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Abstract. In 2000, Figallo and Sanza introduced n×m-valued  Lukasiewicz-Moisil alge-
bras which are both particular cases of matrix  Lukasiewicz algebras and a generalization
of n-valued  Lukasiewicz-Moisil algebras. Here we initiate an investigation into the class
tLMn×m of tense n × m-valued  Lukasiewicz-Moisil algebras (or tense LMn×m-algebras),
namely n×m-valued  Lukasiewicz-Moisil algebras endowed with two unary operations called
tense operators. These algebras constitute a generalization of tense  Lukasiewicz-Moisil al-
gebras (or tense LMn-algebras). Our most important result is a representation theorem for
tense LMn×m-algebras. Also, as a corollary of this theorem, we obtain the representation
theorem given by Georgescu and Diaconescu in 2007, for tense LMn-algebras.
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1. Introduction

Classical tense logic is an extension of classical logic obtained by adding to the

bivalent logic the tense operators G (it is always going to be the case that) and H

(it has always been the case that). Taking into account that tense Boolean algebras

constitute the algebraic basis for the bivalent tense logic (see [4]), Diaconescu and

Georgescu introduced in [10] tense MV-algebras and tense  Lukasiewicz-Moisil alge-

bras as algebraic structures for some many-valued tense logics. In the last years,

these two classes of algebras have become very interesting for several authors (see

[2], [5]–[9], [11]–[14]). In particular, in [8], [9] Chiriţă introduced tense θ-valued

 Lukasiewicz-Moisil algebras and proved an important representation theorem which
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allowed to show the completeness of the tense θ-valued Moisil logic (see [9]). In [10],

the authors formulated an open problem about the representation of tense MV-

algebras; this problem was solved in [3], [20] for semisimple tense MV-algebras.

Also, in [2], tense basic algebras were studied, which is an interesting generalization

of tense MV-algebras.

On the other hand, in 1975 Suchoń [25] defined matrix  Lukasiewicz algebras so

generalizing n-valued  Lukasiewicz algebras without negation [19]. In 2000, Figallo

and Sanza [17] introduced n ×m-valued  Lukasiewicz algebras with negation which

are both a particular case of matrix  Lukasiewicz algebras and a generalization of

n-valued  Lukasiewicz-Moisil algebras [1]. It is worth noting that unlike what happens

in n-valued  Lukasiewicz-Moisil algebras, generally the De Morgan reducts of n×m-

valued  Lukasiewicz algebras with negation are not Kleene algebras. Furthermore,

in [22] an important example which legitimated the study of this new class of algebras

was provided. Following the terminology established in [1], these algebras were called

n×m-valued  Lukasiewicz-Moisil algebras (or LMn×m-algebras for short).

In the present paper, we introduce and investigate tense n×m-valued  Lukasiewicz-

Moisil algebras which constitute a generalization of tense  Lukasiewicz-Moisil alge-

bras [10]. Our most important result is a representation theorem for tense LMn×m-

algebras. Also, as a corollary of this theorem, we obtain the representation theorem

given by Georgescu and Diaconescu in [10] for tense LMn-algebras.

2. Preliminaries

2.1. Tense Boolean algebras. Tense Boolean algebras are the algebraic struc-

tures for tense logic. In this subsection we will recall some basic definitions and

results on the representation of tense Boolean algebras (see [4], [18]).

Definition 2.1. An algebra (B, G,H) is a tense Boolean algebra if

B = 〈B,∧,∨,¬, 0B , 1B〉

is a Boolen algebra and G and H are two unary operations on B such that

(tb1) G(1B) = 1B and H(1B) = 1B;

(tb2) G(x ∧ y) = G(x) ∧G(y) and H(x ∧ y) = H(x) ∧H(y);

(tb3) G(x) ∨ y = 1B if only if x ∨H(y) = 1B.

Let B = 〈B,∧,∨,¬, 0B , 1B〉 be a Boolean algebra. In the following we will denote

by idB , OB and IB the functions idB , OB, IB : B → B, defined by idB(x) = x,

OB(x) = 0B and IB(x) = 1B for all x ∈ B. We also denote by 2 the two-element

Boolean algebra.
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R e m a r k 2.1. Let B = 〈B,∧,∨,¬, 0B, 1B〉 be a Boolean algebra. Then

(B, IB, IB) is a tense Boolean algebra.

R e m a r k 2.2. Let (2, G,H) be a tense Boolean algebra. Then G = H = id2 or

G = H = I2.

Proposition 2.1. Let B = 〈B,∧,∨,¬, 0B, 1B〉 be a Boolean algebra and G, H two

unary operations on B that satisfy conditions (tb1) and (tb2). Then the condition

(tb3) is equivalent to

(tb3)′ x 6 GP (x) and x 6 HF (x), where F, P : B → B are the unary operations

defined by F (x) = ¬G(¬x) and P (x) = ¬H(¬x).

R e m a r k 2.3. By Proposition 2.1 we can obtain an equivalent definition for tense

Boolean algebras. This shows that tense Boolean algebras form a variety.

Definition 2.2. A frame is a pair (X,R), where X is a nonempty set and R is

a binary relation on X .

Let (X,R) be a frame. We define the operations G : 2
X → 2

X and H : 2
X → 2

X

by

G(p)(x) =
∧

{p(y) ; y ∈ X, x R y} and H(p)(x) =
∧

{p(y) ; y ∈ X, y R x},

for all p ∈ 2
X and x ∈ X .

