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Abstract. Let SP be the set of upper strongly porous at 0 subsets of R+ and let Î(SP) be

the intersection of maximal ideals I ⊆ SP. Some characteristic properties of sets E ∈ Î(SP)
are obtained. We also find a characteristic property of the intersection of all maximal ideals
contained in a given set which is closed under subsets. It is shown that the ideal generated
by the so-called completely strongly porous at 0 subsets of R+ is a proper subideal of Î(SP).
Earlier, completely strongly porous sets and some of their properties were studied in the
paper V.Bilet, O.Dovgoshey (2013/2014).
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1. Introduction

The basic ideas concerning the notion of set porosity appeared for the first time in

some early works of Denjoy [4], [3] and Khintchine [2] and then arose independently in

the study of cluster sets in 1967 (Dolženko [5]). A useful collection of facts related to

the notion of porosity can be found, for example, in [7], [8], [15] and [16]. The porosity

appears naturally in many problems and plays an implicit role in various areas of

analysis (e.g., the cluster sets [20], the Julia sets [12], the quasisymmetric maps [17],

The research of the first author was supported by the project 15-1 bb\19,“Metric Spaces,
Harmonic Analysis of Functions and Operators and Singular and Non-classic Problems for
Differential Equations”, Donetsk National University (Vinnytsia, Ukraine). The research
of the second author was supported as a part of EUMLS project with grant agreement
PIRSES-GA-2011-295164.
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the differential theory [9], the theory of generalized subharmonic functions [6] and

so on). The reader can also consult [19] and [18] for more information.

The porosity found interesting applications in connection with ideals of sets. Well-

known results for ideals of compact sets can be found, for example, in [10] and [11]. In

many papers the authors investigate different characteristics (set-theoretic, descrip-

tive, analytic) of the ideals of porous sets (see, e.g., [13], [21], [22]). Some questions

related to the order isomorphism between the principal ideals of porous sets of R

were studied in [14]. Our paper is also a contribution to this line of research, in

particular, we investigate two ideals whose elements are upper strongly porous at 0

subsets of R+.

2. Right upper porosity at a point

Let us recall the definition of the right upper porosity at a point. Let E be a subset

of R+ = [0,∞).

Definition 2.1. The right upper porosity of E at 0 is the number

(2.1) p+(E, 0) := lim sup
h→0+

λ(E, 0, h)

h

where λ(E, 0, h) is the length of the largest open subinterval of (0, h), which could

be the empty set ∅, that contains no point of E. The set E is porous on the right at

0 if p+(E, 0) > 0 and E is strongly porous on the right at 0 if p+(E, 0) = 1.

For the rest of the paper, when the porosity is considered, this will always be

assumed to be the right upper porosity at 0.

For E ⊆ R
+ define the subsets Ẽ and H̃(E) of the set of sequences h̃ = {hn}n∈N

with hn ↓ 0 by the rules

(2.2) (h̃ ∈ Ẽ) ⇔ (hn ∈ E \ {0} for all n ∈ N),

and

(2.3) (h̃ ∈ H̃(E)) ⇔
(λ(E, 0, hn)

hn
→ 1 with n → ∞

)
,

where the number λ(E, 0, hn) is the same as in Definition 2.1.

Define also an equivalence relation ≍ on the set of sequences of positive numbers

as follows. Let ã = {an}n∈N and γ̃ = {γn}n∈N. Then ã ≍ γ̃ if there are positive

constants c1 and c2 such that

c1an 6 γn 6 c2an

for all n ∈ N.
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Definition 2.2. Let E ⊆ R
+. The set E is completely strongly porous on the

right at 0 if for every τ̃ = {τn}n∈N ∈ Ẽ there is h̃ = {hn}n∈N ∈ H̃(E) such that

τ̃ ≍ h̃.

In what follows we denote by SP and CSP the collection (i.e., the set) of sets

E ⊆ R
+ which are strongly porous on the right at 0 and completely strongly porous

on the right at 0, respectively. The set CSP was introduced and studied in [1] with

slightly different, but equivalent definition.

Definition 2.3. Let E ⊆ R
+ and q > 1. The q-blow up of E is the set

E(q) :=
⋃

x∈E

(q−1x, qx).

The goal of the paper is to find some blow up characterizations for the intersection

of maximal ideals I ⊆ SP and for the ideal generated by CSP.

3. Ideals and sets closed under subsets

Let A be a collection of sets. We say that A is closed under subsets if the impli-

cation

(3.1) (B ∈ A ∧ C ⊆ B) ⇒ (C ∈ A)

holds for all sets C and B. If Γ is an arbitrary collection of sets, we write

V = V (Γ ) :=
⋃

A∈Γ

A.

Definition 3.1. A collection I of subsets of a set X is an ideal on X if the

following conditions hold:

(i) I is closed under subsets;

(ii) B ∪ C ∈ I for all B,C ∈ I;

(iii) X 6∈ I and ∅ ∈ I.

We include the condition ∅ ∈ I to guarantee that I is nonempty.

Let Γ be nonempty and closed under subsets. Define a set I(Γ ) ⊆ 2V by the rule

(3.2) (B ∈ I(Γ )) ⇔

(
∃n ∈ N ∃A1, . . . , An ∈ Γ : B =

n⋃

j=1

Aj

)
.

If V 6∈ I(Γ ), then I(Γ ) is an ideal on V such that Γ ⊆ I(Γ ) and the implication

(Γ ⊆ I) ⇒ (I(Γ ) ⊆ I)

holds for every ideal I on V. In what follows we say that I(Γ ) is the ideal generated

by Γ .
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Definition 3.2. Let Γ be an arbitrary nonempty collection of sets. An ideal I

on V = V (Γ ) is Γ -maximal if I ⊆ Γ and the implication

(3.3) (I ⊆ I ⊆ Γ ) ⇒ (I = I)

holds for every ideal I on V.

