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CONTRACTING ENDOMORPHISMS AND DUALIZING COMPLEXES

Saeed Nasseh, Statesboro, Sean Sather-Wagstaff, Clemson
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Abstract. We investigate how one can detect the dualizing property for a chain com-
plex over a commutative local Noetherian ring R. Our focus is on homological properties
of contracting endomorphisms of R, e.g., the Frobenius endomorphism when R contains
a field of positive characteristic. For instance, in this case, when R is F -finite and C is
a semidualizing R-complex, we prove that the following conditions are equivalent: (i) C
is a dualizing R-complex; (ii) C ∼ RHomR(

nR,C) for some n > 0; (iii) GC -dim
nR < ∞

and C is derived RHomR(
nR,C)-reflexive for some n > 0; and (iv) GC -dim

nR < ∞ for
infinitely many n > 0.

Keywords: Bass classes; contracting endomorphisms; dualizing complex; Frobenius en-
domorphisms; GC -dimension; semidualizing complex

MSC 2010 : 13A35, 13D05, 13D09

1. Introduction

Throughout this paper, the term “ring” means “commutative Noetherian ring

with identity”, and “module” means “unital module”. A ring is “complete” if it is

complete (i.e., separated and complete) with respect to its Jacobson radical. Let R

be a ring. For this section, assume that (R,m, k) is local.

An idea in commutative algebra that is now standard is the following: interesting

properties of R can be detected by homological conditions on k; when R contains

a field of positive characteristic, such properties of R can be detected similarly by
nR. Here nR is the additive abelian group R viewed as an R-module via restriction

of scalars along the nth iterated Frobenius map fnR : R→ R given by r 7→ rp
n

.

The somewhat canonical example of this is Auslander and Buchsbaum, Kunz, Ro-

dicio and Serre’s work [3], [25], [29], [32] characterizing regular rings in terms of finite

This material is based on work supported by North Dakota EPSCoR and NSF Grant
EPS-0814442. Sather-Wagstaff was supported in part by a grant from the NSA.
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projective dimension of k and finite flat dimension of nR. Analogous characterizations

of the Gorenstein property are built from Auslander and Bridger’s G-dimension [2]

(or using similar ideas) by Goto, Iyengar, Sather-Wagstaff, Takahashi, and Yoshino

[19], [23], [33].

A comparable characterization of the dualizing property for R-complexes in terms

of derived reflexive behavior of k goes back to Hartshorne [21] and Grothendieck [20].

The point of this paper is to give similar characterizations of dualizing complexes with

respect to nR. We frame the conversation in terms of Christensen’s semidualizing

complexes [11] (coming from Avramov and Foxby’s relative dualizing complexes [4]),

and following Avramov, Iyengar, and Miller [10] in terms of contracting endomor-

phisms. (See Section 2 for terminology and background results.) A special case of

one of our main results is the following, which we prove below in Section 4.

Theorem 1.1. Let ϕ : R→ R be a module-finite contracting endomorphism, and

let C be a semidualizing R-complex. Let nR be the additive abelian group R viewed

as an R-module via restriction of scalars along the n-fold composition ϕn : R → R.

Then the following conditions are equivalent:

(i) C is a dualizing R-complex.

(ii) C ∼ RHomR(
nR,C) for some n > 0.

(iii) GC -dim
nR <∞ and C is derived RHomR(

nR,C)-reflexive for some n > 0.

(iv) GC -dim
nR <∞ for infinitely many n > 0.

If R has a dualizing complexD, then these conditions are equivalent to the following:

(v) GC -dim
nR < ∞ and nR ⊗L

R RHomR(C,D) is derived RHomR(C,D)-reflexive

for some n > 0.

A standard technique for working with the Frobenius involves reducing to the

case where R is F -finite. The next result shows how this works in our setting; it is

contained in Theorem 5.2.

Theorem 1.2. Let R be a local ring of prime characteristic p > 0, and let C be

a semidualizing R-complex. Then the following conditions are equivalent:

(i) C is a dualizing R-complex.

(ii) There is a complete weakly étale F -finite local R-algebra S such that S ⊗L
R C

is dualizing for S.

(iii) There is a complete weakly étale F -finite local R-algebra S such that for in-

finitely many n > 0 one has GS⊗L

R
C-dim fnS <∞.

(iv) There is a complete weakly étale F -finite local R-algebra S such that for some

n > 0 one has GS⊗L

R
C -dim fnS < ∞ and nS ⊗L

S RHomS(S ⊗L
R C,D

S) is derived

RHomS(S ⊗L
R C,D

S)-reflexive, where DS is a dualizing S-complex.
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It is worth noting that one of the focuses of this paper involves developing a similar

method for reducing to the module-finite situation for other contracting endomor-

phisms.

We conclude this section by summarizing the contents of the paper. Section 2

contains terminology and background content. Section 3 consists of analyses of

a construction like RHomR(
nR,C) that is better suited for endomorphisms that are

not module-finite. In Section 4 we prove results including Theorem 1.1 above about

general contracting endomorphisms, and in Section 5 we focus briefly on the Frobe-

nius endomorphism. Finally, the appendix contains a somewhat general construction

of module-finite contracting endomorphisms.

2. Semidualizing complexes and GC-dimension

In this section, we recall definitions and background material on semidualizing

complexes and related notions. We begin by specifying our notation for complexes

and derived categories. The reader may find [18], [21], [34], [35] to be useful for more

background.

In this paper, R-complexes are indexed homologically

M = . . .
∂M

i+1 // Mi

∂M

i // Mi−1

∂M

i−1 // . . .

For each integer i, the ith suspension (or shift) of M , denoted ΣiM , is the complex

with (ΣiM)n =Mn−i and ∂
Σ

iM
n = (−1)i∂Mn−i.

The derived category of the category of R-modules is denoted D(R). Isomorphisms

in D(R) are identified by the symbol ≃ and isomorphisms up to shift are designated

by ∼.

Fix R-complexes M and N . Let inf(M) and sup(M) denote the infimum and

supremum, respectively, of the set {n ∈ Z ; Hn(M) 6= 0}, with the conventions

sup(∅) = −∞ and inf(∅) = ∞. The complex M is homologically bounded if

Hi(M) = 0 for all |i| ≫ 0; it is degree-wise homologically finite if each Hi(M) is

finitely generated; and it is homologically finite if
⊕
i

Hi(M) is finitely generated.

If M is degree-wise homologically finite and inf(M) > −∞, thenM admits a degree-

wise finite free resolution, that is, an isomorphism F
≃
−→ M in D(R) such that

each Fi is a finitely generated free R-module and Fi = 0 for i < inf(M).

LetM⊗L
RN and RHomR(M,N) denote the left-derived tensor product and right-

derived homomorphism complexes. Let pdR(M), fdR(M), and idR(M) denote the

projective, flat, and injective dimensions of M , as in [6]. A ring homomorphism

R → S has finite flat dimension if fdR(S) is finite. When R is a local ring with

residue field k, the depth of M is depthR(M) := − sup(RHomR(k,M)).

839



The ideas behind semidualizing complexes go back, e.g. to Grothendieck’s dualiz-

ing complexes [21] and the relative dualizing complexes of Avramov and Foxby [4].1

The generality that we work in for this paper is from Christensen [11].

Definition 2.1. An R-complex C is semidualizing if it is homologically finite and

the “homothety morphism” χRC : R → RHomR(C,C) is an isomorphism in D(R).

An R-complex D is dualizing if it is semidualizing and has finite injective dimension.

Fact 2.2. If R is a homomorphic image of a Gorenstein ring, e.g., if R is complete,

then R admits a dualizing complex by [21], §V.10.

Fact 2.3. Let ϕ : (R,m) → (S, n) be a local ring homomorphism of finite flat di-

mension, and letM be a homologically finite R-complex. From [11], Proposition 5.7,

and [17], Theorem 4.5, we know that S⊗L
RM is semidualizing for S if and only if M

is semidualizing for R. When ϕ is flat, the complex S ⊗L
R M is dualizing for S if

and only if M is dualizing for R and S/mS is Gorenstein by [5], Proposition 4.2,

Theorem 5.1.2

The next categories come from Avramov and Foxby [4] and Christensen [11].

Definition 2.4. Let C be a semidualizing R-complex. The Auslander class with

respect to C is the full subcategory AC(R) ⊆ D(R) consisting of the homologically

bounded R-complexes M such that C ⊗L
RM is homologically bounded and the nat-

ural morphism γCM : M → RHomR(C,C ⊗L
R M) is an isomorphism in D(R). The

Bass class with respect to C is the full subcategory BC(R) ⊆ D(R) consisting of the

homologically bounded R-complexes M such that RHomR(C,M) is homologically

bounded and the natural morphism ξCM : C ⊗L
R RHomR(C,M) → M is an isomor-

phism in D(R).

Definition 2.5. Let C and M be R-complexes. We set M †C := RHomR(M,C)

and M †C†C := (M †C )†C . The R-complex M is derived C-reflexive when the com-

plexesM andM †C are homologically finite and the “biduality morphism” δCM : M →

M †C†C is an isomorphism in D(R).3

Definition 2.6. Let C be a semidualizing R-complex. Set

GC -dimR(M) :=

{
inf(C)− inf(RHomR(M,C)) if M is derived C-reflexive,

∞ otherwise.