Proposition 2.2. For any frame (X,R), (2X , G,H) is a tense Boolean algebra.

R e m a r k 2.4. In the tense Boolean algebra (2X , G,H) the tense operators F

and P are given by:

F (p)(x) =
∨

{p(y) ; y ∈ X, x R y} and P (p)(x) =
∨

{p(y) ; y ∈ X, y R x},

for all p ∈ 2
X and x ∈ X .

Definition 2.3. Let (B, G,H) and (B′, G′, H ′) be two tense Boolean algebras.

A function f : B → B′ is a morphism of tense Boolean algebras if f is a Boolean

morphism and satisfies the conditions: f(G(x)) = G′(f(x)) and f(H(x)) = H ′(f(x)),

for any x ∈ B.

By this definition, it follows that a morphism of tense Boolean algebras commutes

with the tense operators F and P .
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Theorem 2.1 (The representation theorem for tense Boolean algebras). For any

tense Boolean algebra (B, G,H), there exist a frame (X,R) and an injective mor-

phism of tense Boolean algebras

d : (B, G,H) → (2X , G,H)

where operators G and H are defined as in Proposition 2.2.

2.2. Tense  Lukasiewicz-Moisil algebras. In this subsection we will recall some

basic definitions and results on the representation of tense  Lukasiewicz-Moisil alge-

bras (see [10]).

Definition 2.4. An algebra (L, G,H) is a tense  Lukasiewicz-Moisil algebra (or

tense LMn-algebra) if L = 〈L,∧,∨,∼, ϕ1, . . . , ϕn−1, 0L, 1L〉 is an LMn-algebra and

G and H are two unary operators on L such that

(tlm1) G(1L) = 1L and H(1L) = 1L,

(tlm2) G(x ∧ y) = G(x) ∧G(y) and H(x ∧ y) = H(x) ∧H(y),

(tlm3) x 6 GP (x) and x 6 HF (x), where F (x) = ∼G(∼x) and P (x) = ∼H(∼x),

(tlm4) G(ϕi(x)) = ϕi(G(x)) and H(ϕi(x)) = ϕi(H(x)) for all i = 1, . . . , n− 1.

Let L = 〈L,∧,∨,∼, ϕ1, . . . , ϕn−1, 0L, 1L〉 be an LMn-algebra. In the following

we will denote by idL, OL and IL the functions idL, OL, IL : L → L, defined by

idL(x) = x, OL(x) = 0L and IL(x) = 1L for all x ∈ L.

We also denote by Ln the chain of n rational fractions Ln = {j/(n− 1); 1 6 j 6

n−1} endowed with the natural lattice structure and the unary operations ∼ and ϕi,

defined as follows: ∼(j/(n− 1)) = 1 − j/(n− 1) and ϕi(j/(n− 1)) = 0 if i + j < n

or ϕi(j/(n− 1)) = 1 in the other cases.

R e m a r k 2.5. Let (Ln, G,H) be a tense LMn-algebra. Then G = H = idLn
or

G = H = ILn
.

Definition 2.5. Let (X,R) be a frame. We define the operations G : LX
n → LX

n

and H : LX
n → LX

n by:

G(p)(x) =
∧

{p(y) ; y ∈ X, x R y} and H(p)(x) =
∧

{p(y) ; y ∈ X, y R x},

for all p ∈ LX
n and x ∈ X .
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Proposition 2.3. For any frame (X,R), (LX
n , G,H) is a tense LMn-algebra.

Definition 2.6. Let (L, G,H) and (L′, G′, H ′) be two tense LMn-algebras.

A function f : L → L′ is a morphism of tense LMn-algebras if f is an LMn-algebra

morphism and satisfies the conditions f(G(x)) = G′(f(x)) and f(H(x)) = H ′(f(x))

for any x ∈ L.

Now we will recall a representation theorem for tense LMn-algebras that general-

izes Theorem 2.1.

Theorem 2.2 (The representation theorem for tense LMn-algebras). For any

tense LMn-algebra (L, G,H), there exist a frame (X,R) and an injective morphism

of tense LMn-algebras

Φ: (L, G,H) → (LX
n , G,H)

where the operators G and H are defined as in Proposition 2.3.

2.3. n × m-valued  Lukasiewicz-Moisil algebras. In this subsection we will

recall some basic definitions and results on n×m-valued  Lukasiewicz-Moisil algebras

(see [15], [16], [21]–[24]).

Definition 2.7. An n × m-valued  Lukasiewicz-Moisil algebra (or LMn×m-

algebra), in which n and m are integers, n > 2, m > 2, is an algebra 〈L,∧,∨,∼,

{σij}(i,j)∈(n×m), 0L, 1L〉 where (n×m) is the cartesian product {1, . . . , n−1}×{1, . . . ,

m − 1}, the reduct 〈L,∧,∨,∼, 0L, 1L〉 is a De Morgan algebra and {σij}(i,j)∈(n×m)

is a family of unary operations on L which fulfils the conditions

(C1) σij(x ∨ y) = σijx ∨ σijy,

(C2) σijx 6 σ(i+1)jx,

(C3) σijx 6 σi(j+1)x,

(C4) σijσrsx = σrsx,

(C5) σijx = σijy for all (i, j) ∈ (n×m) implies x = y,

(C6) σijx ∨ ∼σijx = 1L,

(C7) σij(∼x) = ∼σ(n−i)(m−j)x.

