Czechoslovak Mathematical Journal

Meher Jaban; Sinha Sneh Bala
Some infinite sums identities
Czechoslovak Mathematical Journal, Vol. 65 (2015), No. 3, 819-827

Persistent URL: http://dml.cz/dmlcz/144445

Terms of use:

© Institute of Mathematics AS CR, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized

documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/144445
http://dml.cz

Czechoslovak Mathematical Journal, 65 (140) (2015), 819—-827

SOME INFINITE SUMS IDENTITIES

MEHER JABAN, Bengaluru, SINHA SNEH BALA, Allahabad

(Received August 19, 2014)

Abstract. We find the sum of series of the form
i ()
Z‘T
i=1

for some special functions f. The above series is a generalization of the Riemann zeta
function. In particular, we take f as some values of Hurwitz zeta functions, harmonic
numbers, and combination of both. These generalize some of the results given in Mez4’s
paper (2013). We use multiple zeta theory to prove all results. The series sums we have
obtained are in terms of Bernoulli numbers and powers of n.
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1. INTRODUCTION

For s > 1, the Riemann zeta function is defined by

The values of ((s) at integers have attracted many mathematicians. The values of
¢(s) at odd positive integers are quite mysterious. The only proper result in this
direction is about the irrationality of ((3). However, at even integers the values of
((s) are well known. The values are in terms of powers of n and Bernoulli numbers.
This shows that ((2¢) is transcendental for any positive integer i. The nth Bernoulli
number B,, is a rational number defined by the power series expansion

o0

t" 4

B”H:et—r

n=0
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The Hurwitz zeta function which is a generalization of the Riemann zeta function

is defined as
o0

C(SW):Zﬁ (s>1; aeR\Z_),

n=0
where R and 7Z_ are the sets of real numbers and non-positive integers, respectively.
The nth generalized harmonic number of order r is defined as

n

1
Hn’,,n == 1_7"
i=1

More generally, if we consider series of the form

(1.1) Z f(f),

1

it is interesting to find the sum of the above series for some special functions f. The
above series is a generalization of the Riemann zeta function. Mez§ [1] has considered
series of the form (1.1) where f are some particular values of Hurwitz zeta function
and generalized harmonic numbers. In [1], the sums of various series were computed
by applying the Weierstrass product theorem. The aim of this paper is to generalize
some of the identities which have been proved in [1] only in particular cases. We
use the theory of multiple zeta values to prove our results. The series sums we have
obtained are in terms of Bernoulli numbers and powers of n.

2. SERIES ARISING FROM MULTIPLE ZETA VALUES

For sy > 1 and s; > 1 for 2 < i < r, the multiple zeta values are defined as

1

ni>ng>...>n,2>1 1

We have the following identity which generalizes identities 4 and 7 of [1].

Proposition 2.1. For any positive integer k,

2 > G = { ()~ srun) 3

Proof. To prove the above identity, we need the following identity for multiple
zeta values:

(2.2) C(51)C(s2) = C(s1,82) + ((s2,51) + (51 + 82).
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Proof of (2.2) is not difficult. The left hand side product is a double sum

o0 (o) 1

Y
>
ny= 1’!7,21 1 2

which can be written as

o0 oo o0

1 1 1 1 1 1
Z n15t ngs? + Z n15t Nos2 + Z nist n2$2'

ni,n2=1; n1>ns ni,n2=1; na>ny ni,ne=1; n1=nz

This proves (2.2). Now, if s; = so = 2k, then from (2.2) we get

((20)” = C(4k)

(2.3) C(2k, 2k) = >

Next, we recall the famous theorem due to FEuler on the values of Riemann zeta
function at even numbers. We have

x Bok

(2.4 2(2) = (1) 2 s

Now

(2.5) ((2k,2k) = Zizik >

i=1 j=i+1

1 <1 s = Hiop
T2k Z_k C(2k) = Hion) = C(2K) _Z 2k

J i=1

Arranging appropriately, we see that

Hl 2k
5o He z< 2

i=1

Thus from the above identity, (2.3) and (2.5), we deduce

o (23 C(2k)* — C(4k) _ C(2k)* + ((4k)
; C(2k)% — 5 = 5 :

