊆ I ′ follows from the fact that a⊥ ⊆ a⊥ for any element a ∈ I.

Now, suppose that there exists an α-ideal J with the property I ⊆ J . We have to

show that I ′ ⊆ J . Let x ∈ I ′, i.e., a⊥ ⊆ x⊥ for some a ∈ I. Since I ⊆ J , we have

a⊥ ⊆ x⊥ and a ∈ J . Using the fact that J is an α-ideal, we get x⊥⊥ ⊆ a⊥⊥ ⊆ J .

Since x ∈ x⊥⊥, we get x ∈ J as required.

Further, let I be an α-ideal. To show that I = I ′, it is enough to show that I ′ ⊆ I.

For this, assume x ∈ I ′. Then a⊥ ⊆ x⊥ for some a ∈ I, which yields x⊥⊥ ⊆ a⊥⊥ ⊆ I.

By using the fact that x ∈ x⊥⊥, we get x ∈ I. Hence I = I ′. �

R em a r k 2.3. The statement of Theorem 2.2 is not necessarily true if we drop

the condition of I being a u-ideal. Consider the 0-distributive poset P depicted

in Figure 1 and the ideal I = {0, a, b}, which is not a u-ideal. Observe that I ′ =

{0, a, b} ∪ {xi}, where i = 1, 2, . . . But I ′ is not an ideal as (b, x1)
ul = P 6⊆ I ′.

0

ab

x1

x2

x3

y1

y2

y3

Figure 1.

For a nonempty subset A of a poset P with 0, consider the set 0(A) as follows:

0(A) = {x ∈ P ; (a, x)l = {0} for some a ∈ A}.

We have the following result.

Theorem 2.4. Let A be a down directed set of a 0-distributive poset P . Then

0(A) is an α-ideal of P .

P r o o f. First we prove that 0(A) is an ideal. Let x, y ∈ 0(A) and z ∈ (x, y)ul.

We show that z ∈ 0(A). Since x, y ∈ 0(A), there exist a, b ∈ A such that (a, x)l =

{0} = (b, y)l. Now, since A is a down directed set, there exists an element c ∈ A
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such that c ∈ (a, b)l, and consequently, (c, x)l = {0} = (c, y)l. By 0-distributivity,

we get {c, (x, y)u}l = {0}, which gives (c, z)l = {0}. Hence z ∈ 0(A).

Now, we show that 0(A) is an α-ideal. Let x ∈ 0(A), that is, (a, x)l = {0} for some

a ∈ A. We claim that x⊥⊥ ⊆ 0(A). Suppose that z ∈ x⊥⊥. We obtain (z, y)l = {0}

for all y ∈ x⊥. Since a ∈ x⊥, we get (z, a)l = {0}, and this yields z ∈ 0(A). Therefore

0(A) is an α-ideal. �

R em a r k 2.5. The statement of Theorem 2.4 is not true if we remove the condi-

tion that A is a down directed set. In the 0-distributive poset P depicted in Figure 2,

the set A = {1, a, b} is not a down directed set. Observe that 0(A) = {0, a, b} is not

an ideal as a, b ∈ 0(A), but (a, b)ul = P 6⊆ 0(A).

0

b

1

a

Figure 2.

An immediate consequence of Theorem 2.4 is the following:

Corollary 2.6. For any l-filter F of a 0-distributive poset P , 0(F ) is an α-ideal

of P .

However, in the case of meet semilattices we have a theorem of Pawar and

Mane [12] following as a corollary.

Corollary 2.7. For any filter F of a 0-distributive meet semilattice P , 0(F ) is an

α-ideal of P .

Let I be a proper ideal of a poset P . Then I is said to be a maximal ideal of P , if

the only ideal properly containing I is P . A maximal filter, more usually known as

an ultra filter, is defined dually. Also, we have the concepts of a minimal ideal and

a minimal filter.