Let L = 〈L,∧,∨,∼, {σij}(i,j)∈(n×m), 0L, 1L〉 be an LMn×m-algebra. In the follow-

ing we will denote by idL, OL and IL the functions idL, OL, IL : L → L, defined by

idL(x) = x, OL(x) = 0L and IL(x) = 1L for all x ∈ L.

The results announced here for LMn×m-algebras will be used throughout the pa-

per.

(LM1) A set σij(L) = C(L) for all (i, j) ∈ (n × m), where C(L) is the set of all

complemented elements of L ([24], Proposition 2.5).
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(LM2) Every LMn×2-algebra is isomorphic to an n-valued  Lukasiewicz-Moisil alge-

bra. It is worth noting that LMn×m-algebras constitute a nontrivial general-

ization of the latter (see [22], Remark 2.1).

(LM3) Let 〈L,∧,∨,∼, {σij}(i,j)∈(n×m), 0L, 1L〉 be an LMn×m-algebra and (i, j) ∈

(n×m). We define the binary operation, called weak implication, →֒i,j on L,

as follows: a →֒i,j b = ∼σija ∨ σijb for all a, b ∈ L. The implication →֒i,j has

the following properties:

(WI1) a →֒i,j (b →֒i,j a) = 1L,

(WI2) a →֒i,j (b →֒i,j (a ∧ b)) = 1L,

(WI3) a →֒i,j (b →֒i,j c) = (a →֒i,j b) →֒i,j (a →֒i,j c),

(WI4) (a ∧ b) →֒i,j a = 1L and (a ∧ b) →֒i,j b = 1L,

(WI5) a →֒i,j (a ∨ b) = 1L and b →֒i,j (a ∨ b) = 1L,

(WI6) a 6 b implies a →֒i,j b = 1L,

(WI7) if a →֒i,j b = 1L for all (i, j) ∈ (n×m) then a 6 b,

(WI8) a →֒i,j 1L = 1L,

(WI9) a →֒i,j (b ∧ c) = (a →֒i,j b) ∧ (a →֒i,j c),

(WI10) σrs(a) →֒i,j σrs(b) = a →֒r,s b,

(WI11) σrs(a) →֒i,j σrs(a) = 1L,

(WI12) a →֒i,j (b →֒i,j c) = (a ∧ b) →֒i,j c,

(WI13) if a 6 b →֒i,j c for all (i, j) ∈ (n×m) then a ∧ b 6 c (see [23]).

(LM4) The class of LMn×m-algebras is a variety and two equational bases for it can

be found in [24], Theorem 2.7, and [22], Theorem 4.6.

(LM5) Let 〈L,∧,∨,∼, {σij}(i,j)∈(n×m), 0L, 1L〉 be an LMn×m-algebra. Let X be

a nonempty set and let LX be the set of all functions from X into L. Then

LX is an LMn×m-algebra where the operations are defined componentwise

(see [23]).

(LM6) Let 〈L,∧,∨,∼, {σij}(i,j)∈(n×m), 0L, 1L〉 be an LMn×m-algebra. We say that

L is complete if the lattice 〈L,∧,∨, 0L, 1L〉 is complete. Also, we say that

L is completely chrysippian if, for every {xs}s∈S ⊆ L such that
∧

s∈S

xs and

∨

s∈S

xs exist, the following conditions hold: σij

(

∧

s∈S

xs

)

=
∧

s∈S

σij(xs) for all

(i, j) ∈ (n×m) and σij

(

∨

s∈S

xs

)

=
∨

s∈S

σij(xs) for all (i, j) ∈ (n×m) (see [23]).

(LM7) Let C(L)↑(n×m) = {f : (n×m) −→ C(L) such that for arbitrary i, j if r 6 s,

then f(r, j) 6 f(s, j) and f(i, r) 6 f(i, s)}. Then

〈C(L)↑(n×m),∧,∨,∼, {σij}(i,j)∈(n×m), O, I〉

is an LMn×m-algebra where for all f ∈ C(L)↑(n×m) and (i, j) ∈ (n×m) the

operations ∼ and σij are defined as follows: (∼f)(i, j) = ¬f(n − i, m − j),
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where ¬x denotes the Boolean complement of x, (σijf)(r, s) = f(i, j) for all

(r, s) ∈ (n × m), and the remaining operations are defined componentwise

([22], Proposition 3.2). It is worth noting that this result can be generalized

by replacing C(L) by any Boolean algebra B. Furthermore, if B is a complete

Boolean algebra, it is simple to check that B↑(n×m) is also a complete LMn×m-

algebra.

(LM8) Let L and L′ be two LMn×m-algebras. A morphism of LMn×m-algebras is

a function f : L → L′ such that following conditions hold for all x, y ∈ L:

(i) f(0L) = 0L′ and f(1L) = 1L′ ;

(ii) f(x ∨ y) = f(x) ∨ f(y) and f(x ∧ y) = f(x) ∧ f(y);

(iii) f(σij(x)) = σ′

ij(f(x)) for every (i, j) ∈ (n×m);

(iv) f(∼x) = ∼′f(x).

Let us observe that condition (iv) is a direct consequence of (C5), (C7) and

the conditions (i) to (iii).

(LM9) Every LMn×m-algebra L can be embedded into C(L)↑(n×m) ([22], Theo-

rem 3.1). Besides, L is isomorphic to C(L)↑(n×m) if and only if L is centred

([22], Corollary 3.1) where L is centred if for each (i, j) ∈ (n×m) there exists

cij ∈ L such that

σrscij =

{

0 if i > r or j > s,

1 if i 6 r and j 6 s.

