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Abstract. We study a particular digraph dynamical system, the so called digraph diclique
operator. Dicliques have frequently appeared in the literature the last years in connection
with the construction and analysis of different types of networks, for instance biochemical,
neural, ecological, sociological and computer networks among others. Let D = (V,A) be
a reflexive digraph (or network). Consider X and Y (not necessarily disjoint) nonempty
subsets of vertices (or nodes) of D. A disimplex K(X,Y ) of D is the subdigraph of D with
vertex set X ∪ Y and arc set {(x, y) : x ∈ X, y ∈ Y } (when X ∩ Y 6= ∅, loops are not
considered). A disimplex K(X, Y ) of D is called a diclique of D if K(X,Y ) is not a proper

subdigraph of any other disimplex of D. The diclique digraph ~k(D) of a digraph D is the
digraph whose vertex set is the set of all dicliques of D and (K(X, Y ),K(X′, Y ′)) is an

arc of ~k(D) if and only if Y ∩ X′ 6= ∅. We say that a digraph D is self-diclique if ~k(D) is
isomorphic to D. In this paper, we provide a characterization of the self-diclique circulant
digraphs and an infinite family of non-circulant self-diclique digraphs.

Keywords: circulant digraph; diclique; diclique operator; self-diclique digraph; graph
dynamics
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1. Introduction

A digraph D = (V,A) is called a reflexive digraph if the arc set A ⊆ V ×V of D is

a reflexive binary relation (that is, every vertex has a loop). Consider (not necessarily

disjoint) nonempty subsets X and Y of vertices of V (D). The disimplex K(X,Y ) of

D is the subdigraph of D with vertex set X ∪ Y and arc set {(x, y) : x ∈ X, y ∈ Y }

(when X∩Y 6= ∅, loops are not considered). A disimplex K(X,Y ) is called a diclique

of D if K(X,Y ) is not a proper subdigraph of any other disimplex of the digraph D.

This material is based upon work supported by UAM-I-CA-53 Análisis Aplicado, when
the first author visited the Universidad Autónoma Metropolitana-Iztapalapa in Mexico
City.
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The diclique digraph ~k(D) of a digraph D is defined by

V (~k(D)) = {K(X,Y ) : K(X,Y ) is a diclique of D} and

A(~k(D)) = {(K(X,Y ),K(X ′, Y ′)) : Y ∩X ′ 6= ∅}.

In this paper, we study a particular digraph dynamical system, the so called di-

graph diclique operator (to be defined at the beginning of the next section). Dicliques

have frequently appeared in the literature the last years in connection with the con-

struction and analysis of different types of networks. They have been useful tools

in general systems theory, where the representation of binary relations, the data

structure to store them in the computer, the optimization of algorithms in particular

disciplines, the determination of subsystems and finding the input and the output

variables of a given subsystem are usual problems (see [5]). Dicliques also are applied

in search techniques to find internally densely connected groups of nodes in directed

networks with concrete applications to real-world networks as for example, Google’s

web pages and problems concerning the distribution of large amounts of information

(as e-mails) as flows in a very complex network of transmission channels (see [6]).

We also point out that “dicliques were strongly used in mathematical models to

support economic based decision-making with applications to economical networks

and Leontief models of energy markets, towards automated model construction and

analysis” (see [4], the citation is taken from page 128 of this reference).

This setting can model problems from biochemical and neural networks in bio-

chemistry and neuroscience, respectively, ecological complex systems, networks for

social interactions in sociology or social psychology as well as from computer net-

works. A (di)graph is a natural representation of this kind of networks, where the

vertices (or nodes) stand for molecules, neurons, species, persons, institutions or com-

puters and the edges (or arcs) represent the interaction between the different nodes.

It is an important research goal to study how networks change, evolve or behave after

applying a given operator once or a series of iterations (see [8] for a comprehensive

study on graph dynamics).