Write M(Γ ) for the set of Γ -maximal ideals and define an ideal Î(Γ ) as

(3.4) Î(Γ ) :=
⋂

I∈M(Γ )

I,

i.e., Î(Γ ) is the intersection of Γ -maximal ideals.

The paper contains the following main results.

⊲ A characteristic property of sets which belong to the intersection Î(Γ ) of Γ -

maximal ideals with closed under subsets Γ . (See Theorem 4.4.)

⊲ The blow up characterizations of the ideals Î(SP) and I(CSP). (See Theorems 6.6

and 7.6.)

⊲ The proper inclusion I(CSP) ⊂ Î(SP). (See Corollary 7.7 and Example 7.8.)

Remark 3.3. The sets SP and CSP are closed under subsets and no one from

these sets is an ideal on R
+.

Remark 3.4. The Γ -maximal ideals are a generalization of the prime ideals.

Indeed, if Γ = 2V and I is an ideal on V, then it can be proved that I is a prime

ideal on V if and only if I is Γ -maximal.

4. A property of the intersection of Γ -maximal ideals

We start with a useful property of an arbitrary Γ -maximal ideal.

Lemma 4.1. Let Γ be a nonempty collection of sets. The following two state-

ments are equivalent:

(i) Γ is closed under subsets and V (Γ ) 6∈ Γ .

(ii) For every A ∈ Γ there exists a Γ -maximal ideal I such that A ∈ I.

P r o o f. (ii) ⇒ (i). Assume that (ii) holds. Let A ∈ Γ . Using (ii), we find a Γ -

maximal ideal I ∋ A. Then 2A ⊆ I ⊆ Γ holds. Hence Γ is closed under subsets.

Suppose now that V ∈ Γ . By (ii), there is a Γ -maximal ideal I such that

(4.1) V ∈ I.

The ideal I is an ideal on V. Hence V 6∈ I, contrary to (4.1).

716



(i) ⇒ (ii). Suppose that (i) holds. Let A ∈ Γ . Then 2A ⊆ Γ and 2A is an ideal

on V. Using Zorn’s Lemma, we find a Γ -maximal ideal I such that I ⊇ 2A. It is clear

that A ∈ I holds. The implication (i) ⇒ (ii) follows. �

Let Γ be a collection of sets. We denote by I∗(Γ ) the collection of sets S satisfying

the condition

(4.2) S ∪B ∈ Γ

for every B ∈ Γ .

Remark 4.2. It is clear that I∗(Γ ) is closed under subsets, if Γ is closed under

subsets.

Lemma 4.3. If Γ is a nonempty collection of sets, then

(V (Γ ) ∈ Γ ) ⇔ (V (Γ ) ∈ I∗(Γ ))

holds.

P r o o f. Let V ∈ Γ . Then we have B ∪ V = V ∈ Γ for every B ∈ Γ . Hence

V ∈ I∗(Γ ). Let now V ∈ I∗(Γ ) and B ∈ Γ . The inclusion B ⊆ V holds. Thus,

V = B ∪ V ∈ Γ .

�

Theorem 4.4. Let Γ be nonempty closed under subsets and let

(4.3) V (Γ ) 6∈ Γ .

Then the equality

(4.4) I∗(Γ ) = Î(Γ )

holds where Î(Γ ) is defined by (3.4).

P r o o f. Let us prove the inclusion

(4.5) I∗(Γ ) ⊆ Î(Γ ).

Using (3.4), we can see that (4.5) holds if and only if

(4.6) A ∈ I for every Γ -maximal ideal I and every A ∈ I∗(Γ ).
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Let A be an arbitrary element of I∗(Γ ) and let I be a Γ -maximal ideal. Define a set

I(A) as

(4.7) I(A) := {B ∪K : B ⊆ A and K ∈ I}.

The trivial inclusion ∅ ⊆ A implies that I ⊆ I(A). It follows from Definition 3.2 that

I ⊆ Γ . Since I∗(Γ ) is closed under subsets (see Remark 4.2), the relations

B ⊆ A ∈ I∗(Γ ) and K ∈ I ⊆ Γ

yield

(4.8) B ∪K ∈ Γ .

Hence

(4.9) I(A) ⊆ Γ .

Moreover, (4.8), (4.7) and (4.3) imply that V 6∈ I(A). Since I and Γ are closed under

subsets, the definition of I∗(Γ ) and (4.7) imply that I(A) is closed under subsets.

If for i = 1, 2, Bi ∪Ki ∈ I(A) with Bi ⊆ A and Ki ∈ I, then, by the definition of

ideals, K1 ∪K2 ∈ I and, moreover, B1 ∪B2 ⊆ A. Consequently, from the equality

(B1 ∪K1) ∪ (B2 ∪K2) = (B1 ∪B2) ∪ (K1 ∪K2)

we obtain

(B1 ∪K1) ∪ (B2 ∪K2) ∈ I(A).

Hence I(A) is an ideal on V. Since I ⊆ I(A) and I is Γ -maximal, from (4.9) and

(3.3) we obtain the equality

(4.10) I(A) = I.

The membership A ∈ I(A) and (4.10) yield (4.6).

Consider now the inclusion

(4.11) Î(Γ ) ⊆ I∗(Γ ).

If (4.11) does not hold, then we can find A ∈ Î(Γ ) and B ∈ Γ so that

(4.12) A ∪B 6∈ Γ .

By Lemma 4.1, there is a Γ -maximal ideal I such that B ∈ I. The membership

A ∈ Î(Γ ) yields that A ∈ I. Since I is an ideal, from A ∈ I and B ∈ I it follows

that A ∪B ∈ I ⊆ Γ , contrary to (4.12). �
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Corollary 4.5. Let Γ be nonempty and closed under subsets. Then the collection

I∗(Γ ) is an ideal on V if and only if V 6∈ Γ .