It has to be noticed that Joshi and Mundlik [8], in their two lemmas listed below,

have assumed that every maximal l-filter (maximal among all l-filters) is a maximal

filter (maximal among all filters).

Lemma 2.8 (Joshi, Mundlik [8]). Let F be an l-filter of a poset P with 0. Then

F is a maximal l-filter if and only if the following condition holds:

for any x /∈ F, there exists y ∈ F such that (x, y)l = {0}.
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Lemma 2.9 (Joshi, Mundlik [8]). Let P be a finite 0-distributive poset and let

I be an ideal of P . Then I is a minimal prime ideal of P if and only if P − I is

a maximal l-filter of P .

The following result is a characterization of prime ideals to be α-ideals in the case

of finite 0-distributive posets.

Theorem 2.10. Every minimal prime ideal of a finite 0-distributive poset P is

an α-ideal.

P r o o f. Let x ∈ I. To show that I is an α-ideal, we have to show that x⊥⊥ ⊆ I.

Since I is a minimal prime ideal of P , by Lemma 2.9, P − I is a maximal l-filter.

Now, as x /∈ P − I, by Lemma 2.8, there exists y ∈ P − I such that (x, y)l = {0},

that is, y /∈ I and y ∈ x⊥. Let z ∈ x⊥⊥. Since y ∈ x⊥, we get, (z, y)l = {0}, which

gives (z, y)l ⊆ I. Since y /∈ I, by primeness of I, we have z ∈ I. Hence x⊥⊥ ⊆ I as

required. �

Let I be an ideal of a poset P with 0. Then I is called dense if I⊥ = {0} and I

is said to be an annihilator if I = I⊥⊥. It is easy to observe that every annihilator

ideal of a poset is an α-ideal.

Theorem 2.11. If a prime ideal I of a 0-distributive poset P is non-dense, then I

is an annihilator ideal.

P r o o f. By assumption, I⊥ 6= {0}. Hence there exists x ∈ I⊥ such that x 6= 0.

But then I⊥⊥ ⊆ x⊥. Since I ⊆ I⊥⊥ is always true, we get I ⊆ x⊥. Further, if

t ∈ x⊥, then (x, t)l = {0} ⊆ I. From the fact that I ∩ I⊥ = {0}, it is clear that

x /∈ I. Indeed, if x ∈ I, then x ∈ I ∩ I⊥ = {0}, hence x = 0 a contradiction to x 6= 0.

Since (x, t)l ⊆ I and x /∈ I, by primeness of I, we get t ∈ I. Therefore x⊥ ⊆ I. By

combining both inclusions, we get x⊥ = I. Consequently I = I⊥⊥, and therefore I

is an annihilator. �

As a consequence, we have the following statement, which is another characteri-

zation of prime ideals to be α-ideals.

Corollary 2.12. If a prime ideal I of a 0-distributive poset P is non-dense, then I

is an α-ideal.

3. Prime α-ideal separation theorem in 0-distributive posets

We begin by proving that the set of all α-ideals α Id(P ) of a poset P with 0 is

closed under the set-theoretical intersection, in fact, it is a complete lattice.
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Lemma 3.1. Let P be a poset with 0 and X be a family of members of α Id(P ).

Then
⋂

I∈X

I is also in α Id(P ).

P r o o f. Let x ∈
⋂

I∈X

I. We have x ∈ I for all I ∈ X . Since I is an α-ideal, we have

x⊥⊥ ⊆ I for all I ∈ X , which implies that x⊥⊥ ⊆
⋂

I∈X

I. Therefore
⋂

I∈X

I ∈ α Id(P ).

�

Theorem 3.2 follows immediately from Lemma 3.1.

Theorem 3.2. Let P be a poset with 0. Then (α Id(P ),⊆) forms a complete

lattice in which infima and suprema of a family X of α Id(P ) are defined as follows:∧
I∈X

I =
⋂

I∈X

I and
∨

I∈X

I =
⋂

Y ∈α Id(P )

Y , where
⋃

I∈X

I ⊆ Y .