Applying (2.4) to the above equality, we finally get
i C(Qk, Z) _ {( ng )2 _ B4k } (21‘[)4k
P 12k 2(2k)! 2(4k)! 2

This proves Proposition 2.1. O

Our second result stated below generalizes identities 1 and 8 of [1].

821



Proposition 2.2. For any positive integer k we have

i 3
(2.6) ; }?2;’? (2k;4) = {(_1)%—1% 4 (_1)3k—3%
—2 3B51. By (2ﬂ)6/€
N s

Proof. Asin (2.2), it is not difficult to see that

(2.7) C(s1,52,83) + (51,52 + 53) + ((51, 53, 52)
+ ((s1 + 83, 52) + ((83, 51, 82) = ((51,52)((83).
Substituting s; = s2 = s3 = 2k in the above equation and using (2.2), we obtain

C(2k, 2k)C(2k) — C(2k)C(4k) + C(6k)

(2.8) C(2k, 2k, 2k) = >
Now
Tl o= 1 =1 1 =1
Gk 2k26) = D o D or D@m= 2 gn D 7w (2K — Hya)
i=1 j=i+1 t=j+1 i=1 j=i+1
=1 = ((2k) > Hjon
= ZZT< Z j2k - Z j2k
i=1 j=i+1 j=1+1
> q  Hiop <~ Hiop
=3 S |C@R)(C(2k) — Hig) — (3 =2k -3~ =22
i:lZ j=1 J j=1 J

=1 j=1 i=1
o0 o0
>y
Z'Qk j2k
i=1 7j=1

Also we have

> %(C(%)Q = C(2k) Hizr) = C(2K) D S L c@k)c(2h,26),

1=

—
~
Il
—
<.
Il
.
+
=

S D0 T = 3 e {C(2b)? - G2k, 200} = C(28)° — C(2R)C(28,28).
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From (2.9), we also have

> Z j?;’“ = ((2k, 2k, 2k) — C(2k)C(2K, 2k) + C(2Kk)° — C(2Kk)C(2k, 2k)
=1 j=1

= ((2k, 2k, 2k) — 2¢(2k)C(2k, 2k) + C(2k)>.

Using (2.3) and (2.8) in the above identity, we get

(210) Z%Z 226 = 2 {20(6K) + C(2K)° + BC(2R)C(4R)).

i=1

Using (2.4) in the above equation, we obtain

Gk 3
@) ZZ%Z it G o R s

6
§(_1)3k,2 Boy, By,
4

N @R (k)

Arranging appropriately, we see that

H;,
ZZ%Z ”’“:Z S C(2ks ).

i=1

Now using (2.11) and the above identity, we finally obtain

= ];Iz 2k (27‘[)6k 3k—1 Bﬁk 1 e BS
D e A
3 . . BB
i 2(21:)161(4%!]
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3. SERIES ARISING FROM MULTIPLE HURWITZ ZETA VALUES

For sy >1,81+s2>1,...,81+s2+...+s >r,and aq,qs,...,a,. € R\ Z, the
multiple Hurwitz zeta function is defined by

1
C(s1,82,...,8r; ap,az,...,ap) = >

o 51 (ng + 1) ... (ng + )5’

For more details on multiple Hurwitz zeta function, see [2]. For n € N we define

" 1
/ _
Hy1p= Y i1

i=1

Our next result stated below generalizes identity 2 of [1].