(LM10) Identifying the set (n×2) with n = {1, . . . , n−1} we have that τLn
: Ln → 2↑n

is an isomorphism which in this case is defined by τLn
(j/(n− 1)) = fj where

fj(i) = 0 if i+ j < n and fj(i) = 1 in the other case (see [23]).

3. Tense n×m-valued  Lukasiewicz-Moisil algebras

In this section we introduce tense LMn×m-algebras. The notion of the tense

LMn×m-algebra is obtained by endowing an LMn×m-algebra with two unary op-

erations G and H , similar to the tense operators on an n-valued  Lukasiewicz-Moisil

algebra. Here are the basic definitions and properties.

Definition 3.1. An algebra (L, G,H) is a tense n×m-valued  Lukasiewicz-Moisil

algebra (or tense LMn×m-algebra) if

L = 〈L,∧,∨,∼, {σij}(i,j)∈(n×m), 0L, 1L〉

is an LMn×m-algebra and G and H are two unary operators on L such that:
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(T1) G(1L) = 1L and H(1L) = 1L,

(T2) G(x ∧ y) = G(x) ∧G(y) and H(x ∧ y) = H(x) ∧H(y),

(T3) x 6 GP (x) and x 6 HF (x), where F (x) = ∼G(∼x) and P (x) = ∼H(∼x),

(T4) G(σij(x)) = σij(G(x)) and H(σij(x)) = σij(H(x)) for all (i, j) ∈ (n×m).

In the following we will indicate the class of tense LMn×m-algebras with tLMn×m

and we will denote its elements simply by L or (L,G,H) in case we need to specify

the tense operators.

R e m a r k 3.1. (i) From Definition 3.1 and (LM4) we infer that tLMn×m is

a variety and two equational bases for it can be obtained.

(ii) If (L,G,H) is a tense LMn×m-algebra, then from (LM1) and (T4) we have

that (C(L), C(G), C(H)) is a Boolean algebra, where the unary operations C(G) :

C(L) → C(L) and C(H) : C(L) → C(L), are defined by C(G) = G|C(L) and C(H) =

H |C(L).

(iii) Taking into account (LM2), we infer that every tense LMn×2-algebra is iso-

morphic to a tense n-valued  Lukasiewicz-Moisil algebra.

According to this remark one gets the following result:

Lemma 3.1. The following conditions hold in any tense LMn×m-algebra

(L,G,H):

(T5) x 6 y implies G(x) 6 G(y) and H(x) 6 H(y),

(T6) x 6 y implies F (x) 6 F (y) and P (x) 6 P (y),

(T7) F (0L) = 0L and P (0L) = 0L,

(T8) F (x ∨ y) = F (x) ∨ F (y) and P (x ∨ y) = P (x) ∨ P (y),

(T9) FH(x) 6 x and PG(x) 6 x,

(T10) GP (x) ∧ F (y) 6 F (P (x) ∧ y) and HF (x) ∧ P (y) 6 P (F (x) ∧ y),

(T11) G(x) ∧ F (y) 6 F (x ∧ y) and H(x) ∧ P (y) 6 P (x ∧ y),

(T12) G(x) ∧ F (y) 6 G(x ∧ y) and H(x) ∧ P (y) 6 H(x ∧ y),

(T13) G(x ∨ y) 6 G(x) ∨ F (y) and H(x ∨ y) 6 H(x) ∨ P (y).

Proposition 3.1. Let 〈L,∧,∨,∼, {σij}(i,j)∈(n×m), 0, 1〉 be an LMn×m-algebra

and G, H two unary operations on L that satisfy conditions (T1) and (T4). Then

condition (T2) is equivalent to: (T2)′ G(a →֒i,j b) 6 G(a) →֒i,jG(b) and H(a →֒i,j b) 6

H(a) →֒i,j H(b) for all (i, j) ∈ (n×m).

P r o o f. We will only prove the equivalence between (T2) and (T2)′ in the case

of G.

(T2) ⇒ (T2)′. Let (i, j) ∈ (n × m). We obtain that G(a →֒i,j b) ∈ C(L) and

G(a) →֒i,j G(b) ∈ C(L), so G(a) →֒i,j G(b) has a complement ¬(G(a) →֒i,j G(b)) =
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∼σrs(G(a) →֒i,j G(b)) for all (r, s) ∈ (n × m). Then, we have: G(a →֒i,j b) ∧

∼σrs(G(a) →֒i,j G(b)) = G(∼σij(a) ∨ σij(b)) ∧ ∼σrs(∼σij(G(a)) ∨ σij(G(b))) =

G(∼σij(a) ∨ σij(b)) ∧ σij(G(a)) ∧ ∼σijG(b) = G(∼σij(a) ∨ σij(b)) ∧ Gσij(a) ∧

∼σijG(b) = G((∼σij(a) ∨ σij(b)) ∧ σij(a)) ∧∼σijG(b) = G(σij(a ∧ b)) ∧∼σijG(b) =

σijG(a∧ b)∧∼σijG(b) 6 σijG(b)∧∼σijG(b) = 0L, so G(a →֒i,j b)∧∼σrs(G(a) →֒i,j

G(b)) = 0L. It follows that G(a →֒i,j b) 6 G(a) →֒i,j G(b).