P r o o f. The intersection of an arbitrary nonempty set of ideals is an ideal. The

set of Γ -maximal ideals is nonempty, because Γ 6= ∅. Consequently, Î(Γ ) is an ideal

on V = V (Γ ). Hence, by Theorem 4.4, I∗(Γ ) is an ideal on V.

Conversely, if I∗(Γ ) is an ideal on V, then condition (iii) from the definition of

ideals implies that V 6∈ I∗(Γ ). Using Lemma 4.3, we obtain that V 6∈ Γ . �

Remark 4.6. If Γ is closed under subsets and V (Γ ) ∈ Γ , then, as is easily seen,

the equality Î(Γ ) = {∅} holds, so that, in this case, the question about the structure

of Î(Γ ) is trivial.

5. Blow up of sets

Recall that for q > 1 and E ⊆ R
+ we define the q-blow up of E as

(5.1) E(q) :=
⋃

x∈E

(q−1x, qx).

Remark 5.1. For all E ⊆ R
+ and q > 1, we have

(5.2) (0 6∈ E) ⇔ (E(q) ⊇ E).

Indeed, the implication (0 6∈ E) ⇒ (E(q) ⊇ E) is evident. Conversely, suppose that

0 ∈ E. Since 0 6∈ (q−1x, qx) for every nonzero x and (q−10, q0) = (0, 0) = ∅, we

obtain 0 6∈ E(q). Thus (5.2) follows.

Lemma 5.2. Let 0 < a < b < ∞. The following statements hold.

(i) If q > b/a and ∅ 6= E ⊆ (a, b), then the set E(q) is an open interval such that

E(q) ⊇ (a, b).

(ii) If E = (a, b), then E(q) = (q−1a, qb) for every q > 1.

The proof is simple and omitted here.

Lemma 5.3. Let A and B be subsets of R+, let t > 0 and let

(5.3) (0, t) ∩B ⊆ (0, t) ∩ A

hold. Then the inclusion

(5.4) (0, tq−1) ∩B(q) ⊆ (0, tq−1) ∩ A(q)

holds for every q > 1.
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P r o o f. Let q > 1 and let x ∈ (0, tq−1) ∩B(q). Then we have

(5.5) 0 < x < tq−1

and there is y ∈ B such that

(5.6) q−1y < x < qy.

It follows from (5.5) and (5.6) that q−1y < x < tq−1. Consequently, y < t holds.

The last inequality, y ∈ B and (5.3) imply

y ∈ (0, t) ∩B ⊆ (0, t) ∩ A,

so that y ∈ (0, t) and y ∈ A. These relations yield

(q−1y, qy) ⊆ (0, tq) and (q−1y, qy) ⊆ A(q).

Consequently, we have

(5.7) (0, tq−1) ∩B(q) ⊆ (0, tq) ∩ A(q).

The inclusion (0, tq−1) ⊆ (0, tq) and (5.7) imply that

(0, tq−1) ∩B(q) ⊆ (0, tq−1) ∩ (0, tq) ∩A(q) ⊆ (0, tq−1) ∩A(q).

Inclusion (5.4) follows. �

Lemma 5.4. Let E ⊆ R
+ and E 6∈ SP. Then there are q > 1 and t > 0 such that

the equality

(5.8) E(q) ∩ (0, t) = (0, t)

holds.

P r o o f. Equality (5.8) evidently holds for every q > 1 if (0, t) ⊆ E. Hence we

can assume that (0, t) \E 6= ∅ for every t > 0. Since E is not strongly porous on the

right at 0, there is s ∈ (0, 1) such that

lim sup
h→0+

λ(E, 0, h)

h
< s,
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where λ(E, 0, h) is the length of the largest open subinterval of (0, h) that contains

no point of E (see Definition 2.1). Consequently, there exists t > 0 such that, for

every y ∈ (0, t) \ E, there exists x ∈ E satisfying the inequalities

x < y and
y − x

y
< s.

These inequalities imply that

x < y <
x

1− s
.

Hence, y ∈ (q−1x, qx) holds with q = 1/(1− s). Thus, the inclusion (0, t) \E ⊆ E(q)

holds for such q. Since E ∩ (0, t) ⊆ E(q) holds for all t > 0 and q > 1, we obtain

(0, t) = (E ∩ (0, t)) ∪ ((0, t) \ E) ⊆ E(q) ∪ E(q) = E(q).

Thus, (0, t) ⊆ (0, t) ∩ E(q) ⊆ (0, t), which implies (5.8). �

6. Blow up of strongly porous at 0 sets

Let us prove that the q-blow up preserves SP.

Lemma 6.1. Let E ⊆ R
+ and q > 1. Then E belongs to SP if and only if E(q)

belongs to SP.

P r o o f. Since E(q) = (E \ {0})(q) and (E ∈ SP) ⇔ (E \ {0} ∈ SP), we may

assume that 0 6∈ E. In accordance with (5.2), this assumption implies the inclusion

(6.1) E ⊆ E(q).

Since SP is a membership, the implication (E(q) ∈ SP) ⇒ (E ∈ SP) follows.

Let E ∈ SP. Then there is a sequence {(an, bn)}n∈N such that 0 < an < bn, bn ↓ 0,

(an, bn) ∩ E = ∅ and lim
n→∞

an/bn = 0. It is easy to prove that qan < q−1bn and

(qan, q
−1bn) ∩ E(q) = ∅ for all sufficiently large n. Since

lim
n→∞

qan
q−1bn

= lim
n→∞

q2
an
bn

= 0,

the set E(q) is strongly porous on the right at 0. The implication (E ∈ SP) ⇒

(E(q) ∈ SP) follows. Thus,

(E ∈ SP) ⇔ (E(q) ∈ SP)

holds. �
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Corollary 6.2. Let E ⊆ R
+ and q > 1. Then E ∈ I∗(SP) holds if and only if

E(q) ∈ I∗(SP).