Proposition 3.1. For any positive integer k, we have

S SO e (1 ) B (1 ) 2]

i=1

Proof. To prove the above identity, we need the following identity for multiple
Hurwitz zeta values:

(3.1) C(s15)¢(s2; ) = (51, 825 v, ) + ((82, 515, ) + (51 + 825 @)
1, 1 2
+ @C(SQ,O&) + EC(Sl,O&) — m

Proof of (3.1) is similar to the proof of (2.2), hence we omit it. Substituting s; =
sg =2k, a = —1/2in (3.1), we obtain

(3.2) 24(%, % —%, 1

R R R R

Now

1
=1 2 Jj=i+
N 1 - 1
=24 . :
L 2, B
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_ olk
=2 ZW{O 22k)C(2k) Héi—l,Qk}
i=1
1
— 9%k _ ok Hy, 1,2k
=2 {(1 2%) } 2 Zm—l%
Thus from the above identity, we obtain
4k 2z 1,2k Ak _i) }2_ ( ._1 _1)
(33) 2 Z @i 2 {(1 5o )C(2K) ¢ — (2K, 2k =5, =5 ).

Arranging appropriately, we see that

> H! > C(2k;i — 1)
3.4 92k 2i—12k _ ; 3)
(34) Z (26 — 1)%k ; (20 — 1)%k
Using (3.4) in (3.3), we get

o2k f; g((;k_izl_)i) {1 L)C(%)} — ¢(2k,2; _%7 _%)

Now using (3.2), the identity

k
2*2’64(%;—%) = ((2k) — C;zk) +1,

and (2.4) in the above equality, we finally obtain

> Okt D) s L1 LY Bl (1o Ly B

Our next result stated below generalizes identity 3 of [1].

Proposition 3.2. For any positive integer k, we have

[ee) H/
R o )

_ o8k 6k [ﬂ (1 _ i) (1 _ L) (B2kB4k

8 92k 21k ) (2k)1(4k)!
(_1)3k—3 1 \3 BS (_1)3k—1 1 B
TR (1 B 2Tk) (Zk)k!3 T (1 B W) (6121;!]'
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Proof. To prove the above identity, we need the following identity for multiple
Hurwitz zeta values, proof of which is similar to the proof of (3.1).

C(s1,82; 0, a)((s3;0) =

ass C(sla S2; Qv a) + C(sla S2,83; &, &y Oé)

+ C(sla 83,82;04,04,06) + 4(83; 81,82;04,04,06)

+((s1 4 83, 52; 0, 0) + (51,52 + 837, ).

Substituting s; = s2 = s3 = 2k and @ = —1/2 in the above equality and using (3.1),

we obtain
(3.6) 4(%,%,%;_%,_%,_%) _ % {<<22k~>3 (- 2%)3

_ gg(%)C(zuc)(l - 2%) (1- 2%) (- Qik)é(ﬁk)}
Now

(3.7) g(2k,2k,2k;—1,_1 _1)

2" 2
= Z )2k Z _ )Qk Z
=1 ]z+1 tj+1
—2“[0 2;) (1 DR
=1
(26 — 1)

i=1

Substituting the values of Z Hy, o1,/ (25 — 1)%* and ((2k,2k,2k;—3,—3,—3)
j=1
from (3.3) and (3.6), respectively, in the above identity, we deduce that

0 i H! 1 1 1
B9 Xm0 SRR (1= 55¢) (1 - 7)
i=1

171 1\3, . 1
+3l5 (0= g <R +aom (1 - 557) |
Also arranging appropriately, we see that

0o 7

Hé 1
J— 12k — 92 2z 1,2k
Z_12kz - Z QkC( 2)'

i=1
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Now using the above identity and (2.4) in (3.8), we finally obtain

(3.9) i o, 2§k ¢(2k:m ;)

n:l

— 8k 6k [ﬂ (1 _ i) (1 _ L) (B2kB4k

8 o2k 21k ) (21)1(4k)!
(V%2 1B ()P 1y B
5 (=) ehE T 6 (1 26'@)(6&;)!}'

O
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