1 The history summarized in this section is skeletal at best. For a more thorough discussion,
the interested reader may find [30] helpful.

2 This can be done more generally using Gorenstein homomorphisms, but we do not need
that level of generality here; see [5].

3Avramov, Iyengar, and Lipman [9], Theorem 2, show that this definition is redundant
when C is semidualizing.
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When C = R we write G-dimR(M) in place of GC -dimR(M); this is the G-dimension

of Auslander and Bridger [2] and Yassemi [36].

Fact 2.7 ([11], Theorem 3.14). Let C be a semidualizing R-complex, and let M

be an R-complex such that GC -dimR(M) <∞. Then

GC -dimR(M) = depth(R)− depthR(M).

Fact 2.8. Assume that R has a dualizing complex D. Each homologically finite

R-complex M is derived D-reflexive by [21], Proposition V.2.1, or [11], Proposi-

tion 8.4. Furthermore, for each semidualizing R-complex C, the complex C†D is also

semidualizing; see [11], Theorem 2.11.

Definition 2.9. Let R be local with residue field k, and letM be a homologically

finite R-complex. The Poincaré and Bass series of M are the formal Laurent series

PRM (t) :=
∑

i∈Z

dimk(Tor
R
i (M,k))ti and IMR (t) :=

∑

i∈Z

dimk(Ext
i
R(k,M))ti.

Fact 2.10. For a semidualizing R-complex C we have from [14], Theorem 4.1 (a):

IRR (t) = I
RHomR(C,C)
R (t) = PRC (t)ICR (t).

Our next topic is from Avramov, Foxby, and Herzog [7].

Definition 2.11. Let ϕ : (R,m) → (S, n) be a local ring homomorphism. The

semi-completion of ϕ is the composition ϕ̀ : R → Ŝ of ϕ and the inclusion S → Ŝ.

The map ϕ is said to be weakly regular if it is flat with regular closed fibre. If ϕ

is flat, we define the depth and the embedding dimension of ϕ to be depth(ϕ) :=

depth(S/mS) and edim(ϕ) := edim(S/mS). If ϕ is weakly regular of embedding

dimension 0, we say that ϕ is weakly étale or that S is a weakly étale R-algebra.

A regular (Gorenstein, respectively) factorization of ϕ is a diagram of local homo-

morphisms R
ϕ̇

−→ R′ ϕ′

−→ S where ϕ = ϕ′ϕ̇, ϕ̇ is flat, R′/mR′ is regular (Gorenstein,

respectively), and ϕ′ is surjective. By [7], Theorem 1.1, the semi-completion ϕ̀ ad-

mits a regular factorization R → R′ → Ŝ such that R′ is complete; this is called

a Cohen factorization of ϕ̀.

Given a regular factorization R
ϕ̇

−→ R′ ϕ′

−→ S for ϕ, it is straightforward to

show that edim(ϕ) > edim(S/mS); this factorization is minimal if edim(ϕ) =

edim(S/mS).

The focus of this paper is on GC -dimension of local homomorphisms, though we

do require the following slightly greater generality for a few results. See [31].
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Definition 2.12. Let ϕ : R → S be a local ring homomorphism and M a ho-

mologically finite S-complex. Fix a semidualizing R-complex C and a Cohen fac-

torization R
ϕ̇

−→ R′ ϕ′

−→ Ŝ of the semi-completion ϕ̀. The GC-dimension of M

over ϕ is

GC -dimϕ(M) := GR′⊗L

R
C -dimR′(Ŝ ⊗L

S M)− edim(ϕ̇).

The GC-dimension of ϕ is GC -dim(ϕ) := GC -dimϕ(S). In the case C = R, we

follow [23] and set G-dimϕ(M) := GR-dimϕ(M) and G-dim(ϕ) := GR-dim(ϕ).

Fact 2.13. Let ϕ : R → S be a local homomorphism, C a semidualizing

R-complex, and M a homologically finite S-complex.

(a) The quantities GC -dimϕ(M), GC -dimϕ̀(Ŝ ⊗L
S M), and GR̂⊗L

R
C-dimϕ̂(Ŝ ⊗L

S M)

are simultaneously finite, by an argument as in [23], Property 3.4.1.

(b) If ϕ admits a Gorenstein factorization R
ϕ̇

−→ R′ ϕ′

−→ S, then GC -dimϕ(M) =

GR′⊗L

R
C -dimR′(M)− depth(ϕ̇), as in [23], Proposition 3.8.

(c) If R admits a dualizing complex D, then GC -dimϕ(M) <∞ if and only if M is

in AC†D (R), by [31], Property 2.2.3.

Definition 2.14. Let ϕ : R → R be a ring endomorphism. For n = 1, 2, . . .

let ϕn denote the n-fold composition of ϕ with itself. Each endomorphism ϕn defines

a new R-module structure on R, which we denote as nR: specifically for r ∈ R and

s ∈ nR, we have r ·s = ϕn(r)s.4 If (R,m) is local, then ϕ is contracting if ϕn(m) ⊆ m
2

for n≫ 0.

If R contains a field of characteristic p > 0, then the Frobenius endomorphism

fR : R → R given by r 7→ rp is a contracting endomorphism, and R is F -finite when
1R is finitely generated over R.

3. Complexes induced from ring homomorphisms

This section contains basic results about the following tool from [17] that is central

to our study of GC -dimensions of local ring homomorphisms.

Notation 3.1. Let ϕ : R → S be a local homomorphism that has a Gorenstein

factorization R
ϕ̇

−→ R′ ϕ′

−→ S. Given an R-complex M , we set

M(ϕ) := ΣdRHomR′(S,R′ ⊗L
RM)

where d = depth(ϕ̇).

4 This of course depends on ϕ, but this notation is fairly standard.
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Remark 3.2. Let ϕ : R → S be a local homomorphism that has a Gorenstein fac-

torization, and let M be a homologically finite R-complex. The R-complex M(ϕ) is

independent of the choice of Gorenstein factorization by [17], Theorem A.5 (a). If C is

semidualizing for R, then C(ϕ) is semidualizing for S if and only if GC -dim(ϕ) <∞,

by Fact 2.3 and [11], Theorem A.1. Also, if C is dualizing for R, then C(ϕ) is dual-

izing for S by [17], Remark A.7. If ϕ is module-finite, then C(ϕ) ≃ RHomR(S,C)

by [17], Theorem A.5 (c).

Definition 3.3. Let ϕ : R → R̃ be a local homomorphism. A factorized pushout

diagram is a commutative diagram of local ring homomorphisms

(3.1)

R
α //

ϕ̇

~~⑥⑥
⑥⑥
⑥⑥
⑥

ϕ

��

S

ψ

��

ψ̇

��❅
❅❅

❅❅
❅❅

R′

ϕ′

��❄
❄❄

❄❄
❄❄

❄

α′

// S′

ψ′

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

R̃
α̃ // S̃

such that the maps α and α′ have finite flat dimension, the diagrams R
ϕ̇

−→ R′ ϕ′

−→ R̃

and S
ψ̇

−→ S′ ψ′

−→ S̃ are Gorenstein factorizations of ϕ and ψ, respectively, and the

natural morphism S′ ⊗L
R′ R̃ → S̃ is an isomorphism.

Remark 3.4. Factorized pushout diagrams exist in at least two important cases:

(1) Consider a commutative diagram of local ring homomorphisms

(R,m)
α //

ϕ

��

(S, n)

ψ

��

(R̃, m̃)
α̃ // (S̃, ñ)

such that α and α̃ are weakly regular, S̃ is complete, and the induced map R/m →

S̃/ñ is separable. Assume that ϕ has a minimal regular factorizationR
ϕ̇

−→ R′ ϕ′

−→ S,

and fix a minimal Cohen factorization R̃
˙̃ϕ

−→ S′ ϕ̃′

−→ S̃ of ϕ̃. Then [27], Proposi-

tion 3.2, provides a weakly regular local ring homomorphism α′ : R′ → S′ satisfying

the hypotheses of Lemma 3.5.

(2) For the Frobenius endomorphism, such diagrams are built in Lemma 5.1.

The next few results explain the behavior of the M(ϕ)-construction with respect

to factorized pushout diagrams.
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Lemma 3.5. Let C be a semidualizing R-complex, and fix a factorized pushout

diagram (3.1).

(a) The following conditions are equivalent:

(i) GC -dimϕ <∞,

(ii) GS⊗L

R
C -dimψ <∞,

(iii) C(ϕ) is semidualizing for R̃, and

(iv) (S ⊗L
R C)(ψ) is semidualizing for S̃.

(b) GC -dimϕ+ edim(ϕ̇) = GS⊗L

R
C -dimψ + edim(ψ̇).

P r o o f. From [17], Theorem 4.8, we have

GR′⊗L

R
C -dimR′(R̃) = GS′⊗L

R′ (R
′⊗L

R
C)-dimS′(S′ ⊗R′ R̃) = GS′⊗L

S
(S⊗L

R
C)-dimS′(S̃).