P r o o f. As in the proof of Lemma 6.1, we may suppose that E(q) ⊇ E. This

yields (E(q) ∈ I∗(SP)) ⇒ (E ∈ I∗(SP)). Let E ∈ I∗(SP). The relationE(q) ∈ I∗(SP)

holds if and only if

(6.2) E(q) ∪B ∈ SP for every B ∈ SP.

Using the relation

(B ∈ SP) ⇔ (B \ {0} ∈ SP)

we may consider only the case where 0 6∈ B. The membership E ∈ I∗(SP) implies

E ∪B ∈ SP. Consequently, by Lemma 6.1, we obtain

(6.3) E(q) ∪B(q) ∈ SP.

Since 0 6∈ B, the inclusion B ⊆ B(q) holds. The last inclusion and (6.3) yield (6.2).

�

Let A and B be nonempty subsets of R+. We define A ≺ B if b < a holds for

every b ∈ B and a ∈ A. Furthermore, we set

A � B if A = B or A ≺ B.

The relation � is a partial order on the set of nonempty subsets of R+. A chain (i.e.,

a linearly ordered set) (P,6P ) is said to be well-ordered if every nonempty subset X

of P contains a smallest element, i.e., an element x ∈ X such that x 6P y for every

y ∈ X.

It is easy to prove that for every nonempty A ⊆ R
+, the set CcA of connected

components of A is a chain with respect to the partial order �. Define a set Cc1A

by the rule

B ∈ Cc1A if B ∈ CcA and B ⊂ (0, 1].

Lemma 6.3. Let ∅ 6= E ⊆ R
+ and let q > 1. Then the chain (Cc1E(q),�) is

well-ordered.

P r o o f. If there is X ⊆ Cc1E(q) which does not have a smallest element, then

there is a sequence {(ai, bi)}i∈N such that

(a1, b1) ≻ (a2, b2) ≻ . . . ≻ (ai, bi) ≻ (ai+1, bi+1) ≻ . . .
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with (ai, bi) ∈ X for every i ∈ N. The equalities

ln a−1
1 = (ln a−1

1 − ln b−1
1 ) + ln b−1

1

= (ln a−1
1 − ln b−1

1 ) + (ln b−1
1 − ln a−1

2 ) + (ln a−1
2 − ln b−1

2 ) + ln b−1
2

= . . . =

i+1∑

k=1

(ln a−1
k − ln b−1

k ) +

i∑

k=1

(ln b−1
k − ln a−1

k+1) + ln b−1
i+1

and the inequalities

ln a−1
k > ln b−1

k > ln a−1
k+1 > ln b−1

k+1 > 0,

k = 1, . . . , i+ 1 imply that

(6.4) ln a−1
1 >

i+1∑

k=1

(ln a−1
k − ln b−1

k ).

Since X ⊆ Cc1E(q), the intersection (ak, bk) ∩E is nonempty for every k = 1, . . . , i.

It follows directly from the definition of q-blow up that the inclusion

(6.5) (q−1x, qx) ⊆ (ak, bk)

holds for every x ∈ E ∩ (ak, bk). Conditions (6.4) and (6.5) yield the inequalities

ln a−1
1 >

i+1∑

k=1

ln
bk
ak

>

i+1∑

k=1

ln q2 = 2(i+ 1) ln q.

Letting i → ∞, we obtain the equality ln a−1
1 = ∞, contrary to (a1, b1) ∈ Cc1E(q).

�

The proof of Lemma 6.3 shows, in particular, that for given q > 1 and (a, b) ∈

Cc1E(q), the set {(c, d) ∈ Cc1E(q) : (c, d) � (a, b)} is finite. This finiteness together

with Lemma 6.3 implies the following

Corollary 6.4. Let ∅ 6= E ⊆ R
+ and let q > 1. If Cc1E(q) 6= ∅, then the chain

(Cc1E(q),�) is isomorphic to either the first infinite ordinal number ω or an initial

segment of ω.

For a set E ⊆ R
+, we use the symbol acE to denote the set of its accumulation

points.
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Remark 6.5. Let E ⊆ R
+ and q > 1. Then (Cc1E(q),�) is isomorphic to ω if

and only if 0 ∈ acE(q) and 0 ∈ ac(R+ \E(q)). In particular, if E ∈ SP, then Cc1E(q)

is isomorphic to ω if and only if 0 ∈ acE.

Corollary 6.4 means, in particular, that for every infinite Cc1E(q) there is a unique

sequence {(ai, bi)}i∈N such that the logical equivalence

(6.6) ((a, b) ∈ Cc1E(q)) ⇔ (∃ i ∈ N : (a, b) = (ai, bi))

holds for every interval (a, b) ⊆ R
+ and the logical equivalence

(6.7) ((ai, bi) ≺ (aj , bj)) ⇔ (i < j)

holds for all i, j ∈ N. If a sequence {(ai, bi)}i∈N satisfies (6.6)–(6.7) we shall write

Cc1E(q) = {(ai, bi)}i∈N.

The following theorem is a blow up characterization of the ideal Î(SP).

Theorem 6.6. Let E ⊆ R
+ and 0 ∈ acE. Then the following conditions are

equivalent.

(i) E ∈ Î(SP).

(ii) For every q > 1, the chain Cc1E(q) is infinite, Cc1E(q) = {(ai, bi)}i∈N, and the

inequality

(6.8) lim sup
i→∞

bi
ai

< ∞

holds.

P r o o f. (i) ⇒ (ii). In accordance with Theorem 4.4, the equality Î(SP) = I∗(SP)

holds, so that (E ∈ Î(SP)) ⇔ (E ∈ I∗(SP)). Suppose that E ∈ I∗(SP) and q > 1.

Then, by Corollary 6.2, E(q) ∈ I∗(SP) holds. Since SP is closed under subsets, it

follows directly from the definition of I∗(SP) that I∗(SP) ⊆ SP. Consequently, the

equality Cc1E(q) = {(ai, bi)}i∈N holds. (See Remark 6.5.) Suppose that

(6.9) lim sup
i→∞

bi
ai

= ∞.

