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Abstract. We develop a new technique which, for the given smooth function, generates
the anisotropic triangular grid and the corresponding polynomial approximation degrees
based on the minimization of the interpolation error in the broken H1-seminorm. This
technique can be employed for the numerical solution of boundary value problems with the
aid of finite element methods. We present the theoretical background of this approach and
show several numerical examples demonstrating the efficiency of the proposed anisotropic
adaptive strategy in comparison with other adaptive approaches.
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1. Introduction

An automatic mesh adaptation is an efficient tool for the numerical solution of

partial differential equations (PDEs). In this paper we develop the method which

combines two approaches:

⊲ (isotropic) hp-adaptive methods, which allow the adaptation in the element size

h as well as in the polynomial degree of the approximation p. The origins of

the hp-methods, which give exponential rate of the convergence, date back to the

pioneering work of Ivo Babuška et al., see, e.g., [3], [8], [24], [25], [26], [28].

The research of V.Dolejší has been supported by Grant No. 13-00522S of the Czech
Science Foundation. The author acknowledges also the membership in the Nečas Center
for Mathematical Modeling ncmm@karlin.mff.cuni.cz.
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⊲ anisotropic mesh adaptation techniques, generating anisotropic elements (i.e., long

and thin triangles), which are suitable in computation of problems with boundary

or internal layers, see, e.g., [1], [2], [9], [14], [16], [20], [21], [29].

The combination of these approaches offers enough flexibility in the choice of finite

element spaces where an approximate solution is sought. This allows to achieve

the prescribed error tolerance with significantly lower number of degrees of freedom

than the standard numerical methods. The triangular grid with the corresponding

polynomial approximation degrees is called the anisotropic hp-mesh.

In [13] we developed an adaptive technique which constructs, for the given function

u : Ω → R2, an anisotropic hp-mesh such that

(i) the interpolation error of the projection of u on Shp (= space of discontinuous

piecewise polynomial functions uniquely defined for each hp-mesh, cf. (3.1)) in

the Lq-norm (q ∈ [1,∞]) is below the given tolerance,

(ii) the dimension of Shp (= number of degrees of freedom) is the smallest possible.

In this paper, we deal with a modified problem where the interpolation error in

condition (i) is considered in the broken H1-seminorm which is more natural par-

ticularly for the solution of second order boundary value problems. In [13], we ap-

proximated the interpolation error by a polynomial function and derived its bound,

which was the basis of the optimization of the element shape. In this paper, we

derive the approximation of the gradient of the interpolation error function together

with its bound. Consequently, we use the technique from [13] for the element shape

optimization (cf. Theorem 3.1). Moreover, at the end of Section 3, we discuss a poss-

ible extension of this approach to the broken W k,q-seminorm, where q ∈ [1,∞] and

k > 1.

The content of the rest of the paper is the following. In Section 2, we introduce

basic notation and properties of anisotropic hp-meshes. In Section 3 we present

a theoretical background of the presented hp-adaptation algorithm employing some

results from [13]. Its application to the numerical solution of boundary value prob-

lems is briefly given in Section 4. The resulting adaptive technique is independent of

the problem considered and can be combined with conforming as well as nonconform-

ing finite element approximations. The efficiency of the algorithm is demonstrated

by experiments in Section 5. Finally, we add several concluding remarks.
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2. Anisotropic hp-meshes

In this section we recall basic terms and definitions of the anisotropic hp-meshes,

the details can be found in [13]. Let Ω ⊂ R2 be a bounded computational domain

with a polygonal boundary ∂Ω. We denote by Th = {K}, h > 0 a conforming

triangulation of Ω and byFh the set of edges of Th. The edges e ∈ Fh are considered

as vectors from R2 given by its endpoints, the orientation of e ∈ Fh is arbitrary.

2.1. Anisotropic triangle. The anisotropy of a triangle is described by a matrix

M ∈ Sym, where Sym is the space of 2 × 2 symmetric positively definite matrices.

Let the matrix M ∈ Sym be given, it can be decomposed in the form

(2.1) M = Q
T
φM

diag(λM,1, λM,2)QφM
,

where diag(a, b) denotes the diagonal matrix with the entries a and b, 0 < λM,1 6

λM,2 are the eigenvalues of M, φM ∈ [0, π) and Qφ is the rotation by the angle φ in

the counter clockwise direction. Moreover, the set

(2.2) EM := {x ∈ R
2; xT

Mx 6 1},

defines an ellipse whose semi-axes have lengths rM,i = (λM,i)
−1/2, i = 1, 2, and

its orientation is φM (= angle between the major semi-axis and the axis x1 of the

coordinate system), see Figure 1.

EM

φM

rM,2

rM,1

KM

Figure 1. The ellipse EM with the length of semi-axes rM,1, rM,2 and the orientation φM,
and the corresponding triangle KM with the anisotropy {rM,1, rM,1/rM,2, φM}.

Definition 2.1. Let M ∈ Sym and let EM be the ellipse given by (2.2). Let KM

be an acute-angle isosceles triangle which is inscribed into the ellipse EM and which

has the maximal possible area, see Figure 1. We call KM the triangle corresponding

to M.
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Similarly to [4], [5], [20], [21], and the works cited therein, we describe the

anisotropy of a triangle by three parameters: the size, the aspect ratio and the

orientation.