(T2)′ ⇒ (T2). Let a, b ∈ L be such that a 6 b. By (WI6) we obtain that

a→֒i,j b = 1L for all (i, j) ∈ (n×m), so 1L = G(1L) = G(a→֒i,jb) 6 G(a)→֒i,jG(b) for

all (i, j) ∈ (n×m). By using (WI7) we have that G(a) 6 G(b), so G is increasing. It

follows that G(a∧b) 6 G(a)∧G(b). From (WI2) and (WI7) we obtain a 6 b→֒i,j(a∧b)

for all (i, j) ∈ (n ×m), then G(a) 6 G(b →֒i,j (a ∧ b)) 6 G(b) →֒i,j G(a ∧ b) for all

(i, j) ∈ (n × m). By (WI13) it follows that G(a) ∧ G(b) 6 G(a ∧ b). Therefore,

G(a ∧ b) = G(a) ∧G(b). �

Thus, if in Definition 3.1 we replace axiom (T2) by (T2′), we obtain an equivalent

definition for tense LMn×m-algebras.

Definition 3.2. Let (X,R) be a frame and 〈L,∧,∨,∼, {σij}(i,j)∈(n×m), 0L, 1L〉

a complete and completely chrysippian LMn×m-algebra. We will define on LX the

following operations:

G(p)(x) =
∧

{p(y) ; y ∈ X, x R y} and H(p)(x) =
∧

{p(y) ; y ∈ X, y R x},

for all p ∈ LX and x ∈ X .

Proposition 3.2. For any frame (X,R), (LX , G,H) is an LMn×m-algebra.

P r o o f. Since L is an LMn×m-algebra hence by (LM5) we have that LX is an

LMn×m-algebra. Now, we will prove that G and H satisfy conditions (T1)–(T4) in

Definition 3.1. Note that properties (T1)–(T3) are already proved in the n-valued

 Lukasiewicz-Moisil case. We will prove only (T4). Let f ∈ LX , x ∈ X and (i, j) ∈

(n×m). Using the fact that L is completely chrysippian we have that: G(σij(f))(x) =
∧

{σij(f)(y) ; y ∈ X, x R y} = σij(
∧

{f(y) ; y ∈ X, x R y}) = σij(G(f)(x)) =

σij(G(f))(x). �

R e m a r k 3.2. In the tense LMn×m-algebra (LX , G,H) the tense operators

P and F are defined in the following way: P (p)(x) =
∨

{p(y) ; y ∈ X, y R x} and

F (p)(x) =
∨

{p(y) ; y ∈ X, x R y}.

Definition 3.3. Let (L, G,H) and (L′, G′, H ′) be two tense LMn×m-algebras.

A function f : L → L′ is a morphism of tense LMn×m-algebras if f is an LMn×m-

algebra morphism and satisfies the conditions f(G(x)) = G′(f(x)) and f(H(x)) =

H ′(f(x)) for any x ∈ L.
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Definition 3.4. Let (X,R) and (Y,Q) be two frames. A function u : (X,R) →

(Y,Q) is a frame morphism if the following condition is satisfied: a R b implies

u(a) Q u(b) for all a, b ∈ X .

Let 〈L,∧,∨,∼, {σij}(i,j)∈(n×m), 0L, 1L〉 be an LMn×m-algebra and u : (X,R) →

(Y,Q) a frame morphism. We consider the function u∗ : LY → LX , defined by:

u∗(p) = p ◦ u for all p ∈ LY .

Proposition 3.3. Let L be a complete and completely chrysippian LMn×m-

algebra, (X,R), (Y,Q) two frames and u : (X,R) → (Y,Q) a frame morphism which

satisfies the following conditions:

(a) A morphism u : X → Y is surjective.

(b) If u(a) Q u(b) then a R b for all a, b ∈ X .

Then u∗ is a morphism of tense LMn×m-algebras.

P r o o f. We will only prove that u∗ ◦ G = G ◦ u∗. Let p ∈ LY and x ∈ X . We

have u∗(G(p))(x) = (G(p) ◦ u)(x) = G(p)(u(x)) =
∧

{p(b) ; b ∈ Y, u(x) Q b} and

G(u∗(p))(x) = G(p ◦ u)(x) =
∧

{(p(u(a))) ; a ∈ X, x R a}.

(1) Let a ∈ X with x R a. It follows that u(a) ∈ Y and u(x) Q u(a), so {p(u(a)) ;

a ∈ X, x R a} ⊆ {p(b) ; b ∈ Y, u(x) Q b}, hence
∧

{p(b) ; b ∈ Y, u(x) Q b} 6
∧

{p(u(a)) ; a ∈ X, x R a}.

(2) Let b ∈ Y with u(x) Q b. By conditions (a) and (b) it follows that there exists

a ∈ X such that b = u(a) and x R a. We get that {p(b) ; b ∈ Y, u(x) Q b} ⊆

{p(u(a)) ; a ∈ X, x R a}, so
∧

{p(u(a)) ; a ∈ X, x R a} 6
∧

{p(b) ; b ∈ Y,

u(x) Q b}.

By (1) and (2) it results that u∗(G(p))(x) = G(u∗(p))(x), so u∗ ◦G = G ◦ u∗. �

4. Representation theorem for tense LMn×m-algebras

In this section we give a representation theorem for tense LMn×m-algebras. To

prove this theorem we use the representation theorem for tense Boolean algebras.

Let (B, G,H) be a tense Boolean algebra. We consider the set of all increasing

functions in each component from (n × m) to B, that is, D(B) = B↑(n×m) = {f :

(n × m) −→ B such that for arbitrary i, j if r 6 s, then f(r, j) 6 f(s, j) and

f(i, r) 6 f(i, s)}.