Let us consider the set

B := R
+ \

(⋃

i∈N

(ai, bi)

)
.
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Definition 2.1 and (6.9) imply that B ∈ SP. Consequently, by the definition of I∗(SP)

we must have B ∪ E(q) ∈ SP. It is clear from the definition of B that

(0, b1) ⊆ B ∪ E(q).

Hence the interval (0, b1) must be strongly porous on the right at 0, contrary to

Definition 2.1. Hence (i) implies (ii).

(ii) ⇒ (i). Suppose now that condition (ii) holds, but E 6∈ I∗(SP). Then there is

B ∈ SP such that B ∪ E 6∈ SP. By Lemma 5.4, we can find q > 1 and t > 0 such

that the q-blow-up of B ∪E is a superset of the interval (0, t), i.e.

(6.10) B(q) ∪E(q) ⊇ (0, t).

Lemma 6.1 shows that B(q) ∈ SP. Consequently, there is a sequence {(a∗j , b
∗

j )}j∈N

of open intervals (a∗j , b
∗

j) such that

(6.11) 0 < a∗j < b∗j < ∞, a∗j ↓ 0, (a∗j , b
∗

j ) ∩B(q) = ∅ and lim
j→∞

b∗j
a∗j

= ∞

hold for every j ∈ N. Inclusion (6.10) and relations (6.11) imply that (a∗j , b
∗

j) ⊆ E(q)

holds for all sufficiently large j ∈ N. Using condition (ii) of the present lemma, we can

find a subsequence {(aik , bik)}k∈N of the sequence {(ai, bi)}i∈N, where {(ai, bi)}i∈N =

Cc1E(q), and a subsequence {(a∗jk , b
∗

jk
)}k∈N of the sequence {(a∗j , b

∗

j )}j∈N such that

(a∗jk , b
∗

jk
) ⊆ (aik , bik) for every k ∈ N. Consequently, we obtain

lim sup
i→∞

bi
ai

> lim sup
k→∞

bik
aik

> lim sup
k→∞

b∗jk
a∗jk

= lim
j→∞

b∗j
a∗j

= ∞,

contrary to (6.8). �

7. Ideal generated by CSP

The goal of the present section is to obtain the blow up characterization of the

ideal I(CSP).

The following lemma is a direct consequence of Theorem 36 and Theorem 42

from [1].

Lemma 7.1. Let E ⊆ R. Then E ∈ CSP if and only if there are q > 1, t > 0 and

a decreasing sequence {xn}n∈N such that xn > 0 for all n ∈ N, lim
n→∞

xn+1/xn = 0

and

E ∩ (0, t) ⊆

(⋃

n∈N

(q−1xn, qxn)

)
∩ (0, t).
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In this section, for every n ∈ N we denote by n the set {1, 2, . . . , n}.

Lemma 7.2. Let E ⊆ R
+ and q > 1. Then the logical equivalence

(E ∈ I(CSP)) ⇔ (E(q) ∈ I(CSP))

holds.

P r o o f. As in the proof of Lemma 6.1, we may assume that 0 6∈ E. In accordance

with Remark 5.1, this assumption implies the inclusion

(7.1) E ⊆ E(q).

Now the implication

(E(q) ∈ I(CSP)) ⇒ (E ∈ I(CSP))

follows from (7.1), because I(CSP) is a down set. To prove the converse impli-

cation suppose that E ∈ I(CSP). Then there are B1, . . . , Bn ∈ CSP such that

E = B1 ∪ . . . ∪Bn. The last equality implies that E(q) = B1(q) ∪ . . . ∪Bn(q). Con-

sequently, E(q) ∈ I(CSP) holds if Bj(q) ∈ CSP for every j ∈ n. By Lemma 7.1,

for every j ∈ n we can find qj > 1, tj > 0, and a decreasing sequence {xk,j}k∈N of

positive numbers such that lim
k→∞

xk+1,j/xk,j = 0 and

(7.2) (0, tj) ∩Bj ⊆ (0, tj) ∩
⋃

k∈N

(q−1
j xk,j , qjxk,j).

Statement (ii) of Lemma 5.2, Lemma 5.3 and (7.2) imply

(0, tjq
−1) ∩Bj(q) ⊆ (0, tjq

−1) ∩
⋃

k∈N

(q−1q−1
j xk,j , qqjxk,j).

Hence, by Lemma 7.1, the statement Bj(q) ∈ CSP holds for every j ∈ n. �

Lemma 7.3. Let E ⊆ R
+, q > 1 and let Cc1E(q) = {(ai, bi)}i∈N. Suppose that

(7.3) lim sup
i→∞

bi
ai

< ∞

and there is N ∈ N such that

(7.4) lim
n→∞

N∨

j=0

an+j

bn+j+1
= ∞

726



where
N∨

j=0

an+j

bn+j+1
= max

{ an
bn+1

,
an+1

bn+2
, . . . ,

an+N

bn+N+1

}
.

Then there are B1, . . . , B2N+2 ∈ CSP such that

(7.5) E ⊆ B1 ∪ . . . ∪B2N+2.

P r o o f. Suppose N ∈ N is a number such that (7.4) holds. Let us define a

sequence {Fk}k∈N of sets Fk ⊆ N as F1 := {1, . . . , N + 1}, F2 := {(N + 1) + 1, . . . ,

2(N +1)}, F3 := {2(N +1)+ 1, . . . , 3(N +1)} and so on. It is clear that
∞⋃
k=1

Fk = N

and Fk1
∩ Fk2

= ∅ if k1 6= k2, and

(7.6) |Fk| = N + 1 for every k ∈ N.

Let mk ∈ Fk be a number satisfying the condition

(7.7)
amk

bmk+1
=

∨

n∈Fk

an
bn+1

.

It follows from (7.4), (7.6) and (7.7) that

(7.8) lim
k→∞

amk

bmk+1
= ∞.