This explains part (b) and the equivalence (i)⇐⇒ (ii) from part (a). Since S ⊗L
R C

is semidualizing for S by Fact 2.3, the equivalences (i) ⇐⇒ (iii) and (ii) ⇐⇒ (iv)

from part (a) hold by Remark 3.2. �

Lemma 3.6. Consider a factorized pushout diagram (3.1). Given a homologically

finite R-complexM , there is an isomorphism (S⊗L
RM)(ψ) ≃ ΣdS̃⊗L

R̃
M(ϕ) in D(S)

where d = depth(ψ̇)− depth(ϕ̇).

P r o o f. In the following sequence of isomorphisms in D(S), the first and fourth

steps are by definition, and the second is from the assumptions on diagram (3.1):

(S ⊗L
RM)(ψ) ≃ Σdepth(S′/nS′) RHomS′(S̃, S′ ⊗L

S (S ⊗L
RM))

≃ Σdepth(S′/nS′) RHomS′(S′ ⊗L
R′ R̃, S′ ⊗L

R′ (R′ ⊗L
RM))

≃ Σdepth(S′/nS′)S′ ⊗L
R′ RHomR′(R̃, R′ ⊗L

RM)

≃ ΣdS′ ⊗L
R′ M(ϕ) ≃ Σd(S′ ⊗L

R′ R̃)⊗L
R̃
M(ϕ) ≃ ΣdS̃ ⊗L

R̃
M(ϕ).

The third isomorphism follows from [6], Lemma 4.4, and the others are routine. �

Lemma 3.7. Consider a factorized pushout diagram (3.1) such that R̃ = R

and S̃ = S and α̃ = α, that is, such that ϕ and ψ are endomorphisms. Let C be

a semidualizing R-complex. Then C ∼ C(ϕ) as R-complexes if and only if S⊗L
RC ∼

(S ⊗L
R C)(ψ) as S-complexes.

P r o o f. Since C is semidualizing over R and fd(α) < ∞, we know that S ⊗L
R C

is semidualizing for S by Fact 2.3.
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For the forward implication, assume that C ∼ C(ϕ) as R-complexes. This implies

S ⊗L
R C ∼ S ⊗L

R (C(ϕ)) ∼ (S ⊗L
R C)(ψ)

by Lemma 3.6.

For the converse, assume that S⊗L
RC ∼ (S⊗L

RC)(ψ) as S-complexes. In particular,

this implies that (S ⊗L
R C)(ψ) is semidualizing for S, so Lemma 3.5 (a) implies that

C(ϕ) is semidualizing over R. Now, since

S ⊗L
R C ∼ (S ⊗L

R C)(ψ) ∼ S ⊗L
R (C(ϕ))

we conclude C ∼ C(ϕ) by [17], Theorem 4.9. �

Lemma 3.8. Fix a factorized pushout diagram (3.1) such that R̃ = R and S̃ = S

and α̃ = α, that is, such that ϕ and ψ are endomorphisms. Let C be a semidualizing

R-complex. Assume that GC -dim(ϕ) <∞. Then C is derived C(ϕ)-reflexive over R

if and only if S ⊗L
R C is derived (S ⊗L

R C)(ψ)-reflexive over S.

P r o o f. Lemma 3.5 (a) implies that C(ϕ) is semidualizing for R, and (S⊗L
RC)(ψ)

is semidualizing for S. Thus, the equivalence follows from Lemma 3.6 and [17],

Theorem 4.8, as in the proof of Lemma 3.7. �

The next two results document the behavior of theM(ϕ)-construction with respect

to semi-completions and compositions.

Lemma 3.9. Let R
ϕ

−→ S be a local homomorphism that admits a Gorenstein

factorization, and consider the semi-completion R
ϕ̀

−→ Ŝ. Given a homologically

finite R-complex M , there is an isomorphism M(ϕ̀) ≃ Ŝ ⊗L
S M(ϕ) in D(Ŝ).

P r o o f. Let R
ϕ̇

−→ R′ ϕ′

−→ S be a Gorenstein factorization of ϕ. Consider the

following commutative diagram where the new maps are the natural ones:

R′
γ

//

ϕ′

��❅
❅❅

❅❅
❅❅

❅ R̂′

ϕ̂′

��❄
❄❄

❄❄
❄❄

R

ϕ̇

??�������� ϕ
// S

δ // Ŝ.

Since ϕ′ is surjective, we have Ŝ ≃ R̂′ ⊗L
R′ S, and the diagram R

γϕ̇
−→ R̂′ ϕ̂′

−→ Ŝ is

a Gorenstein factorization of ϕ̀ = δϕ. Also, we have d := depth(ϕ̇) = depth(γϕ̇).

These explain the first, second, and last steps in the next sequence:

M(ϕ̀) ≃ ΣdRHomR̂′(Ŝ, R̂
′ ⊗L

RM) ≃ ΣdRHomR̂′(R̂
′ ⊗L

R′ S, R̂′ ⊗L
R′ (R′ ⊗L

RM))

≃ ΣdR̂′ ⊗L
R′ RHomR′(S,R′ ⊗L

RM) ≃ R̂′ ⊗L
R′ Σ

dRHomR′(S,R′ ⊗L
RM)

≃ (R̂′ ⊗L
R′ S)⊗L

S Σ
dRHomR′(S,R′ ⊗L

RM) ≃ Ŝ ⊗L
S M(ϕ).
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The third step is by flat base change since S is finite over R′. The remaining steps

are routine. �

Lemma 3.10. Let (R,m)
ϕ

−→ (S, n)
ψ

−→ T be local homomorphisms such that

ϕ, ψ, and ψϕ admit Gorenstein factorizations. Given a homologically finite R-

complex M , there is an isomorphism M(ψϕ) ≃M(ϕ)(ψ) in D(T ).

P r o o f. Case 1 : T is complete. LetR
ϕ̇

−→ R′ ϕ′

−→ S be a Gorenstein factorization

of ϕ, and let S
ψ̇

−→ S′ ψ′

−→ T be a Cohen factorization of ψ. Then S′ is complete,

so the map R′ ψ̇ϕ′

−→ S′ has a minimal Cohen factorization R′ ˙̺
−→ R′′ ̺′

−→ S′. Note

that it follows from the proof of [7], Theorem 1.6, that S′ ≃ R′′ ⊗L
R′ S. From this

we conclude that ψ̇ and ˙̺ have isomorphic closed fibres. In particular, we have

depth( ˙̺) = depth(ψ̇).

Set d′ = depth(ψ̇) and d′′ = depth(ϕ̇). We claim that the composition ˙̺ϕ̇ is

Gorenstein and flat, and that

d := depth( ˙̺ϕ̇) = depth( ˙̺) + depth(ϕ̇) = depth(ψ̇) + depth(ϕ̇) = d′ + d′′.

Indeed, the composition of flat local homomorphisms is flat and local. Furthermore,

the induced map R′/mR′
¯̺̇

−→ R′′/mR′′ is flat and local with closed fibre R′′/m′R′′

where m′ is the maximal ideal of R′. Since both R′/mR′ andR′′/m′R′′ are Gorenstein

by assumption, the fact that ¯̺̇ is flat and local implies that R′′/mR′′ is Gorenstein,

so ˙̺ϕ̇ is Gorenstein. Furthermore, the fact that ¯̺̇ is flat and local explains the second

equality in the sequence

depth( ˙̺ϕ̇) = depth(R′′/mR′′) = depth(R′/mR′) + depth(R′′/m′R′′)

= depth( ˙̺) + depth(ϕ̇) = depth(ψ̇) + depth(ϕ̇).

The last step follows from the fact that ˙̺ and ψ̇ are both flat and have isomorphic

closed fibres. This establishes the claim.

Thus, the diagram R
˙̺ϕ̇
−→ R′′ ψ

′̺′

−→ T is a Gorenstein factorization of ψϕ:

R′′

̺′

  ❇
❇❇

❇❇
❇❇

❇

R′

˙̺
==⑤⑤⑤⑤⑤⑤⑤⑤

ϕ′

!!❇
❇❇

❇❇
❇❇

❇ S′

ψ′

  ❆
❆❆

❆❆
❆❆

R

ϕ̇
>>⑥⑥⑥⑥⑥⑥⑥ ϕ

// S

ψ̇
==⑤⑤⑤⑤⑤⑤⑤⑤ ψ

// T.
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This explains the first, third, sixth, and eighth steps in the next display:

M(ϕ)(ψ) = Σd
′′

RHomS′(T, S′ ⊗L
S Σ

d′ RHomR′(S,R′ ⊗L
RM))

≃ Σd
′+d′′ RHomS′(T, S′ ⊗L

S RHomR′(S,R′ ⊗L
RM))

≃ ΣdRHomS′(T, (R′′ ⊗L
R′ S)⊗L

S RHomR′(S,R′ ⊗L
RM))

≃ ΣdRHomS′(T,R′′ ⊗L
R′ RHomR′(S,R′ ⊗L

RM))

≃ ΣdRHomS′(T,RHomR′′(R′′ ⊗L
R′ S,R′′ ⊗L

R′ (R′ ⊗L
RM)))

≃ ΣdRHomS′(T,RHomR′′(S′, R′′ ⊗L
RM))

≃ ΣdRHomR′′(T,R′′ ⊗L
RM) =M(ψϕ).

