W.M. Mikulski
A complement to the paper “On the Kolář connection” [Arch. Math. (Brno) 49 (2013), 223–240]

Archivum Mathematicum, Vol. 51 (2015), No. 3, 189–190

Persistent URL: http://dml.cz/dmlcz/144429

Terms of use:
© Masaryk University, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
A COMPLEMENT TO THE PAPER

“ON THE KOLÁŘ CONNECTION”

[ARCH. MATH. (BRNO) 49 (2013), 223–240]

W.M. Mikulski

On page 229 of [2], we have the following text

“From Corollary 19.8 in [1], we get immediately the following proposition

Proposition 1. Let \(p_Y : Y \rightarrow M \) be an \(\mathcal{FM}_{m,n} \)-object and \(p_E : E \rightarrow M \) be a \(\mathcal{VB}_{m,n} \)-object, \(y \in Y_r, x \in M \). Let \((\Gamma, \Lambda, \Phi, \Delta) \in \text{Con}(Y) \times \text{Con}^o_{\text{clas}}(M) \times \text{Par}(Y \times_M E) \times \text{Con}_{\text{lin}}(E)\). There exists a finite number \(r = r(\Gamma, \Lambda, \Phi, \Delta, y) \) such that for any \((\Gamma_1, \Lambda_1, \Phi_1, \Delta_1) \in \text{Con}(Y) \times \text{Con}^o_{\text{clas}}(M) \times \text{Par}(Y \times_M E) \times \text{Con}_{\text{lin}}(E)\) we have the following implication

\[
(j^r_y \Gamma_1 = j^r_y \Gamma, j^r_x \Lambda_1 = j^r_x \Lambda, j^r_y \Phi_1 = j^r_y \Phi, j^r_x \Delta_1 = j^r_x \Delta) \Rightarrow A(\Gamma_1, \Lambda_1, \Phi_1, \Delta_1)(y) = A(\Gamma, \Lambda, \Phi, \Delta)(y).
\]

One can show that the above proposition is true but it is not an immediate consequence of Corollary 19.8 in [1]. From Corollary 19.8, it follows immediately the following weaker result.

Proposition 1’. Let \(p_Y : Y \rightarrow M \) be an \(\mathcal{FM}_{m,n} \)-object and \(p_E : E \rightarrow M \) be a \(\mathcal{VB}_{m,n} \)-object, \(y \in Y_r, x \in M \). Let \((\Gamma, \Lambda, \Phi, \Delta) \in \text{Con}(Y) \times \text{Con}^o_{\text{clas}}(M) \times \text{Par}(Y \times_M E) \times \text{Con}_{\text{lin}}(E)\). There exists a finite number \(r = r(\Gamma, \Lambda, \Phi, \Delta, y) \) such that for any \((\Gamma_1, \Lambda_1, \Phi_1, \Delta_1) \in \text{Con}(Y) \times \text{Con}^o_{\text{clas}}(M) \times \text{Par}(Y \times_M E) \times \text{Con}_{\text{lin}}(E)\) we have the following implications

\[
j^r_y \Gamma_1 = j^r_y \Gamma \Rightarrow A(\Gamma_1, \Lambda_1, \Phi_1, \Delta_1)(y) = A(\Gamma, \Lambda, \Phi, \Delta)(y),
\]

\[
j^r_x \Lambda_1 = j^r_x \Lambda \Rightarrow A(\Gamma_1, \Lambda_1, \Phi_1, \Delta_1)(y) = A(\Gamma, \Lambda, \Phi, \Delta)(y),
\]

\[
j^r_y \Phi_1 = j^r_y \Phi \Rightarrow A(\Gamma_1, \Lambda_1, \Phi_1, \Delta_1)(y) = A(\Gamma, \Lambda, \Phi, \Delta)(y),
\]

\[
j^r_x \Delta_1 = j^r_x \Delta \Rightarrow A(\Gamma_1, \Lambda_1, \Phi_1, \Delta_1)(y) = A(\Gamma, \Lambda, \Phi, \Delta)(y).
\]
One can easily see that by Proposition 1’ we get the assumptions (2), (3), (4) and (5) on page 229 in [2]. Namely, by Proposition 1’ we can replace Γ by Γ_1 being polynomial. Next by the same argument we can replace Λ by Λ_1 being polynomial. Next, by the same argument we can replace Φ by Φ_1 being polynomial. Next, by the same argument we can replace Δ_1 being polynomial.

So, we propose to replace Proposition 1 in [2] by Proposition 1’.

REFERENCES