The definition of Fk and (7.6) imply the double inequality

(7.9) 1 6 mk+1 −mk 6 2N + 1.

For every k ∈ N denote by Fk the set of all connected components of E(q) which lie

between [bmk+2, amk+1] and [bmk+1, amk
],

(7.10) Fk := {(an, bn) : [bmk+2, amk+1] ≻ (an, bn) ≻ [bmk+1, amk
]}.

It easy to show that

(7.11)

∞⋃

k=m1

(ak+1, bk+1) =

∞⋃

k=1

⋃
Fk

and Fi ∩ Fj = ∅ if i 6= j. From (7.9) it also follows that 1 6 |Fk| 6 2N + 1 for

every k ∈ N. Consequently, for every k ∈ N, the elements of Fk can be numbered
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(with some repetitions if necessary) in a finite sequence (ak,1, bk,1), (ak,2, bk,2), . . . ,

(ak,2N+1, bk,2N+1). Using the inclusion

E(q) ⊆
∞⋃

n=1

(an+1, bn+1) ∪ (a1,∞)

and (7.11) we obtain

(7.12) E(q) ⊆
⋃

k∈N

(2N+1⋃

j=1

(ak,j , bk,j)

)
∪ (am1

,∞)

=

2N+1⋃

j=1

(⋃

k∈N

(ak,j , bk,j)

)
∪ (am1

,∞).

Write

Bj :=
⋃

k∈N

(ak,j , bk,j)

for every j ∈ 2N + 1, where 2N + 1 = {1, . . . , 2N + 1}, and put B2N+2 := {0} ∪

(am1
,∞). Now we have E ⊆ E(q)∪{0} ⊆ B1 ∪ . . .∪B2N+2. It still remains to prove

that Bj ∈ CSP for j = 1, . . . , 2N + 2. The statement B2N+2 ∈ CSP is clear. Let

j ∈ 2N + 1. In accordance with Definition 2.2, the statement Bj ∈ CSP holds if for

every h̃ = {hl}l∈N ∈ B̃j there is ã = {al}l∈N ∈ H̃(Bj) such that h̃ ≍ ã. Inequality

(7.3) and the definition of Bj imply that there is a positive constant c > 1 such that

ak,j 6 x 6 cak,j

for every x ∈ (ak,j , bk,j) and every k ∈ N. Consequently, if {hl}l∈N ∈ B̃j , then we

have {hl}l∈N ≍ {al}l∈N, where, for every l ∈ N, al is the left endpoint of the interval

(ak,j , bk,j) which contains h
l. Hence, Bj ∈ CSP holds if {ak,j}k∈N ∈ H̃(Bj), which is

equivalent to

(7.13) lim
k→∞

ak,j
bk+1,j

= ∞.

Let us prove (7.13). It follows from (7.10) that

[bmk+2, amk+1] ≻ (ak,j , bk,j) ≻ [bmk+1, amk
]

and

[bmk+3, amk+2] ≻ (ak+1,j , bk+1,j) ≻ [bmk+2, amk+1].
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Hence we have

(ak+1,j , bk+1,j) ≻ [bmk+2, amk+1] ≻ (ak,j , bk,j).

Consequently, the inequality
ak,j
bk+1,j

6
amk+1

bmk+2

holds. The last inequality and (7.8) imply (7.13). �

Corollary 7.4. Let E ⊆ R
+. If there are N ∈ N and q > 1 such that Cc1E(q) is

infinite and conditions (7.3) and (7.4) hold, then E ∈ I(CSP).

In the next lemma, as in Lemma 7.3, the equality Cc1E(q) = {(ai, bi)}i∈N means

that conditions (6.6) and (6.7) are satisfied.

Lemma 7.5. Let E ∈ I(CSP) and let 0 ∈ acE. Then Cc1E(q) = {(ai, bi)}i∈N for

every q > 1, and there are q0 > 1 and M ∈ N such that the conditions

(7.14) lim sup
i→∞

bi
ai

< ∞

and

(7.15) lim
n→∞

M∨

j=0

an+j

bn+j+1
= ∞

hold for every q > q0.

P r o o f. It follows from the definition of I(CSP) that there is N ∈ N such that

(7.16) E = B1 ∪ . . . ∪BN with some B1, . . . , BN ∈ CSP.

Let N = {1, . . . , N}.We may assume 0 ∈ acBj for every j ∈ N . Indeed, if 0 6∈ acBj

for all j ∈ N , then

0 6∈ ac(B1 ∪ . . . ∪BN ) = acE,

contrary to the condition 0 ∈ acE. Hence, there is j1 ∈ N such that 0 ∈ acBj1 .

Write

J0 := {j ∈ N : acBj 6∋ 0}, J1 := {j ∈ N : acBj ∋ 0} and B′

j := Bj ∪

( ⋃

i∈J0

Bi

)
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for every j ∈ J1. Renumbering the elements of N , we may also assume that J1 =

{1, . . . , N1} with N1 6 N. Then the representation

E = B′

1 ∪ . . . ∪B′

N1

holds with B′

j ∈ CSP and acB′

j ∋ 0 for every j ∈ N1. Without loss of generality, we

put N1 = N and Bj = B′

j for every j ∈ N1.

Using Lemma 7.1, for every j ∈ N we can find qj ∈ (1,∞) and a strictly decreasing

sequence {xj,n}n∈N with

(7.17) lim
n→∞

xj,n+1

xj,n
= 0 and lim

n→∞

xj,n = 0,

so that the inclusion

(7.18) Bj ∩ (0, xj,1) ⊆
⋃

n∈N

(q−1
j xj,n, qjxj,n)

holds. Write

(7.19) Bj,n := Bj ∩ (q−1
j xj,n, qjxj,n)

for all n ∈ N and j ∈ N , and define

(7.20) Bj,0 := Bj ∩ [qjxj,1,∞)

for every j ∈ N . Inclusion (7.18) implies that

(7.21) Bj \ {0} =

∞⋃

n=0

Bj,n

and from (7.16) it follows that

(7.22) E \ {0} =

N⋃

j=1

( ∞⋃

n=0

Bj,n

)
.