In the first part of this work, we focus on the behavior pattern of the diclique

operator when applied to the class of circulant digraphs. This class of digraphs is

well studied from the theoretical point of view, but also they are important models

for distributed loop computer networks, where, for example, their connectivity and

diameter play a crucial role. For more details, we suggest the interesting survey [2]

on this topic by Bermond, Comellas and Hsu and their extensive list of references

concerning the construction and applications of distributed loop networks, as well as

the optimization problems therein.
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2. Preliminaries

The digraph diclique operator is a pair (D, ϕ), where D is a set of digraphs and

ϕ : D → D is a mapping recursively defined by ϕ(D) = ϕ1(D) = ~k(D) and

ϕn(D) = ϕ(ϕn−1(D))

for n > 2 and some D ∈ D. These definitions were introduced by E.Prisner (see [8])

in terms of bisimplices, bicliques and the biclique operator. Since that terminol-

ogy has been used in the literature for the study of maximal bipartite subgraphs

of undirected graphs, we use the definitions stated above for the case of digraphs

(see [7]).

We say that a digraph D is self-diclique if ~k(D) is isomorphic to D and denote this

fact by ~k(D) ∼= D. In the research of digraph operators as well as graph operators,

one of the main goals is the study of the iterated operator behavior (convergence,

divergence and periodicity). In particular, a digraph D is said to be ~k-periodic if
~kn(D) ∼= D for some n ∈ N (by convention ~k1(D) = ~k(D) and we recursively define
~kn(D) = ~k(~kn−1(D)) for every n > 2). Clearly, if n = 1 in the last definition, then

D is self-diclique.

Let Zn be the cyclic group of the residues modulo a positive integer n and ∅ 6=

J ⊆ Zn \ {0}. The circulant digraph ~Cn(J) is defined by V (~Cn(J)) = Zn and

A(~Cn(J)) = {(i, j) : i, j ∈ Zn and j − i ∈ J}.

In particular, ~Cn(1) = ~Cn, the directed cycle of order n, which is obviously self-

diclique.

A circulant digraph D is vertex transitive, that is, its automorphism group acts

transitively on the vertex set V (D). Observe that ~C2m+1(J) is a circulant (rotational)

tournament if and only if |{i,−i} ∩ J | = 1 for every i ∈ Z2m+1 \ {0}.

A digraph D is strongly connected if for every pair of vertices u, v ∈ V (D) there

exists a directed path from u to v.

Prisner posed the following problem (see [8] Problem 39 on page 207).

P r o b l e m 2.1. Are there, besides the directed cycles, more ~k-periodic digraphs

in the family of all finite strongly connected digraphs?

The only ~k-periodic digraphs that have so far been reported in the literature are

self-diclique digraphs. Zelinka [9] was the first to find a self-diclique digraph that

is not a directed cycle. He showed that ~k( ~O3) ∼= ~O3, where ~O3 is the Eulerian

orientation of the octahedron given by V ( ~O3) = Z6 and

A( ~O3)={(0,1), (0,2), (1,2), (1,3), (2,3), (2,4), (3,4), (3,5), (4,5), (4,0), (5,0), (5,1)}.
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Figueroa and Llano [3] observed that ~O3 is isomorphic to the circulant digraph
~C6(1, 2). Then they showed that ~Cn(1, 2) is self-diclique for every n > 5. Note that
~C5(1, 2) is the only regular tournament on 5 vertices up to isomorphism.

The problem of characterizing self-diclique digraphs is still far from being solved.

Problem 4 of [3] asks, in particular, for a characterization of self-diclique circulant

and of self-diclique tournaments. In this paper, we provide

(i) a characterization of the self-diclique circulant digraphs (Theorem 3.3) and

conclude that ~C5(1, 2) and ~C3 are the only self-diclique circulant tournaments

(Corollary 3.4) and

(ii) an infinite family of non-circulant self-diclique digraphs (see Section 4).