The seventh step is Hom-tensor adjointness, and the others are routine.

Case 2 : the general case. Let ψ̀ : S → T̂ be the semi-completion of ψ. Note that

ψ̀ϕ : R → T̂ is the semi-completion of ψϕ. Thus, Lemma 3.9 explains the first and

third isomorphisms in the sequence

T̂ ⊗L
T M(ψϕ) ≃M(ψ̀ϕ) ≃M(ϕ)(ψ̀) ≃ T̂ ⊗L

T (M(ϕ)(ψ))

and the second isomorphism is from Case 1 since T̂ is complete. Hence, the conclu-

sion M(ψϕ) ≃M(ϕ)(ψ) follows from [17], Lemma 1.10. �

The interested reader may want to compare our next two results to [17], Proposi-

tion A.10, which assumes that fd(ϕ) is finite.

Proposition 3.11. Let R
ϕ

−→ S be a local homomorphism that admits a Goren-

stein factorization, and let C be a semidualizing R-complex.

(a) Then one has I
C(ϕ)
S (t) = ICR (t).

(b) If GC -dim(ϕ) is finite, then PSC(ϕ)(t) = PRC (t)ISS (t)/I
R
R (t).

P r o o f. (a) In the following display, the first equality is by definition:

I
C(ϕ)
S (t) = I

Σ
d RHomR′(S,R′⊗L

R
C)

S (t) = t−dI
RHomR′(S,R′⊗L

R
C)

S (t) = t−dI
R′⊗L

R
C

R′ (t)

= t−dIR
′

R′ (t)/PR
′

R′⊗L

R
C(t) = t−dIRR (t)I

R′/mR′

R′/mR′ (t)/P
R
C (t)

= t−dIRR (t)t
d/PRC (t) = IRR (t)/P

R
C (t) = ICR (t).

The third equality is from [11], Lemma 1.7.8. The fourth and eighth equalities are

by Fact 2.10. The fifth equality is from [16], Theorem. The sixth equality is from

the fact that ϕ̇ is Gorenstein of depth d, and the remaining equalities are routine.
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(b) Assume that GC -dim(ϕ) is finite, that is, that C(ϕ) is a semidualizing

S-complex; see Remark 3.2. Thus, Fact 2.10 explains the first and third equalities

in the next display:

IRR (t)P
S
C(ϕ)(t) = IRR (t)I

S
S (t)/I

C(ϕ)
S (t) = IRR (t)I

S
S (t)/I

C
R (t)

= IRR (t)I
S
S (t)/[I

R
R (t)/P

R
C (t)] = PRC (t)ISS (t).

The second equality is from part (a), and the fourth equality is routine. �

Corollary 3.12. Let R
ϕ

−→ R be a local endomorphism. Assume that n is

a positive integer such that ϕn admits a Gorenstein factorization, and let C be

a semidualizing R-complex.

(a) Then one has I
C(ϕn)
R (t) = ICR (t).

(b) If GC -dim(ϕn) is finite, then PRC(ϕn)(t) = PRC (t).

P r o o f. This follows directly from Proposition 3.11 since S = R in this case. �

4. Results about contracting endomorphisms

This section contains the proof of Theorem 1.1 from the introduction and other

similar results for arbitrary contracting endomorphisms. We begin with a version

of [23], Corollary 7.3, for our situation.

Proposition 4.1. Let ϕ : (R,m) → S be a local homomorphism and M a com-

plex of S-modules that is homologically finite over R. Let C be a semidualizing

R-complex. Then GC -dimϕ(M) = GC -dimR(M). In particular, the quantities

GC -dimϕ(M) and GC -dimR(M) are simultaneously finite.

P r o o f. Let S̃ be the m-adic completion of S, and let ϕ̃ : R̂ → S̃ be the induced

map. Let ϕ̂ : R̂ → Ŝ denote the map induced on completions, and set Ĉ = R̂⊗L
R C.

Consider the Koszul complex K = KR(m) on a minimal generating sequence for m.

Arguing as in the proof of [23], Theorem, and using [17], Theorem 4.4, we can replace

M with K ⊗L
R M to assume that m annihilates the homology of M . (The results

[31], Proposition 4.1 (a), and [13], Proposition 4.1 (i), may be helpful here.) As in

the proof of [23], Theorem 7.1, it follows that S̃ ⊗L
S M ≃ R̂⊗L

RM in D(R̂).

Since the completion of ϕ̃ at the maximal ideal of S̃ is ϕ̂, Fact 2.13 implies that

GC -dimϕ(M) < ∞ if and only if GĈ -dimϕ̃(S̃ ⊗L
S M) < ∞ if and only if S̃ ⊗L

S M ∈

AĈ†D
(R̂), where D is a dualizing complex for R̂. Using the isomorphism S̃ ⊗L

S M ≃

R̂ ⊗L
R M , we conclude that GC -dimϕ(M) < ∞ if and only if R̂ ⊗L

RM ∈ AĈ†D
(R̂),
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that is, if and only if GĈ -dimR̂(R̂ ⊗L
R M) < ∞, by [11], Theorem 4.7. Because of

the equality GĈ -dimR̂(R̂⊗L
RM) = GC -dimR(M) from [11], Corollary 5.11, it follows

that GC -dimϕ(M) <∞ if and only if GC -dimR(M) <∞.

For the rest of the proof, assume that GC -dimϕ(M) and GC -dimR(M) are finite.

As in the proof of [23], Theorem 3.5, using Fact 2.7, we have the first equality in the

following display:

GC -dimϕ(M) = depth(R)− depthS(M) = depth(R)− depthR(M) = GC -dimR(M).

The other equalities are from [23], Lemma 2.8, and Fact 2.7. �

The next result implies Theorem 1.1 from the introduction; see Proof of Theo-

rem 1.1.

Theorem 4.2. Let ϕ : R → R be a contracting endomorphism, and let C be

a semidualizing R-complex. Assume that ϕn has a Gorenstein factorization for each

n > 1; e.g., this holds when ϕ is module-finite or R is complete. Then the following

are equivalent:

(i) C is a dualizing R-complex.

(ii) C ∼ C(ϕn) for some n > 0.

(iii) GC -dimϕn <∞ and C is derived C(ϕn)-reflexive for some n > 0.

(iv) GC -dimϕn <∞ for infinitely many n > 0.

If R has a dualizing complex D, then these conditions are equivalent to

(v) GC -dimϕn <∞ and nR⊗L
R C

†D is derived C†D -reflexive for some n > 0.

P r o o f. (i) =⇒ (ii) Assume that C is a dualizing R-complex. By Remark 3.2,

the complex C(ϕn) is dualizing for R. Since dualizing complexes are unique up to

shift in D(R), we have C ∼ C(ϕn).

(ii) =⇒ (iii) Assume that C ∼ C(ϕn) for some n > 0. Since C is semidualizing

R-complex, the condition C ∼ C(ϕn) implies that C(ϕn) is semidualizing R-complex.

Remark 3.2 implies that GC -dimϕn <∞. Since C is derived C-reflexive, the condi-

tion C ∼ C(ϕn) implies that C is derived C(ϕn)-reflexive.

(iii) =⇒ (iv) Assume that GC -dimϕn < ∞ and C is derived C(ϕn)-reflexive for

some n > 0. Remark 3.2 implies that C(ϕn) is semidualizing, and Corollary 3.12 (b)

implies that C(ϕn) has the same Poincaré series as C. Thus, we have C(ϕn) ∼ C by

the proof of [30], Fact 2.28.

Thus, Lemma 3.10 implies that

C(ϕ2n) ≃ (C(ϕn))(ϕn) ∼ C(ϕn) ∼ C.
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Thus, we have GC -dimR(ϕ
2n) < ∞ by Remark 3.2. Inductively, one shows that

GC -dimR(ϕ
mn) <∞ for all m ∈ N, hence condition (iv) follows.

(iv) =⇒ (i) Assume that GC -dimϕn < ∞ for infinitely many n > 0. Fact 2.13

implies that GC -dimϕn < ∞ if and only if GR̂⊗L

R
C -dim ϕ̂n < ∞. Also, we know

that C is dualizing for R if and only if R̂⊗L
R C is dualizing for R̂. Furthermore, ϕ̂

n

has a Cohen factorization for each n since R̂ is complete. Thus, by passing to R̂, one

may assume that R is complete. Hence, R has a dualizing complex D by Fact 2.2.

Note that by [11], Corollary 2.12, the R-complex C†D is semidualizing.

By our hypothesis, GC -dimϕn <∞ for infinitely many n. Thus by Fact 2.13 (c),

we have nR ∈ AC†D (R) and hence nR ⊗L
R C†D is homologically bounded for in-

finitely many n. Therefore, for infinitely many n we have TorRi (
nR,C†D ) = 0 for all

i≫ 0. Now [23], Proposition A.4, implies pdR(C
†D ) < ∞ and this is equivalent to

idR(C) <∞. Thus C is a dualizing complex for R.