Replacing the sequences {xj,n}n∈N by suitable subsequences, we may assume that

(7.23) Bj,n 6= ∅ for every j ∈ N and n ∈ N.

Recall that 0 ∈ acBj holds for every j ∈ N . Let q >
N∨
j=1

q2j . Lemma 5.2, the

implication E ⊆ (a, b) ⇒ E(q) ⊆ (q−1a, qb) and (7.23) imply that Bj,n(q) are open

intervals. Write

(7.24) Bj,n(q) := (rj,n, sj,n), n ∈ N, j ∈ N .
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Consequently, from statement (ii) of Lemma 5.2 and

Bj,n ⊆ (q−1
j xj,n, qjxj,n) and q >

N∨

j=1

q2j

it follows that

(rj,n, sj,n) = Bj,n(q) ⊆ (q−1q−1
j xj,n, qqjxj,n) ⊆ (q−3/2xj,n, q

3/2xj,n).

Hence the inequality

(7.25)
sj,n
rj,n

6 q3

holds for all n ∈ N and j ∈ N . Since

xj,n ∈ (sj,n, rj,n) and xj,n+1 ∈ (sj,n+1, rj,n+1),

inequality (7.25) and the limit relation (7.17) imply that

(7.26) lim
n→∞

rj,n
sj,n+1

= ∞.

Hence there is m1 ∈ N such that

(7.27)
rj,n

sj,n+1
> q3(N+1)

holds for all n ∈ N \m1 and j ∈ N . Using (7.25) and (7.27), we see, in particular,

that

(7.28) (rj,n1
, sj,n1

) ∩ (rj,n2
, sj,n2

) = ∅

if n1, n2 ∈ N \m1, n1 6= n2 and j ∈ N . This disjointness together with (7.21) and

(7.24) yields

(7.29) Bj(q) =

∞⋃

n=0

Bj,n(q) =

∞⋃

n=m1+1

(rj,n, sj,n) ∪Oj,q,m1

for every j ∈ N with Oj,q,m1
:= Bj(q) ∩ [rj,m1

,∞). Note that, as was shown in

Remark 5.1, 0 6∈ E(q) for every q > 1 and E ⊆ R
+.

Obviously, for every x ∈ E(q) there is a unique connected component (ax, bx),

ax = ax(q) and bx = bx(q), of the set E(q) such that x ∈ (ax, bx). As is easily seen

the following statements are valid:
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⊲ The chain (Cc1E(q),�) is infinite if there is t ∈ (0,∞) such that ax > 0 for every

x ∈ (0, t) ∩ E(q).

⊲ Inequality (7.14) holds if there are t ∈ (0,∞), k ∈ (1,∞) and p ∈ N such that

(7.30) k−px < ax

for every x ∈ (0, t) ∩E(q).

Note also that the inequalities q1 > q2 > 1 imply the inclusion E(q1) ⊇ E(q2).

Thus, the inclusion (ax(q1), bx(q1)) ⊇ (ax(q2), bx(q2)) holds if q1 > q2 > 1. Con-

sequently, to prove the first part of the lemma it is sufficient to show that (7.30)

holds if

(7.31) q >

N∨

j=1

q2j and x ∈ (0, r1) ∩ E(q)

where

(7.32) r1 :=

N∧

j=1

rj,m1
.

Let x ∈ R
+. To find k ∈ (1,∞) and p ∈ N satisfying (7.30), we define a subset Jx

of N by the rule

(7.33) (j ∈ Jx) ⇔ (j ∈ N and x ∈ (0, r1) ∩Bj(q)),

where r1 is defined in (7.32). From (7.33) it is clear that

(7.34) (Jx = ∅) ⇔ (x ∈ [r1,∞) or x ∈ R
+ \ E(q)).

Let (7.32) hold and let

(7.35) θ ∈ (q3, q3(N+1)).

We claim that if Jx 6= ∅ 6= Jθ−1x, then the equality

(7.36) Jx ∩ Jθ−1x = ∅

holds. Suppose on the contrary that Jx 6= ∅ 6= Jθ−1x holds, but there is j0 ∈ N such

that j0 ∈ Jx ∩Jθ−1x. Then, using (7.33), we see that there are n1, n2 ∈ N \m1, such

that

(7.37) x ∈ (rj0,n2
, sj0,n2

) and θ−1x ∈ (rj0,n1
, sj0,n1

).
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If n1 = n2, then the inequalities rj0,n1
< θ−1x < x < sj0,n1

hold. Hence, we have

θ =
x

θ−1x
6

sj0,n1

rj0,n1

.

Now, using (7.35), we obtain

q3 < θ 6
sj0,n1

rj0,n1

,

contrary to (7.25). Hence, n1 6= n2. The relations θ
−1x < x and n1 6= n2 imply the

inequality n1 > n2. Consequently, n2 < n2 + 1 6 n1. These inequalities and (6.7)

imply

(rj0,n2
, sj0,n2

) ≺ (rj0,n2+1, sj0,n2+1) � (rj0,n1
, sj0,n1

).

Hence,

(7.38) θ =
x

θ−1x
>

rj0,n1+1

sj0,n1

.

From (7.35) and (7.38) it follows that

q3(N+1) >
rj0,n1+1

sj0,n1

,

contrary to (7.27). Thus, (7.36) holds if Jx 6= ∅ and Jθ−1x 6= ∅.

Now, let k ∈ (q3, q3(N+1)/N ). It is easy to prove that

q3 < k < . . . < kN < q3(N+1).