We denote by D〈S〉 the subdigraph of D induced by S. The sets N+(v) and

N−(v) denote the out-neighborhood and the in-neighborhood of a vertex v of a di-

graph D, respectively. An arc between vertices u and v of D is symmetric if (u, v),

(v, u) ∈ A(D). We use [1] for the general terminology on digraphs.

3. Self-diclique circulant digraphs

Let ∅ 6= A ⊆ Zn and i ∈ Zn. We define

−A = {−a : a ∈ A} and i+A = {i+ a : a ∈ A}

(the additive inverses and the sums are taken modulo n).

Proposition 3.1. For every n > 7 and 3 6 k 6 ⌊(n− 1)/2⌋, the circulant

digraphs ~Cn(1, 2, . . . , k) are not self-diclique.

P r o o f. Let J = {1, 2, . . . , k}. Observe that the circulant ~Cn(J) has no sym-

metric arcs, N+(0) = J and N−(0) = −J . We have that K({0, 1}, J) and

K(−J, {−1, 0}) are dicliques of ~Cn(J) containing vertex 0. Since ~Cn(J) is vertex-

transitive,

(i) the disimplices K({i, i+1}, i+J) and K(i−J, {i−1, i}) are dicliques containing

vertex i for every i ∈ Zn and

(ii) K(−J, {−1, 0}) 6= K({−k,−k + 1},−k+ J) since |J | > 3.

Therefore, |V (~k(~Cn(J)))| > 2n and thus ~k(~Cn(J)) ≇ ~Cn(J). �

Note, for example, that the tournament ~C7(1, 2, 3) has two distinct dicliques

Fi = K(i+ {0, 1}, i+ {1, 2, 3}) and Gi = K(i+ {0, 1, 2}, i+ {2, 3})
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for every i ∈ Z7. The digraph ~Cn(1, 2, 3, 4) with n > 9 has three distinct dicliques

K(i+ {0, 1}, i+ {1, 2, 3, 4}),

K(i+ {0, 1, 2}, i+ {2, 3, 4}) and K(i+ {0, 1, 2, 3}, i+ {3, 4})

for every i ∈ Zn and hence |V (~k(~Cn(1, 2, 3, 4)))| > 3n.

We remark that the dicliques of ~Cn(J) = ~Cn(1, 2) are exactly K(i− 1 + J, i+ J);

i = 0, 1, . . . , n − 1, so in this case, |V (~k(~Cn(J)))| = n (see [3], Theorem 1 for the

details).

It is a well-known result that a circulant digraph ~Cn(j1, j2, . . . , jl) is connected if

and only if gcd(n, j1, j2, . . . , jl) = 1 (see [1], page 81). If it is connected, it is clearly

strongly connected.

Proposition 3.2. The strongly connected circulant digraphs ~Cn(j1, j2, . . . , jl),

where jl > l, l > 2 and jr 6= −js for every r, s ∈ {1, 2, . . . , l}, are not self-diclique.

P r o o f. Let J = {j1, j2, . . . , jl}. Observe that N+(0) = J and N−(0) = −J . We

have that K({0}, J) and K(−J, {0}) are dicliques of ~Cn(J) containing the vertex 0.

Since ~Cn(J) is vertex-transitive,

(i) the disimplices K({i}, i+ J) and K(i− J, {i}) are dicliques containing vertex i

for every i ∈ Zn and

(ii) K(−J, {0}) ≇ K({−jk},−jk + J) for every jk ∈ J with 1 6 k 6 l (also recall

that |J | = l > 2).

Therefore, |V (~k(~Cn(J)))| > 2n and hence ~k(~Cn(J)) ≇ ~Cn(J). �

For example, ~C7(2, 3) has dicliques K({i}, i + {2, 3}) and K(i + {4, 5}, {i}) for

every i ∈ Z7.