To complete the proof, we assume that R has a dualizing complex D and

prove (iii) ⇐⇒ (v). To this end, we assume that n is a positive integer such

that GC -dimϕn <∞, and we prove that C is derived C(ϕn)-reflexive if and only if
nR⊗L

R C
†D is derived C†D -reflexive. Let R → R′ → R be a Gorenstein factorization

of ϕn.

We use the following fact from [17], Proposition 3.9: If A and B are semidualizing

R-complexes, then A is derived B-reflexive if and only if B†D is derived A†D -reflexive.

Thus, to complete the proof, we need only to show that (nR ⊗L
R C

†D )†D ∼ C(ϕn).

To this end, the first step in the next sequence is from Remark 3.2:

(nR⊗L
R C

†D )†D ∼ RHomnR(
nR ⊗L

R C
†D , D(ϕn)) ≃ RHomR(C

†D , D(ϕn))

∼ RHomR(C
†D ,RHomR′(nR,R′ ⊗L

R D))

≃ RHomR′(nR⊗L
R C

†D , R′ ⊗L
R D)

≃ RHomR′(nR⊗L
R′ (R′ ⊗L

R C
†D ), R′ ⊗L

R D)

≃ RHomR′(nR,RHomR′(R′ ⊗L
R C

†D , R′ ⊗L
R D))

≃ RHomR′(nR,R′ ⊗L
R RHomR(C

†D , D))

≃ RHomR′(nR,R′ ⊗L
R C) ∼ C(ϕn).

The second, fourth, and sixth steps are from Hom-tensor adjointness. The seventh

step is by flat base change. The eighth step is by Fact 2.8, and the other steps are

routine. �

Remark 4.3. In Theorem 4.2 (and its successors) we have more equivalent con-

ditions, but they become tedious to write down. For instance, the given conditions

are equivalent to the following:

(ii) C ∼ C(ϕn) for all n > 0.
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Indeed, this condition clearly implies condition (ii) from Theorem 4.2. And the

proof of Theorem 4.2 shows that (i) =⇒ (ii). One verifies similarly that the other

conditions in Theorem 4.2 can be replaced by “for all” versions as well.

P r o o f of Theorem 1.1. Use Proposition 4.1, Remark 3.2 and Theorem 4.2. �

To state and prove results that allow us, for instance, to pass to the completion,

we introduce and briefly study the following class of diagrams.

Definition 4.4. Let ϕ : R → R be a contracting endomorphism. A commutative

diagram of local ring homomorphisms

(4.1)

(R,m)
α //

ϕ

��

(S, n)

ψ

��
(R,m)

α // (S, n)

is cows if S is complete, the map α is weakly regular, and the map R/m → S/n

induced by αϕ is separable.

Remark 4.5. Let ϕ : R → R be a contracting endomorphism. One always has

a trivial cows diagram (4.1): use the natural map α : R → R̂ and ψ = ϕ̂. More

interestingly, Proposition A.3 shows that if R/ϕ(m)R is artinian and the induced

map ϕ : k → k is separable, then there is a cows diagram (4.1) such that ψ is module-

finite. (See also Lemma A.2.) Thus, conditions (ii′) and (iii′) in Theorem 4.7 say that

questions about GC -dimensions (in the separable case) can be reduced to the module-

finite case, like reducing a Frobenius question to the F -finite case; cf. Theorem 5.2.

From another perspective, one reason to study cows diagrams is found in their

similarity to Cohen factorizations: when the map ψ is module-finite, it detects prop-

erties of ϕ like the surjective part ϕ′ of a Cohen factorization for ϕ̂ or ϕ̀. To see what

we mean by this, recall that one point of considering ϕ′ is given by the fact that many

homological properties of ϕ can be detected by ϕ′. For instance, the map ϕ is quasi-

Gorenstein if and only if ϕ′ is quasi-Gorenstein. We have seen similarly that many

homological properties of ϕ can be detected by ψ: e.g., under certain hypotheses,

ϕ is quasi-Gorenstein if and only if ψ is quasi-Gorenstein; see [27], Theorem B.

Lemma 4.6. Every cows diagram (4.1) gives rise to a commutative diagram

(4.2)

R
f

//

ϕ

��

R̂
α′

//

ϕ̂

��

S

ψ

��
R

f
// R̂

α′

// S
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of local ring homomorphisms such that the second square is cows and α = α′f where

f : R → R̂ is the natural map. Conversely, given a cows diagram for ϕ̂ as in the

second square of (4.2), the following diagram is cows:

(4.3)

R
α′f

//

ϕ

��

S

ψ

��
R

α′f
// S.

P r o o f. Given a commutative diagram (4.1), since S is complete the local homo-

morphism α factors through R̂, so there is a local homomorphism α′ making (4.2)

commute. Conversely, given a commutative diagram as in the second square of (4.2),

since the first square of (4.2) commutes, it follows that the diagram (4.3) also com-

mutes. Thus, it remains to show that the second square of (4.2) is cows if and only

if (4.3) is cows.

By construction the induced maps R/m → S/n and R̂/mR̂ → S/n are the same,

so one is separable if and only if the other is separable. Thus, it remains to show that

α′ is weakly regular if and only if α′f is weakly regular. Since f is weakly regular

and the composition of weakly regular maps is weakly regular, one implication is

routine. For the converse, assume that α′f is weakly regular. Since α′ and α′f

have the same closed fibres, it suffices to show that α′ is flat. This follows from the

sequence TorRi (R/m, S)
∼= TorR̂i (R̂/mR̂, S) = 0 for i > 1; see [1], Lemme II.57, or [6],

Proposition 5.5 (F). �

Theorem 4.7. Let ϕ : R → R be a contracting endomorphism, and let C be

a semidualizing R-complex. Then the following conditions are equivalent:

(i) C is a dualizing R-complex.

(i′) There is a cows diagram (4.1) such that S ⊗L
R C is dualizing for S.

(ii) R̂⊗L
R C ∼ (R̂ ⊗L

R C)(ϕ̂
n) for some n > 0.

(ii′) There is a cows diagram (4.1) such that S⊗L
RC ∼ (S⊗L

RC)(ψ
n) for some n > 0.

(iii) GC -dimϕn <∞ and R̂⊗L
R C is derived (R̂⊗L

R C)(ϕ̂
n)-reflexive for some n > 0.

(iii′) There is a cows diagram (4.1) such that GS⊗L

R
C -dimψn < ∞ and S ⊗L

R C is

derived (S ⊗L
R C)(ψ

n)-reflexive for some n > 0.

(iv) GC -dimϕn <∞ for infinitely many n > 0.

(iv′) There is a cows diagram (4.1) such that GS⊗L

R
C -dimψn <∞ for infinitely many

n > 0.

(v′) There is a cows diagram (4.1) such that GS⊗L

R
C -dimψn < ∞ and such that

nS ⊗L
S RHomS(S ⊗L

R C,D
S) is derived RHomS(S ⊗L

R C,D
S)-reflexive for some

n > 0, where DS is a dualizing S-complex.
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If R has a dualizing complexD, then these conditions are equivalent to the following:

(v) GC -dimϕn <∞ and nR⊗L
R C

†D is derived C†D -reflexive for some n > 0.

P r o o f. The equivalences (i) ⇐⇒ (i′) and (iv) ⇐⇒ (iv′) are from Fact 2.3 and

Lemma 3.5 (a).

For the rest of the proof, we consider two cases.

Case 1 : R is complete. In this case, Theorem 4.2 shows that we need only to

prove the equivalences (ii) ⇐⇒ (ii′), (iii) ⇐⇒ (iii′), and (v) ⇐⇒ (v′). Consider

a cows diagram (4.1). Remark 3.4 (1) provides a factorized pushout diagram (3.1)

such that R̃ = R and S̃ = S and α̃ = α. The equivalence (ii) ⇐⇒ (ii′) now follows

from Lemma 3.7, and (iii)⇐⇒ (iii′) follows from Lemmas 3.5 (a) and 3.8.

For the equivalence (v) ⇐⇒ (v′) in this case, since R is complete, it has a du-

alizing complex D. Using Lemma 3.5 (a) again, we see that GS⊗L

R
C -dimψn < ∞

if and only if GC -dimϕn < ∞. Assume for the remainder of this paragraph that

GS⊗L

R
C -dimψn <∞. Since α is flat, there are isomorphisms in D(S)

RHomS(S ⊗L
R C, S ⊗L

R D) ≃ S ⊗L
R C

†D ,

nS ⊗L
S RHomS(S ⊗L

R C, S ⊗L
R D) ≃ S ⊗L

R (nR⊗L
R C

†D ).

Thus, nS⊗L
SRHomS(S⊗L

R C, S⊗L
RD) is derived RHomS(S⊗L

R C, S⊗L
RD)-reflexive

if and only if nR⊗L
R C

†D is derived C†D -reflexive, by [11], Theorem 5.10.

Case 2 : the general case. Fact 2.3 shows that (i) is equivalent to

(1) R̂⊗L
R C is a dualizing R̂-complex.