Hence (7.35) holds, if θ = km and m ∈ N . Consequently, if we have

(7.39) Jk−mx 6= ∅

for every m ∈ N ∪ {0}, then

(7.40) Jk−m1x ∩ Jk−m2x = ∅

for all distinct m1,m2 ∈ N ∪ {0}. (To see it suppose m1 < m2 and replace

in (7.35) x and θ−1x by k−m1x and k−(m2−m1)k−m1x, respectively.) By (7.40),

Jx,Jk−1x, . . . ,Jk−Nx are disjoint subsets of N . Hence, if (7.39) holds, then

(7.41) N = |N | >
N∑

l=0

|Jk−lx| >
N∑

l=0

1 = N + 1.
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This contradiction shows that there is l ∈ N ∪ {0} such that

(7.42) Jk−lx = ∅.

Assume that x ∈ (0, r1) ∩ E(q). By (7.33), equality (7.42) holds if and only if

k−lx ∈ [r1,∞) or k−lx ∈ R
+ \ E(q).

Since 0 < k−lx < x < r1, (7.42) yields that k−lx 6∈ E(q). Since (ax, bx) is a connected

component of the set E(q), it is proved that the inequality

(7.43) k−Nx < ax

holds whenever x ∈ (ax, bx) ∈ Cc1E(q), x < r1 and q >
N∨
j=1

q2j . Since (Cc
1E(q),�)

is infinite for every q > 1, assertion (7.14) holds for

(7.44) q > q0 :=

N∨

j=1

q2j .

To complete the proof it suffices to show that (7.15) holds with M = N.

Let (7.44) hold and let

(ai, bi) ∈ {(an, bn)}n∈N = Cc1E(q).

For i ∈ N define a set Ji ⊆ N as

(7.45) Ji :=
⋃

x∈(ai,bi)

Jx

where Jx was defined by (7.33). It follows from (7.45) and (7.34) that there is i0 ∈ N

such that Ji 6= ∅ for i > i0, i.e.

(ai, bi) ∩ (0, r1) ∩E(q) 6= ∅,

for i > i0. Hence, without loss of generality, we may suppose that if x ∈ (ai, bi) and

i > i0, then x < r1. Consequently, for every i > i0 there is l ∈ N such that

(7.46) Ji ∩ Ji+l 6= ∅.

Otherwise, the sets Ji,Ji+1, . . . ,Ji+N would be disjoint nonempty subsets of N ,

which contradicts the equality |N | = N . If (7.44) holds, then there are yi ∈ (ai, bi)

and yi+l ∈ (ai+l, bi+l) such that Jyi
∩ Jyi+l

6= ∅. Let j1 ∈ Jyi
∩ Jyi+l

. Then we have

yi, yi+l ∈ Bj1(q).
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Using (7.29), we can find (rj1,n1
, sj1,n1

) and (rj1,n2
, sj1,n2

) such that n1 > n2,

yi+l ∈ (rj1,n1
, sj1,n1

) and yi ∈ (rj1,n2
, sj1,n2

).

Indeed, if n1 = n2, then the points yi and yi+l belong to one and the same connected

component of E(q). Using (7.26), we can show that

(7.47) lim
i→∞

yi
yi+l

= ∞.

Note also, if bi < r1 and q >
N∨
j=1

q2j , then, using (7.43), we can prove that

(7.48) k−N 6
ai
bi
for k ∈ (q3, q3(N+1)/N ).

Now (7.47), (7.48) and the condition l ∈ N imply (7.15) with M = N. �

Using Lemma 7.3 and Lemma 7.5, we obtain the following blow up description of

the ideal I(CSP).

Theorem 7.6. Let E ⊆ R
+ and 0 ∈ acE. Then the following conditions are

equivalent:

(i) E ∈ I(CSP);

(ii) the chain Cc1E(q) is infinite for every q > 1, Cc1E(q) = {(ai, bi)}i∈N, and there

are q0 > 1 and M ∈ N such that

lim sup
i→∞

bi
ai

< ∞ and lim
n→∞

M∨

j=0

an+j

bn+j+1
= ∞ for all q > q0.

Theorem 7.6 and Theorem 6.6 imply the following corollary.

Corollary 7.7. We have the inclusion I(CSP) ⊆ Î(SP).

The following example shows that there exists a set E ⊆ R
+ such that E ∈ Î(SP)

but E 6∈ I(CSP).

Example 7.8. Let α ∈ (0, 1). For every j ∈ N define positive numbers y0,j,

y1,j, . . . , yj,j so that

y1,j = α1y0,j , y2,j = α2y1,j , . . . , yj,j = αjyj−1,j and y0,j+1 < yj,j,
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and

lim
j→∞

yj,j
y0,j+1

= ∞.

Write

E =
⋃

j∈N

( j⋃

k=0

{yk,j}

)
.

Let q > 1. Simple estimations show that Cc1E(q) is infinite, Cc1E(q) = {(ai, bi)}i∈N

and

lim sup
i→∞

bi
ai

6

( 1

α

)m
+
( 1

α

)m−1

+ . . .+
1

α
+ 1,

where m is the smallest positive integer such that

(7.49) q <
( 1

α

)m
.

Consequently, by Theorem 6.6 we have

E ∈ Î(SP).

In accordance with Theorem 7.6, the statement E ∈ I(CSP) does not hold if and

only if the inequality

lim inf
n→∞

M∨

j=0

an+j

bn+j+1
< ∞

holds for every q > 1 and M ∈ N. Let m ∈ N satisfy (7.49). Then we can show that

lim inf
n→∞

M∨

j=0

an+j

bn+j+1
6

( 1

α

)m+M+1

.

Thus, E does not belong to I(CSP).

References

[1] V.V.Bilet, O.A.Dovgoshey: Investigations of strong right upper porosity at a point.
Real Anal. Exch. 39 (2013/14), 175–206.

[2] A.Chinčin: Recherches sur la structure des fonctions mesurables. Moscou, Rec. Math.
31 (1923), 265–285, 377–433. (In Russian, in French.)
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