Let P be a given poset. Define the extension of an ideal I of P , denoted by Ie, as

Ie = {J ∈ Id(P ) ; J ⊆ I}

and for an ideal λ of the lattice (Id(P ),⊆), define the contraction of λ, denoted by

λc, as

λc =
⋃

{J ; J ∈ λ}.

It is obvious that Ie is a principal ideal of Id(P ) for every ideal I of a poset P .

More details about these concepts can be found in Kharat and Mokbel [10].

In the following theorem we establish the relation between annihilator ideals of

a 0-distributive poset P and the α-ideals of the lattice Id(P ).

Theorem 3.3. Let P be a poset with 0. If I is an annihilator ideal, then Ie is

an α-ideal of Id(P ).

P r o o f. Suppose J ∈ Ie. Then we have J ⊆ I, which yields J⊥⊥ ⊆ I⊥⊥. Since I

is an annihilator, we get J⊥⊥ ⊆ I. Observe that J⊥⊥ ⊆ Ie. Indeed, if J⊥⊥ 6⊆ Ie,

then there exists J1 ∈ Id(P ) such that J1 ∈ J⊥⊥ and J1 /∈ Ie, i.e., J1 ∈ J⊥⊥ and

J1 6⊆ I. Hence there exists an element x ∈ P such that x ∈ J1 and x /∈ I, which

implies (x] ∈ J⊥⊥ ⊆ I and x /∈ I, a contradiction. Consequently J⊥⊥ ⊆ Ie. Hence

Ie is an α-ideal. �

R em a r k 3.4. The statement of Theorem 3.3 is not necessarily true if we drop

the condition that I is an annihilator. Consider the poset P depicted in Figure 3

and its Id(P ) depicted in Figure 4. Consider the α-ideal I = {0, a, b}, which is not

an annihilator in P . Observe that Ie = {(0], (a], (b], {0, a, b}} is not an α-ideal in

Id(P ), as {0, a, b} ∈ Ie, but {0, a, b}⊥⊥ = Id(P ) 6⊆ Ie.
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(1]
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Figure 3. Figure 4.

Theorem 3.5. Let P be a poset and let λ be an α-ideal of the lattice Id(P ).

Then λc is an α-ideal of P .

P r o o f. First we prove that λc is an ideal. Consider elements x, y ∈ λc. If x and y

belong to some J ∈ λ, then the result is obvious. Suppose there exist J1, J2 ∈ λ such

that x ∈ J1 and y ∈ J2, J1 6= J2, then we have (x, y)
ul ⊆ J1 ∨ J2 ∈ λ, as λ is an

ideal. Thus λc is an ideal of P .

Now, we show that λc is an α-ideal of Id(P ). Let x ∈ λc. We claim that x⊥⊥ ⊆ λc.

Observe that x ∈ λc implies (x] ∈ λ. Since λ is an α-ideal of Id(P ), we have

(x]⊥⊥ ⊆ λ. Therefore x⊥⊥ ⊆ λc as required. �

Now, let K be an l-filter of a poset P . Define a subset γ of Id(P ) as follows:

(∗) γ = {J ∈ Id(P ) ; J ∩K 6= ∅}.

We use the following results to prove Theorem 3.9, which is a generalization of

Theorem A for finite posets.

Lemma 3.6 (Kharat, Mokbel [10]). Let P be a poset, K be an l-filter of P and

let γ be a subset of Id(P ) as defined in (∗). Then γ is a filter of Id(P ).

Lemma 3.7 (Kharat, Mokbel [10]). Let P be a finite poset and λ be a prime

ideal of Id(P ). Then λc is a prime ideal of P .

Lemma 3.8 (Joshi, Waphare [9]). A poset P is 0-distributive if and only if Id(P )

is a 0-distributive lattice.