From Fact 2.13 we see that conditions (iii) and (iv) are equivalent, respectively,

to the following:

(3) GR̂⊗L

R
C -dim ϕ̂n < ∞ and R̂ ⊗L

R C is derived (R̂ ⊗L
R C)(ϕ̂

n)-reflexive for some

n > 0.

(4) GR̂⊗L

R
C -dim ϕ̂n <∞ for infinitely many n > 0.

Claim: Condition (ii′) is equivalent to the following:

(2′) There is a cows diagram

(4.4)

R̂
β

//

ϕ̂

��

S

ψ

��
R̂

β
// S

such that S ⊗L
R̂
(R̂ ⊗L

R C) ∼ (S ⊗L
R̂
(R̂⊗L

R C))(ψ
n) for some n > 0.
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In light of Lemma 4.6, this follows from the isomorphisms

(S ⊗L
R̂
(R̂⊗L

R C))(ψ
n) ≃ (S ⊗L

R C)(ψ
n), S ⊗L

R̂
(R̂⊗L

R C) ≃ S ⊗L
R C.

Similar reasoning shows that conditions (iii′) and (v′) are equivalent, respectively,

to the following:

(3′) There is a cows diagram (4.4) such that GS⊗L

R
C -dimψn <∞ and S⊗L

R̂
(R̂⊗L

RC)

is derived (S ⊗L
R̂
(R̂⊗L

R C))(ψ
n)-reflexive for some n > 0.

(5′) There is a cows diagram (4.4) such that GS⊗L

R
C -dimψn < ∞ and such that

nS ⊗L
S RHomS(S ⊗L

R̂
(R̂ ⊗L

R C), D
S) is derived RHomS(S ⊗L

R̂
(R̂ ⊗L

R C), D
S)-

reflexive for some n > 0, where DS is a dualizing S-complex.

Claim: If R has a dualizing complex, then condition (v) is equivalent to

(5) GR̂⊗L

R
C -dim ϕ̂n < ∞ and the complex nR̂ ⊗L

R̂
RHomR̂(R̂ ⊗L

R C,D
R̂) is derived

RHomR̂(R̂⊗L
R C,D

R̂)-reflexive for some n > 0 where DR̂ is dualizing for R̂.

Fact 2.13 implies that GR̂⊗L

R
C -dim ϕ̂n < ∞ if and only if GC -dimϕn < ∞. From

Fact 2.3 we know that R̂ ⊗L
R D is dualizing for R̂, so we have R̂ ⊗L

R D ∼ DR̂. The

complex R̂⊗L
R C is semidualizing for R̂, hence so is

RHomR̂(R̂ ⊗L
R C,D

R̂) ∼ RHomR̂(R̂ ⊗L
R C, R̂ ⊗L

R D) ≃ R̂ ⊗L
R C

†D .

In D(R̂) we have

nR̂⊗L
R̂
RHomR̂(R̂ ⊗L

R C,D
R̂) ∼ nR̂⊗L

R̂
(R̂ ⊗L

R C
†D ) ∼ R̂⊗L

R (nR⊗L
R C

†D ).

Thus, the R̂-complex nR̂⊗L
R̂
RHomR̂(R̂⊗L

RC,D
R̂) is derived RHomR̂(R̂⊗L

RC,D
R̂)-

reflexive if and only if R̂ ⊗L
R (nR ⊗L

R C
†D ) is derived R̂ ⊗L

R C
†D -reflexive; by [11],

Theorem 5.10, this second condition occurs if and only if nR ⊗L
R C†D is derived

C†D -reflexive. This completes the proof of the claim.

By Case 1, conditions (1), (2), (2′), (3), (3′), (4), (5′) and (5) are equivalent. Thus,

the corresponding conditions (i), (ii), etc. are equivalent. �

Remark 4.8. As in Remark 4.3, we note here that in Theorem 4.7 (and subse-

quent results) we have more equivalent conditions. For instance, the given conditions

are equivalent to the following:

(ii′) For every cows diagram (4.1), we have S ⊗L
R C ∼ (S ⊗L

R C)(ψ
n) for all n > 0.

Next, we consider versions of Theorems 4.2 and 4.7 using Bass class conditions.

A tool for this is the following generalization of [28], Theorem A, for complexes.
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Lemma 4.9. Let R→ S be a local ring homomorphism, and letM be a homolog-

ically finite S-complex. Assume that ϕ : R→ R is a contracting endomorphism. As-

sume that there are infinitely many n ∈ N such that there is an integer tn > sup(M)

such that ExtiR(M, nR) = 0 for tn 6 i 6 tn + depth(R). Then pdR(M) <∞.

P r o o f. Set depth(R) = d, and let F be a degree-wise finite S-free resolution

of M . Set j = sup(M) and M ′ = Coker(∂Fj+1). Then the complex

. . .→ Fj+1 → Fj →M ′ → 0

is a degree-wise finite S-free resolution of M ′. It follows that for i > j + 1 we have

Exti−jR (M ′, nR) ∼= ExtiR(M, nR).

From our Ext-vanishing assumption, there are infinitely many n ∈ N such that there

is an integer t′n = tn − j > 0 such that ExtiR(M
′, nR) = 0 for t′n 6 i 6 t′n + d. By

the proof of [28], Theorem A, we conclude that pdR(M
′) < ∞, and it follows that

pdR(M) <∞. �

Theorem 4.10. Let ϕ : R → R be a contracting endomorphism, and let C be

a semidualizing R-complex. Then C ∼ R in D(R) if and only if nR ∈ BC(R) for

infinitely many n > 1.

P r o o f. The forward implication is straightforward since BR(R) contains all

R-modules. For the converse, assume that nR ∈ BC(R) for infinitely many n > 1.

In particular, there are infinitely many n ∈ N such that RHomR(C,
nR) is homolog-

ically bounded. Hence, there are infinitely many n ∈ N such that there is an integer

tn > sup(C) such that ExtiR(C,
nR) = 0 for tn 6 i 6 tn + depth(R). Lemma 4.9

implies that pdR(C) <∞, so C ∼ R by [11], Theorem 8.1. �

The next three lemmas are for use in the Bass class version of Theorem 4.7; see

Theorem 4.14 below.

Lemma 4.11. Let R
ϕ

−→ R1 be a ring homomorphism, and let C be a semi-

dualizing R-complex. Let L and N be R1-complexes such that fdR1
(L) < ∞. If

N ∈ BC(R), then L ⊗L
R1
N ∈ BC(R); the converse holds when L is a faithfully flat

R1-module.

P r o o f. SinceL has finite flat dimension overR1, tensor evaluation [6], Lemma 4.4,

provides the isomorphism RHomR(C,N)⊗L
R1
L

≃
−→ RHomR(C,N ⊗L

R1
L). Thus, if

RHomR(C,N) is homologically bounded, then so is RHomR(C,N ⊗L
R1
L); and the

converse holds when L is a faithfully flat R1-module.

855



Next, consider the commutative diagram wherein the upper horizontal isomor-

phism is from the previous paragraph:

C ⊗L
R (RHomR(C,N)⊗L

R1
L)

≃ //

≃

��

C ⊗L
R RHomR(C,N ⊗L

R1
L)

ξC
N⊗L

R1
L

��
(C ⊗L

R RHomR(C,N)) ⊗L
R1
L

ξC
N
⊗L

R1
L

// N ⊗L
R1
L.

From this, we conclude that ξCN ⊗L
R1
L is an isomorphism if and only if ξC

N⊗L

R1
L
is

an isomorphism. Thus, if ξCN is an isomorphism (hence ξ
C
N ⊗L

R1
L is an isomorphism),

then so is ξC
N⊗L

R1
L
. When L is a faithfully flat R1-module and ξ

C
N⊗L

R1
L
is an iso-

morphism, then ξCN ⊗L
R1
L is an isomorphism, so faithful flatness implies that ξCN is

an isomorphism. �

Lemma 4.12. Let R
ϕ

−→ R1
α

−→ S be ring homomorphisms, and let C be

a semidualizing R-complex. Assume that α is flat. If R1 ∈ BC(R), then S ∈ BC(R);

the converse holds when α is faithfully flat, e.g., when α is local.

P r o o f. Use N = R1 and L = S in Lemma 4.11. �

Lemma 4.13. For every cows diagram (4.1) and every n ∈ N, one has nR ∈ BC(R)

if and only if nS ∈ BS⊗L

R
C(S).

P r o o f. The cows diagram (4.1) yields a commutative diagram

R
α //

ϕn

��

S

ψn

��
R

α // S.

Since α is faithfully flat, Lemma 4.12 shows that nR ∈ BC(R) if and only if
nS ∈

BC(R), and [11], Proposition 5.3.a, shows that nS ∈ BC(R) if and only if nS ∈

BS⊗L

R
C(S). �

Theorem 4.14. Let ϕ : R → R be a contracting endomorphism, and let C be

a semidualizing R-complex. Then the following conditions are equivalent:

(i) R is Gorenstein.

(ii) GC -dimϕm <∞ for all m > 0, and nR ∈ BC(R) for all n > 0.