Theorem 3.3. The digraphs ~Cn (n > 3) and ~Cn(1, 2) (n > 5) are the only

self-diclique circulant digraphs without symmetric arcs.

P r o o f. By Theorem 1 of [3], ~Cn(1, 2) is self-diclique for every n > 5. Proposi-

tions 3.1 and 3.2 show that any other strongly connected circulant digraph without

symmetric arcs is not self-diclique. �

Corollary 3.4. ~C3 and ~C5(1, 2) are the only self-diclique circulant tournaments.
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4. An infinite family of non-circulant self-diclique digraphs

Let m > 3. We define the digraph Dm by V (Dm) = Z2m and

A(Dm) = {(i, i+ j) : i = 0, 2, 4, . . . , 2m− 2; j = 1, 2, 3}

∪ {(i, i+ j) : i = 1, 3, 5, . . . , 2m− 1; j = 1, 2}.

Observe that D3 is a semiregular tournament of order 6.

R em a r k 4.1. The function φ : Z2m → Z2m defined by φ : j → j +2i mod 2m is

an automorphism of Dm for every j ∈ Z2m and i = 0, 1, . . . ,m− 1.

It is clear that Dm is a strongly connected non-circulant digraph without symmet-

ric arcs. By the definition of Dm, we have that Dm〈2k+ {0, 1, 2, 3}〉 ∼= TT4 for every

k = 0, 1, . . . ,m− 1, where TT4 denotes the transitive tournament on 4 vertices.

Theorem 4.2. The digraph Dm is self-diclique for every m > 3.

P r o o f. Define the subsets X0 = {0, 1}, Y0 = {1, 2, 3}, W0 = {0, 1, 2} and Z0 =

{2, 3} of vertices of Dm. Using the definition of Dm, the disimplices K0 = K(X0, Y0)

and L0 = K(W0, Z0) are dicliques of Dm. By Remark 4.1, the disimplices

K2i = K(X2i, Y2i) and L2i = K(W2i, Z2i)

are also dicliques of Dm, where

X2i = {2i, 2i+ 1} = 2i+X0, Y2i = {2i+ 1, 2i+ 2, 2i+ 3} = 2i+ Y0,

W2i = {2i, 2i+ 1, 2i+ 2} = 2i+W0 and Z2i = {2i+ 2, 2i+ 3} = 2i+ Z0,

i = 0, 1, . . . ,m − 1 and the addition is taken modulo 2m. Also, by the definition

of Dm, the set K = {K2i, L2i : i = 0, 1, 2, . . . ,m − 1} contains every diclique of the

digraph. Now, we consider the diclique digraph ~k(Dm) whose vertex set is K. Notice

that
Y2i ∩W2i 6= ∅, Y2i ∩X2(i+1) = Y2i ∩X2i+2 6= ∅,

Y2i ∩W2(i+1) = Y2i ∩W2i+2 6= ∅ and Z2i ∩W2i+2 6= ∅

for every i = 0, 1, . . . ,m− 1, and Z2m−2 ∩X0 6= ∅.

Therefore, the arc set of ~k(Dm) is equal to

A(~k(Dm)) = {(K2i, L2i) : i = 0, 1, . . . ,m− 1} ∪ {(L2m−2,K0)}

∪ {(K2i,K2i+2), (K2i, L2i+2), (L2i, L2i+2) : i = 0, 1, . . . ,m− 1}

(the sum of the subindices is taken modulo 2m).

Define the digraph homomorphism ϕ : V (Dm) → V (~k(Dm)) by ϕ(2i) = K2i and

ϕ(2i + 1) = L2i for every i = 0, 1, 2, . . . ,m − 1. Using the definition of Dm, it is

straightforward to check that ϕ is a digraph isomorphism. �
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Op e n q u e s t i o n. Are there, besides the digraphs ~Cn (n > 3), ~Cn(1, 2) (n > 5)

and Dm (m > 3) any other strong self-diclique digraphs without symmetric arcs?
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