We define on D(B) unary operations D(G) and D(H) by:

D(G)(f) = G ◦ f and D(H)(f) = H ◦ f for all f ∈ D(L).

The following result is necessary for the proof of Theorem 4.1.
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Lemma 4.1. If (B, G,H) is a Boolean algebra then (D(B), D(G), D(H)) is

a tense LMn×m-algebra.

P r o o f. By (LM7), D(B) is an LMn×m-algebra. We will prove that D(G) and

D(H) verify (T1)–(T4) of Definition 3.1.

(T1): Let f ∈ D(B) and (i, j) ∈ (n × m). Then D(G)(1D(B))(i, j) = (G ◦

1D(B))(i, j) = G(1D(B))(i, j) = G(1B) = 1B, hence D(G)(1D(B)) = 1D(B).

(T2): Let f, g ∈ D(B) and (i, j) ∈ (n × m). We have D(G)(f ∧ g)(i, j) = (G ◦

(f ∧ g))(i, j) = G((f ∧ g)(i, j)) = G(f(i, j) ∧ g(i, j)) = Gf(i, j) ∧ Gg(i, j) =

(G ◦ f)(i, j) ∧ (G ◦ g)(i, j) = D(G)(f)(i, j) ∧ D(G)(g)(i, j) = (D(G)(f) ∧

D(G)(g))(i, j), so D(G)(f ∧ g) = D(G)(f) ∧D(G)(g).

(T3): Let f ∈ D(B) and (i, j) ∈ (n×m). Then D(G) ∼ D(H)(∼f)(i, j) = D(G) ∼

D(H)(¬f)(n − i,m − j) = D(G) ∼ (H ◦ ¬f)(n − i,m − j) = D(G)¬(H ◦

¬f)(i, j) = (G ◦ ¬H ◦ ¬f)(i, j). Since (L,G,H) is a tense Boolean algebra we

have that f(i, j) 6 G¬H¬f(i, j). Therefore, f 6 D(G) ∼ D(H) ∼ f .

(T4): Let f ∈ D(B) and (i, j), (r, s) ∈ (n × m). Then D(G)(σrs(f)(i, j)) = (G ◦

(σrsf))(i, j) = G((σrsf)(i, j)) = Gf(r, s) = (G ◦ f)(r, s) = D(G)(f)(r, s) =

σrs(D(G)(f))(i, j), so D(G)(σrs) = σrs(D(G)).

�

Definition 4.1. Let (B, G,H), (B′, G,H) be two tense Boolean algebras, f :

B → B′ a tense Boolean morphism and D(B) and D(B′) the corresponding tense

LMn×m-algebras. We will extend the function f to a function D(f) : D(B) → D(B′)

in the following way: D(f)(u) = f ◦ u for every u ∈ D(B).

Lemma 4.2. The functionD(f) : D(B) → D(B′) is a morphism of tense LMn×m-

algebras.

P r o o f. Since f is a Boolean morphism it is easy to prove that D(f) is a bounded

lattice homomorphism. Let u ∈ D(B) and (i, j), (r, s) ∈ (n×m). Then we have that

D(f)(σrsu)(i, j) = f((σrsu)(i, j)) = f(u(r, s))

and σrs(D(f)(u))(i, j) = D(f)(u)(r, s) = f(u(r, s)). It follows that D(f)◦σrs = σrs◦

D(f). On the other hand, D(f)(D(G)u)(r, s) = (f◦(D(G)u))(r, s) = f(D(G)u)(r, s).

�
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Lemma 4.3. If f : B → B′ is an injective morphism of tense Boolean algebras

then D(f) : D(B) → D(B′) is an injective morphism of tense LMn×m-algebras.

P r o o f. By Lemma 4.2, it remains to prove that D(f) is injective. Let u, v ∈

D(B) be such that D(f)(u) = D(f)(v), then f(u(i, j)) = f(v(i, j)) for all (i, j) ∈

(n×m). Since f is injective we obtain that u(i, j) = v(i, j) for all (i, j) ∈ (n×m).

Therefore, u = v. �

Definition 4.2. Let (L,G,H) be a tense LMn×m-algebra. We consider the

function τL : L → D(C(L)), defined by τL(x)(i, j) = σij(x) for all x ∈ L, (i, j) ∈

(n×m).

Lemma 4.4. A mapping τL is an injective morphism in tLMn×m.

P r o o f. Taking into account [22], Theorem 3.1, the mapping τL : L → D(C(L))

is a one-to-one LMn×m-morphism. Besides, from (T4) it is simple to check that

τL(G(x)) = G(τL(x)) and τL(H(x)) = H(τL(x)) for all x ∈ L. �

Definition 4.3. Let (B, G,H) be a tense Boolean algebra. We consider the

function φB : B → C(D(B)), defined by φB(x) = fx where fx : (n × m) → B,

fx(i, j) = x for all (i, j) ∈ (n×m).

Lemma 4.5. φB is an isomorphism of tense Boolean algebras.

P r o o f. Let x ∈ B and fx : (n×m) → B with fx(i, j) = x for all (i, j) ∈ (n×m).

It follows that fx is increasing in each component and σrs(fx) = fx for all (r, s) ∈

(n ×m), so fx ∈ C(D(B)). We obtain that φB is well defined. It is easy to prove

that φB is a Boolean morphism. Let us check that φB commutes with G and H . Let

x ∈ B and (i, j) ∈ (n×m). We have:

(a) φB(G(x))(i, j) = fG(x)(i, j) = G(x).