(ii′) For every cows diagram (4.1), one has GS⊗L

R
C-dimψm < ∞ for all m > 0, and

nS ∈ BS⊗L

R
C(S) for all n > 0.
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(iii) GC -dimϕm <∞ for infinitely many m > 0, and nR ∈ BC(R) for some n > 0.

(iii′) There is a cows diagram (4.1) such that GS⊗L

R
C -dimψm <∞ for infinitely many

m > 0, and nS ∈ BS⊗L

R
C(S) for some n > 0.

(iv) GC -dimϕm <∞ for some m > 0, and nR ∈ BC(R) for infinitely many n > 0.

(iv′) There is a cows diagram (4.1) such that GS⊗L

R
C -dimψm < ∞ for some m > 0,

and nS ∈ BS⊗L

R
C(S) for infinitely many n > 0.

P r o o f. The implications (ii) =⇒ (iii) and (ii) =⇒ (iv) are trivial. The equiva-

lences (ii)⇐⇒ (ii′), (iii)⇐⇒ (iii′), and (iv)⇐⇒ (iv′) follow from Lemma 4.13.

(i) =⇒ (ii) Assume that R is Gorenstein. Then we know from [11], Corollary 8.6,

that C ∼ R, so BC(R) = BR(R) contains every R-module, in particular nR ∈ BC(R)

for all n > 0. Also, since R is Gorenstein, we have GC -dimϕm = G-dimϕm <∞ for

all m > 0 by [23], Theorem A.6.

(iii) =⇒ (i) Assume that GC -dimϕm < ∞ for infinitely many m > 0, and nR ∈

BC(R) for some n > 0. Theorem 4.7 implies that C is dualizing for R.

Case 1 : R is complete. In this case, ϕn has a Cohen factorization R
τ̇

−→ R′ τ ′

−→ R.

From [11], Proposition 5.3.b, the condition nR ∈ BC(R) implies thatR ∈ BR′⊗L

R
C(R

′).

As C is dualizing for R and τ̇ is weakly regular, it follows that R′ ⊗L
R C is dualizing

for R′. Because of [12], Theorem 4.4, we conclude that G- idR′(R) < ∞.5 In par-

ticular, the local ring R′ has a cyclic module of finite G-injective dimension, so R′

is Gorenstein by [15], Theorem A.The fact that τ̇ is flat and local implies that R is

Gorenstein.

Case 2 : the general case. The ring R is Gorenstein if and only if R̂ is Goren-

stein. Since GC -dimϕm < ∞ for infinitely many m > 0, Fact 2.13 implies that

GR̂⊗L

R
C -dim ϕ̂m < ∞ for infinitely many m > 0. By Case 1, it suffices to show that

the assumption nR ∈ BC(R) implies that nR̂ ∈ BR̂⊗L

R
C(R̂). Consider the commuta-

tive diagram of local ring homomorphisms

R //

ϕn

��

R̂

ϕ̂n

��
R // R̂

where the unspecified maps are the natural ones. The assumption nR ∈ BC(R)

implies that nR̂ ∈ BC(R) by Lemma 4.12. From [11], Proposition 5.3.b, we conclude

that nR̂ ∈ BR̂⊗L

R
C(R̂), as desired.

(iv) =⇒ (i) Assume that GC -dimϕm < ∞ for some m > 0, and nR ∈ BC(R)

for infinitely many n > 0. Theorem 4.10 implies that C ∼ R in D(R). Thus,

5 See [12], [15] for background on G-injective dimension.
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the assumption GC -dimϕm < ∞ translates to G-dimϕm < ∞, and we conclude

from [23], Theorem A.6, that R is Gorenstein. �

5. Results specific to the Frobenius endomorphism

We begin this section with a combination of [10], Proposition 12.2.7, and [20],

Proposition 0.10.3.1.

Lemma 5.1. Let (R,m, k) be a local ring of prime characteristic p > 0, and

let k ⊆ K be a field extension. Then there is a commutative diagram of local ring

homomorphisms

R̂
α //

ϕ̇
R̂

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

fn

R̂

��

S

fn

S

��

ϕ̇S

��❄
❄❄

❄❄
❄❄

❄

R′

ϕ′

R̂ ��❄
❄❄

❄❄
❄❄

❄ α′

// S′

ϕ′
S��⑧⑧

⑧⑧
⑧⑧
⑧⑧

R̂
α // S

such that the maps α and α′ are weakly étale, the rings S and S′ are complete, the

diagrams R̂
ϕ̇

R̂−→ R′
ϕ′

R̂−→ R̂ and S
ϕ̇S

−→ S′ ϕ′
S−→ S are minimal Cohen factorizations of

fn
R̂
and fnS , respectively, the natural map S

′ ⊗L
R′ R̂ → S is an isomorphism, and the

induced map R/m → S/mS is the given field extension k ⊆ K. (In particular, this

is a factorized pushout diagram.) If K is F -finite, then so are S and S′.

P r o o f. This conclusion is unchanged if we replaceR by R̂, so we assume thatR is

complete. By Cohen’s Structure Theorem there exist integers e,m > 0 and elements

f1, . . . , fm ∈ k[[x1, . . . , xe]] such that R ∼= k[[x1, . . . , xe]]/(f1, . . . , fm), and the images

of x1, . . . , xe in R minimally generate m. Set x = x1, . . . , xe, and use the notation

xa = xa11 . . . xaee for all a = (a1, . . . , ae) ∈ N
e. Also, set f = f1, . . . , fm. We identify R

with the ring k[[x]]/(f) for the remainder of the proof.

Let S = K[[x]]/(f), and let α : R → S be induced by the inclusion k ⊆ K. Then S

is a complete local ring, and α makes S into a local R-algebra of characteristic p. It is

straightforward to show that the map k[[x]] → K[[x]] induced by the inclusion k ⊆ K

is flat (e.g., using [26], Exercise 22.3). Hence, α is flat by base-change. Moreover,

α is weakly étale since the maximal ideal of S is (x)S = mS by construction.

We use the following notation from [10], Proposition 12.2.7. For g =
∑

a∈Ne

rax
a,

set g[p
n] =

∑
a∈Ne

rp
n

a xa. Then a minimal Cohen factorization of fnR is given by the

following maps. The weakly regular part is ϕ̇R : k[[x]]/(f) → k[[x]]/(f [p
n])[[y]] given
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by ϕ̇R(g+(f)) := g[p
n]+(f [p

n]) where y = y1, . . . , ye is another list of variables. The

surjective part is the composition ϕ′
R = φ′′R̺R where φ

′′
R and ̺R are defined next.

First, we have ̺R : k[[x]]/(f [p
n])[[y]] → k[[x]]/(fp

n

) which leaves the elements of k fixed

and such that ̺R(xi+(f [p
n])) = xp

n

i +(fp
n

) and ̺R(yi+(f [p
n])) = xi+(fp

n

). Next, we

have the natural surjection φ′′R : k[[x]]/(fp
n

) → k[[x]]/(f). As is observed in the proof

of [10], Proposition 12.2.7,Ker(̺R) is generated by the sequence x1−y
pn

1 , . . . , xe−yp
n

e .

The factorization of fnS is defined similarly in terms of ϕ̇S , ̺S , and φ
′′
S .

This provides the outer edges of the following commutative diagram:

R = k[[x]]/(f)
α //

ϕ̇R

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠

fn

R

��

S = K[[x]]/(f)

fn

S

��

ϕ̇S

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗

R′ := k[[x]]/(f [p
n])[[y]]

̺R

��

α′

//

ϕ′
R

!!❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇
S′ := K[[x]]/(f [p

n])[[y]]

̺S

��
ϕ′

S

}}③③
③③
③③
③③
③③
③③
③③
③③
③③
③③
③

k[[x]]/(fp
n

)

φ′′
R ((◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

α∗

// K[[x]]/(fp
n

)

φ′′
Svv♠♠♠

♠♠♠
♠♠♠

♠♠♠
♠

R = k[[x]]/(f)
α // S = K[[x]]/(f).

The maps α′ and α∗ are induced by the inclusion k ⊆ K. Hence, they are weakly

étale, by the same proof as for α.

Next, we verify the pushout condition. Since φ′′R̺R and φ′′S̺S are surjective

and α′ is flat, it suffices to show that Ker(φ′′S̺S) is generated by the images in

K[[x]]/(f [p
n])[[y]] of the generators of Ker(φ′′R̺R). From the above discussion, we

know that Ker(̺R) is generated by the sequence x1 − yp
n

1 , . . . , xe − yp
n

e . Since ̺S is

constructed exactly like ̺R, we conclude that Ker(̺S) is generated by the sequence

x1−y
pn

1 , . . . , xe−yp
n

e . Also, by construction, Ker(φ′′R) and Ker(φ′′S) are generated by

the images of f in the respective rings. Thus, Ker(φ′′R̺R) and Ker(φ′′S̺S) are both

generated by x1 − yp
n

1 , . . . , xe − yp
n

e , f as desired.

Finally, if K is F -finite, then S and S′ are F -finite by [24], Corollary 2.6. �

The next result is like Theorem 4.7.