Theorem 3.9. Let I be an annihilator ideal and F be an l-filter of a finite 0-

distributive poset P for which I ∩ F = ∅. Then there exists a prime α-ideal G of P

such that I ⊆ G and I ∩ F = ∅.
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P r o o f. Suppose I is an annihilator ideal and F is an l-filter of a finite

0-distributive poset P for which I ∩ F = ∅. By Theorem 3.3, Ie is an α-ideal

of Id(P ) and also γ = {J ∈ Id(P ) ; J ∩ F 6= ∅} is a filter of Id(P ) by Lemma 3.6.

Observe that Ie ∩ γ = ∅. Were this false, then there exists J1 ∈ Id(P ) such that

J1 ∈ Ie ∩ γ. Thus J1 ⊆ I and J1 ∩ F 6= ∅. In other words, I ∩ F 6= ∅, which con-

tradicts the hypothesis. By Lemma 3.8, Id(P ) is a 0-distributive lattice. Hence, by

Theorem A, there exists a prime α-ideal λ of Id(P ) such that Ie ⊆ λ and λ ∩ γ = ∅.

Since λ is a prime α-ideal of Id(P ), by Lemma 3.7 and Theorem 3.5, λc is a prime

α-ideal of P . Further, I ⊆ λc, since x ∈ I implies (x] ∈ Ie ⊆ λ. Thus (x] ∈ λ,

and by definition of λc, we have x ∈ λc. Also, we have λc ∩ F = ∅. Otherwise, if

λc ∩ F 6= ∅, then there exists x ∈ P such that x ∈ λc ∩ F . Hence (x] ⊆ J , where

J ∈ λ and (x] ∈ γ. In other words, (x] ∈ λ ∩ γ, a contradiction. �

R em a r k 3.10. (i) The statement of Theorem 3.9 is not necessarily true if we

drop the condition that P is finite. Let N be the set of natural numbers. Consider

the set P = {∅} ∪ {X ⊆ N ; X is an infinite subset of N} ∪ {X ⊆ N ; |X | = 1}.

It is easy to observe that P is an infinite 0-distributive poset under set inclusion

and F = {X ⊆ N ; X is an infinite subset of N} is an l-filter of P , see Joshi and

Mundlik [8]. Let I = {{1}, ∅}. Observe that I is an annihilator ideal for which

I ∩ F = ∅. But there does not exist a prime α-ideal G of P for which I ⊆ G and

G ∩ F = ∅.

(ii) The condition of F being an l-filter cannot be dropped in the statement of The-

orem 3.9. Consider the finite 0-distributive poset P depicted in Figure 5. Consider

the annihilator ideal I = {0, a, b}, which is not prime, and a filter F = {a′, b′, c′, d′, 1},

which is not an l-filter. Observe that I ∩F = ∅, but there is no prime α-ideal G of P

such that I ⊆ G and G ∩ F = ∅.

0

a b c d

a
′

b
′

c
′

d
′

1

Figure 5.

(iii) Theorem 3.9 is not necessarily true if we drop the condition that I is an

annihilator ideal. Consider the finite 0-distributive poset P depicted in Figure 5.

Let I = {0, a, b, c, d} and F = {a′, 1}. Observe that I is an α-ideal but not prime

and F is an l-filter of P for which I ∩ F = ∅, but there is no prime α-ideal G of P

such that I ⊆ G and G ∩ F = ∅.
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Lemma 3.11 (Kharat, Mokbel [10]). Let P be a meet semilattice and λ be

a prime ideal of Id(P ). Then λc is a prime ideal of P .

However, if the poset is a meet semilattice, then by Theorem 3.9 and Lemma 3.11

we have the following:

Corollary 3.12. Let I be an annihilator ideal and F be a filter of a 0-distributive

meet semilattice P for which I ∩ F = ∅. Then there exists a prime α-ideal G of P

such that I ⊆ G and I ∩ F = ∅.

A c k n ow l e d g em e n t. The author is grateful to the referee for various sugges-

tions.
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