(b) C(D(G))(φB(x))(i, j) = D(G)|C(D(B))(φB(x))(i, j) = (G ◦ φB(x))(i, j) =

G(φB(x)(i, j)) = G(fx(i, j)) = G(x).

By (a) and (b) we obtain that φB ◦ G = C(D(G)) ◦ φB. The homomorphism

φB : B → C(D(B)) is injective because φB(x) = φB(y) implies fx = fy, hence

fx(i, j) = fy(i, j) for all (i, j) ∈ (n × m), so x = y. To prove surjectivity we take

g ∈ C(D(B)). Then σij(g) = g for all (i, j) ∈ (n×m), which means that σij(g)(r, s) =

g(r, s) for all (i, j), (r, s) ∈ (n ×m). But σij(g)(r, s) = g(i, j), hence g(i, j) = g(r, s)

for all (i, j), (r, s) ∈ (n × m), hence g is constant. Therefore φB(g) = g. It follows

that φB is an isomorphism. �
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Lemma 4.6. Let (L,G,H) be a tense LMn×m-algebra. The following implica-

tions hold:

(i) If C(G) = idC(L) then G = idL.

(ii) If C(H) = idC(L) then H = idL.

P r o o f. (i) Let x ∈ L. We have that σij(x) ∈ C(L) for all (i, j) ∈ (n ×m). By

the hypothesis it follows that Gσij(x) = σij(x). Using the fact that G commutes

with σij , we obtain σijG(x) = σij(x) for all (i, j) ∈ (n×m). By (C5) it follows that

G(x) = x. Therefore, G = idL. �

Lemma 4.7. Let (L,G,H) be a tense LMn×m-algebra. The following implica-

tions hold:

(i) If C(G) = IC(L) then G = IL.

(ii) If C(H) = IC(L) then H = IL.

P r o o f. (i) Let x ∈ L. We have that σij(x) ∈ C(L) for all (i, j) ∈ (n ×m). By

the hypothesis it follows that C(G)(σij (x)) = 1C(L). Since C(G) = G|C(L) we obtain

that C(G)(σijx) = G(σijx) = σijG(x) = 1C(L) = σij(1L) for all (i, j) ∈ (n×m). By

(C5) it results that G(x) = 1L. Therefore G = IL. �

Proposition 4.1. Let (D(2), G,H) be a tense LMn×m-algebra. Then G = H =

idD(2) or G = H = ID(2).

P r o o f. Let (C(D(2)), C(G), C(H)) be the tense Boolean algebra obtained from

the tense LMn×m-algebra (D(2), G,H) and φ2 : 2 → C(D(2)) as defined in Def-

inition 4.3. Let us consider the functions G∗, H∗ : 2 → 2, defined by: G∗ =

φ−1
2

◦C(G) ◦ φ2 and H∗ = φ−1
2

◦ C(H) ◦ φ2. First, we will prove that (2, G∗, H∗) is

a tense Boolean algebra. We have to verify the axioms (tb1)–(tb3) of Definition 2.1.

(tb1) We must prove that G∗(12) = 12. We have G∗(12) = (φ−1
2

◦ C(G) ◦

φ2)(12) = (φ−1
2

◦ C(G))(φ2(12)) = φ−1
2

(C(G)(1C(D(2)))) = φ−1
2

(1C(D(2))) =

φ−1
2

(φ2(12)) = 12, so G∗(12) = 12.

(tb2) By applying the fact that C(G), φ2 and φ−1
2

commute with ∧.

(tb3) Let x, y ∈ 2 be such that G∗(x)∨y = 12. Thus (φ−1
2

◦C(G)◦φ2)(x)∨y = 12. It

follows that φ−1
2

(C(G)(φ2(x)))∨y = 12, hence C(G)(φ2(x))∨φ2(y) = 1C(D(2)).

Since C(G) and C(H) verify (tb3) we obtain that φ2(x) ∨ C(H)(φ2(y)) =

1C(D(2)). By applying φ−1
2

it results that x∨ (φ−1
2

◦C(H) ◦φ2)(y) = 12, hence

x ∨H∗(y) = 12. The converse implication can be proved similarly.

Thus (2, G∗, H∗) is a tense Boolean algebra. According to Remark 2.2, we will

study two cases: G′ = H ′ = id2 and G∗ = H∗ = I2.
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(i) Suppose that G∗ = H∗ = id2. Then we have that C(G) = φ2 ◦ G∗ ◦ φ−1
2

and

C(H) = φ2 ◦H∗ ◦ φ−1
2

so C(G) = C(H) = idC(D(2)). By Lemma 4.6 it follows

that G = H = idD(2).

(ii) Suppose that G∗ = H∗ = ID(2). Let g ∈ C(D(2)). Then C(G)(g) = (φ2 ◦G∗ ◦

φ−1
2

)(g) = φ2(G
∗(φ−1

2
(g))) = φ2(12) = 1C(D(2)). Hence C(G) = IC(D(2)).