Theorem 5.2. Let (R,m, k) be a local ring of prime characteristic p > 0, and

let C be a semidualizing R-complex. Then the following conditions are equivalent:

(i) C is a dualizing R-complex.

(i′) There is a complete weakly étale F -finite local R-algebra S such that S ⊗L
R C

is dualizing for S.

(ii) R̂⊗L
R C ∼ (R̂ ⊗L

R C)(f̂
n
R) for some n > 0.
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(ii′) There is a complete weakly étale F -finite local R-algebra S such that S⊗L
RC ∼

(S ⊗L
R C)(f

n
S ) for some n > 0.

(iii) GC -dim fnR <∞ and R̂⊗L
R C is derived (R̂⊗L

R C)(f
n
R̂
)-reflexive for some n > 0.

(iii′) There is a complete weakly étale F -finite local R-algebra S such that for some

n > 0 we haveGS⊗L

R
C -dim fnS <∞ and S⊗L

RC is derived (S⊗
L
RC)(f

n
S )-reflexive.

(iv) GC -dim fnR <∞ for infinitely many n > 0.

(iv′) There is a complete weakly étale F -finite local R-algebra S such that for in-

finitely many n > 0 we have GS⊗L

R
C -dim fnS <∞.

(v′) There is a complete weakly étale F -finite local R-algebra S such that for some

n > 0 we have GS⊗L

R
C-dim fnS <∞ and nS ⊗L

S RHomS(S ⊗L
R C,D

S) is derived

RHomS(S ⊗L
R C,D

S)-reflexive, where DS is a dualizing S-complex.

If R has a dualizing complexD, then these conditions are equivalent to the following:

(v) GC -dim fnR <∞ and nR⊗L
R C

†D is derived C†D -reflexive for some n > 0.

P r o o f. The proof is like that of Theorem 4.7. The only difference is in the

equivalences (ii)⇐⇒ (ii′) and (iii) ⇐⇒ (iii′), in which we use Lemma 5.1, where K

is an algebraic closure of k. �

The last result of this section is proved like Theorem 4.14.

Theorem 5.3. Assume that R is a local ring of prime characteristic p > 0, and

let C be a semidualizing R-complex. Then the following conditions are equivalent:

(i) R is Gorenstein.

(ii) GC -dim fmR <∞ for all m > 0, and nR ∈ BC(R) for all n > 0.

(ii′) For every complete weakly étale F -finite local R-algebra S, one has nS ∈

BS⊗L

R
C(S) for all n > 0, and GS⊗L

R
C -dim fmS <∞ for all m > 0.

(iii) GC -dim fmR <∞ for infinitely many m > 0, and nR ∈ BC(R) for some n > 0.

(iii′) There is a complete weakly étale F -finite local R-algebra S such that nS ∈

BS⊗L

R
C(S) for some n > 0, and GS⊗L

R
C -dim fmS <∞ for infinitely many m > 0.

(iv) GC -dim fmR <∞ for some m > 0, and nR ∈ BC(R) for infinitely many n > 0.

(iv′) There is a complete weakly étale F -finite local R-algebra S such that nS ∈

BS⊗L

R
C(S) for infinitely many n > 0, and GS⊗L

R
C -dim fmS <∞ for some m > 0.

Appendix: A construction of endomorphisms

The point of this section is found in Proposition A.3, which guarantees the exis-

tence of non-trivial cows diagrams (4.1); see Remark 4.5.
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Lemma A.1. Let α : k → k be a field endomorphism. Then there is a commu-

tative diagram of field extensions

(A.1)

k
β

//

α

��

K

α̂

��
k

β
// K

such that α̂ is an isomorphism. Moreover, if α is separable, then so is β.

P r o o f. Let K be the direct limit in the category of fields and field extensions

of the directed system k
α

−→ k
α

−→ k
α

−→ . . . The universal mapping property for

direct limits provides a unique field endomorphism α̂ : K → K making the following

diagram commute:

k
α //

α

��

β1

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯ k

α //

α

��

β2

((PP
PP

PP
PP

PP
PP

PP
P . . .

K

α̂

��
✤
✤
✤
✤
✤
✤
✤

k
α //

β1

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯ k

α //

β2

((PP
PP

PP
PP

PP
PP

PP
P . . .

K

where the maps βi are the universal ones for K. With β := β1, we have the com-

mutativity of (A.1), so we need to show that α̂ is an isomorphism. Since α̂ is

a morphism of fields, it is injective, so we need only to verify surjectivity. For this,

let x ∈ K =
∞⋃
i=1

Im(βi). Then there is an index i and an element y ∈ k such that

x = βi(y) = βi+1(α(y)) = α̂(βi+1(y)) ∈ Im(α̂).

This yields the surjectivity of α̂.

To complete the proof, assume that α is separable. It follows that αn is separable

for each n > 1. To show that β is separable, we need to show that for every

intermediate field k → F → K such that F is finitely generated as a field extension

of k, the extension k → F is separably generated; see [22], Theorem VI.2.10. Again,

K is the union of the images of the βi. The finite generation condition on F implies

that the generators for F over k lie in some “finite stage” of the limit. In other
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words, the commutative diagram

k //

β   ❅
❅❅

❅❅
❅❅

F

��
K

gives rise to another commutative diagram

k //

αn

��❅
❅❅

❅❅
❅❅

❅ F

��
k

for some n > 1. Since αn is separable, the intermediate extension k → F is separably

generated, as desired. �

The next result takes a construction of Grothendieck [20], Proposition 0.10.3.1,

and manipulates it a bit, similarly to Lemma 5.1.

Lemma A.2. Let ϕ : (R,m, k) → (R,m, k) be a contracting endomorphism, and

consider a commutative diagram of field extensions

(A.2)

k
β

//

ϕ

��

K

α̂

��
k

β
// K

where ϕ is the map induced by ϕ. Assume that β is separable. Then there is

a commutative diagram of local ring homomorphisms

(A.3)

(R,m, k)
β̃

//

ϕ

��

(S,mS,K)

ψ

��
(R,m, k)

β̃
// (S,mS,K)

such that S is complete, β̃ is weakly étale, ψ is a contracting endomorphism, and

the diagram induced by (A.3) on residue fields is (A.2).

P r o o f. By [20], Proposition 0.10.3.1, there is a weakly étale local ring homomor-

phism β̃ : (R,m, k) → (S,mS,K). Replace S by its completion if necessary to assume

that S is complete. Since the induced map β : k → K is separable, we conclude that

β̃ is formally smooth. Since S is complete, a standard application of smoothness

provides a local ring homomorphism ψ : S → S such that (1) ψ induces α̂ on residue

fields, and (2) ψ respects the R-algebra structures given by β̃ and β̃ϕ, that is, such

that the diagram (A.3) commutes.
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It remains to show that ψ is contracting. For this, fix an integer i > 1 such that

ϕi(m) ⊆ m
2. Then

ψi(mS) ⊆ ψi(mS)S = ψi(β̃(m))S = β̃(ϕi(m))S ⊆ β̃(m2)S = (mS)2

as desired. �

Proposition A.3. Let ϕ : (R,m, k) → (R,m, k) be a contracting endomorphism

such that R/ϕ(m)R is artinian and the induced map ϕ : k → k is separable. Then

there is a commutative diagram of local ring homomorphisms

(A.4)

(R,m, k)
β̃

//

ϕ

��

(S,mS,K)

ψ

��
(R,m, k)

β̃
// (S,mS,K)

such that β̃ is weakly étale and the induced map k → K is separable (hence β̃ is

formally smooth), S is complete, and ψ is a module-finite contracting endomorphism.

P r o o f. Lemma A.1 provides a commutative diagram of field extensions

(A.5)

k
β

//

α

��

K

α̂

��
k

β
// K

such that α̂ is an isomorphism and β is separable. Hence, Lemma A.2 implies that

we have a commutative diagram of local ring homomorphisms

(A.6)

(R,m, k)
β̃

//

ϕ

��

(S,mS,K)

ψ

��
(R,m, k)

β̃
// (S,mS,K)

such that β̃ is weakly étale, ψ is a contracting endomorphism, and the diagram

induced by (A.6) on residue fields is (A.5). To avoid ambiguous notation, given

an S-module M , let ψM denote the S-module structure on M given by restriction

of scalars along ψ.

It remains to show that ψ is module-finite. Since S is complete and local, the

complete Nakayama’s Lemma [26], Theorem 8.4, says that it suffices to show that
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ψ(S/ψ(mS)S) has finite length over S. Since the map α̂ : S/mS → S/mS induced

by ψ is an isomorphism, ifM is an S-module of finite length, then ψM also has finite

length; in fact, the lengths are the same in this case. Thus, it remains to show that

S/ψ(mS)S has finite length over S.

By assumption, the quotient ring R/ϕ(m)R is artinian. This means that mn ⊆

ϕ(m)R for n≫ 0, so

(mS)n = β̃(mn)S ⊆ β̃(ϕ(m))S = ψ(β̃(m))S = ψ(mS)S.

We conclude that S/ψ(mS)S is artinian, so it has finite length over S. �

Acknowledgement. We are grateful to Hamid Rahmati for pointing out [8],

Remark 5.9.
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