Similarly we can obtain that C(H) = IC(D(2)). By applying Lemma 4.7 it results

that G = H = ID(2). �

Definition 4.4. Let (X,R) be a frame and (2X , G,H) the tense Boolean algebra

of Proposition 2.2. We consider the function

β : (D(2X), D(G), D(H)) → (D(2)X , G′, H ′)

defined by β(f)(x)(i, j) = f(i, j)(x) for all f ∈ D(2X), x ∈ X , (i, j) ∈ (n × m),

where G′ and H ′ are defined by G′(p)(x) =
∧

{p(y) ; y ∈ X, x R y} and H ′(p)(x) =
∧

{p(y) ; y ∈ X, y R x}.

Lemma 4.8. β is an isomorphism of tense LMn×m-algebras.

P r o o f. It is easy to see that β is an injective morphism of LMn×m-algebras. It

remains to prove that β commutes with the tense operators.

Let f ∈ D(2X), x ∈ X and (i, j) ∈ (n×m). We have:

(a) β(D(G)(f))(x)(i, j) = D(G)(f)(i, j)(x) = G(f(i, j))(x) =
∧

{f(i, j)(y) ; y ∈ X,

x R y}.

(b) G′(β(f))(x)(i, j) =
∧

{β(f)(y)(i, j) ; y ∈ X, x R y} =
∧

{f(i, j)(y) ; y ∈ X,

x R y}.

By (a) and (b), we obtain that β(D(G)(f))(x)(i, j) = G′(β(f)(x))(i, j), so β ◦

D(G) = G′ ◦ β. We define the function γ : D(2)X → D(2X) by γ(g)(i, j)(x) =

g(x)(i, j) for all g ∈ D(2)X , x ∈ X , (i, j) ∈ (n × m). Let r 6 s. For all x ∈ X

we have that g(x) ∈ D(2), so g(x)(r, j) 6 g(x)(s, j) and g(x)(i, r) 6 g(x)(i, s).

It follows that γ(g)(r, j)(x) 6 γ(g)(s, j)(x) and γ(g)(i, r)(x) 6 γ(g)(s, j)(x) for all

x ∈ X , so γ(g)(r, j) 6 γ(g)(s, j) and γ(g)(i, r) 6 γ(g)(s, j). Hence, γ is well defined.

We will prove that β and γ are inverse to each other. Let g ∈ D(2)X , x ∈ X and

(i, j) ∈ (n × m). We have (β ◦ γ)(g)(x)(i, j) = β(γ(g))(x)(i, j) = γ(g)(i, j)(x) =

g(x)(i, j), hence (β ◦ γ)(g) = g. Let f ∈ D(2X), (i, j) ∈ (n ×m) and x ∈ X . Then

(γ ◦ β)(f)(i, j)(x) = γ(β(f))(i, j)(x) = β(f)(x)(i, j) = f(i, j)(x), so (γ ◦ β)(f) = f .

�
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Theorem 4.1 (The representation theorem for tense LMn×m-algebras). For every

tense LMn×m-algebra (L,G,H) there exist a frame (X,R) and an injective morphism

of tense LMn×m-algebras α : (L,G,H) → (D(2)X , G′, H ′).

P r o o f. Let (L,G,H) be a tense LMn×m-algebra. By Remark 3.1 we have that

(C(L), C(G), C(H)) is a tense Boolean algebra. Applying the representation theorem

for tense Boolean algebras, it follows that there exist a frame (X,R) and an injective

morphism of tense Boolean algebras d : (C(L), C(G), C(H)) → (2X , G,H). Let

D(d) : D(C(L)) → D(2X) be the corresponding morphism of d by the morphism D.

Then by Lemma 4.3 we have that D(d) is an injective morphism. On the other

hand, using Lemma 4.4, we have an injective morphism of tense LMn×m-algebras

τL : L → D(C(L)). Besides, by Lemma 4.8, β : D(2X) → D(2)X is an isomorphism

of tense LMn×m-algebras. Now, f in the diagram

L−→τL D(C(L)) −→D(d) D(2X)−→β D(2)X

we consider the composition β ◦D(d)◦τL we obtain the required injective morphism.

�

Corollary 4.1. For every tense LMn-algebra (L,G,H) there exist a frame (X,R)

and an injective morphism of tense LMn-algebras Φ: (L,G,H) → (LX
n , G′, H ′).

P r o o f. It is an immediate consequence of Remark 3.1 (ii), Theorem 4.1 and

(LM10). �
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[9] C.Chiriţă: Tense θ-valued Moisil propositional logic. Int. J. of Computers, Communi-
cations and Control 5 (2010), 642–653.

359



[10] D.Diaconescu, G.Georgescu: Tense operators on MV-algebras and  Lukasiewicz-Moisil
algebras. Fundam. Inform. 81 (2007), 379–408.

[11] A.V. Figallo, G. Pelaitay: Discrete duality for tense  Lukasiewicz-Moisil algebras. Fund.
Inform. 136 (2015), 317–329.

[12] A.V. Figallo, G. Pelaitay: Tense operators on De Morgan algebras. Log. J. IGPL 22
(2014), 255–267.

[13] A.V. Figallo, G. Pelaitay: Note on tense SHn-algebras. An. Univ. Craiova Ser. Mat.
Inform. 38 (2011), 24–32.

[14] A.V. Figallo, G. Pelaitay: Tense operators on SHn-algebras. Pioneer J. Algebra Number
Theory Appl. 1 (2011), 33–41.

[15] A.V. Figallo, C. Sanza: Monadic n×m-valued  Lukasiewicz-Moisil algebras. Math. Bo-
hem. 137 (2012), 425–447.

[16] A.V. Figallo, C. A. Sanza: The NSn×m-propositional calculus. Bull. Sect. Log., Univ.
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