Definition 2.2. Let KM be the triangle corresponding toM ∈ Sym and let λM,1,

λM,2 and φM be given by (2.1). Let rM,i = (λM,i)
−1/2, i = 1, 2, be the lengths of the

semi-axes of the EM. We say that

⊲ rM,1 is the size of KM,

⊲ σM := rM,1/rM,2 > 1 is the aspect ratio of KM,

⊲ φM is the orientation of KM.

The triplet {rM,1, σM, φM} is called the anisotropy of KM.

Obviously, the matrix M ∈ Sym defines a Riemann metric in R2, where the dis-

tance of x, y ∈ R2 is given by ‖x− y‖M := ((x− y)TM(x− y))1/2. For the purpose of

the definition of an optimal hp-mesh, we recall one result from [9], Section 3, which

implies that the triangle KM corresponding to M is equilateral in the metric given

by M.

Lemma 2.1. Let M ∈ Sym and let KM be the corresponding triangle. Let ei,

i = 1, 2, 3, denote the edges of KM, which are considered as vectors from R2 given

by their endpoints. Then

(2.3) ‖ei‖M := (eT
i Mei)

1/2 =
√
3, i = 1, 2, 3.

2.2. Anisotropic meshes. Similarly to, e.g., [2], [9], [14], [16], [22], [23], we

define an anisotropic triangular grid Th as a mesh consisting of equilateral triangles

with respect to the given Riemann metric. Let M : Ω → Sym be an integrable

mapping. We define the distance between v0 ∈ Ω and v1 ∈ Ω by

‖v1 − v0‖M :=

∫ 1

0

((v1 − v0)
TM(v0 + t(v1 − v0))(v1 − v0))

1/2 dt,

which induces a metric on Ω. Thus, we callM the Riemann metric on Ω. In virtue

of (2.3), it would be natural to define a mesh Th such that

(2.4) ‖e‖M =
√
3 ∀ e ∈ Fh,

where Fh is the set of edges of Th. However, for the given metricM, there does not
exist (except special cases) any triangulation satisfying (2.4). Therefore, we define

the triangulation generated by the metricM such that (2.4) is satisfied approximately

by the least square technique, see [9], [14].
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Definition 2.3. LetM : Ω → Sym be the Riemann metric on Ω. We say that

the triangulation Th is generated by the metric M if

(2.5) Th = argmin
T ′

h

∑

e∈F ′

h

(
‖e‖M −

√
3
)2
,

where the minimum is taken over all possible triangulations T ′
h of Ω and F ′

h is the

set of edges of T ′
h .

Let us note that there exist algorithms and codes, e.g., [10], [19], which construct

the mesh Th for the given metricM in the sense of Definition 2.3. These algorithms

are based on the combination of several local operations which minimize the right-

hand side of (2.5). However, a different ordering of these operations leads to different

(but similar) hp-grids. The mesh generation is fast in comparison to the numerical

solution of the corresponding boundary value problem.

2.3. hp-mesh. Let Th = {K} be a triangulation of Ω. To each K ∈ Th we assign

a positive integer pK (= local polynomial approximation degree on K). Then we

define the polynomial degree set p := {pK ; K ∈ Th}. The pair Thp := {Th, p} is
called the hp-mesh. The polynomial degree set p can be defined in the following way.

Definition 2.4. Let P : Ω → R+ be the given integrable function, which we call

the polynomial degree distribution function. Let Th be a triangulation of Ω. Using P ,
we define the polynomial degree set p = {pK ; K ∈ Th} by

(2.6) pK := int

[
1

|K|

∫

K

P(x) dx

]
, K ∈ Th,

where int[·] denotes the rounding to the nearest integer.

Therefore, for the given Riemann metricM : Ω → Sym and for the given polyno-

mial degree distribution function P : Ω → R+, we are able to construct the hp-mesh

Thp = {Th, p}, where Th and p are given by Definitions 2.3 and 2.4, respectively.

Let us note that in practice, it is sufficient to evaluate M and P only in a finite
number of nodes x ∈ Ω.
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3. Optimal anisotropic hp-mesh for the given function u : Ω → R

This section exhibits a theoretical background of this paper. We employ several

results from [13]. We formulate and (partly) solve the main problem, which defines

the optimal anisotropic hp-mesh for the given function u : Ω → R. The optimality

is based on the minimization of the number of degrees of freedom provided that the

interpolation error in the broken H1-seminorm is below the given tolerance. For

simplicity, we deal with functions from V := C∞(Ω).

3.1. The main problem. For the given hp-mesh Thp = {Th, p}, we define the
space of discontinuous piecewise polynomial functions by

(3.1) Shp := {v ∈ L2(Ω); v|K ∈ P pK (K) ∀K ∈ Th},

where P pK (K) is the space of polynomials of degree6 pK onK ∈ Th. The dimension

of Shp is equal to Nhp :=
∑

K∈Th

(pK + 1)(pK + 2)/2, which is called the number of

degrees of freedom of the hp-mesh Thp.

First, we introduce a local projection operator.

Definition 3.1. Let u ∈ V be the given function, x̄ ∈ Ω and p ∈ N an integer.

We define the mapping πx̄,p : V → P p(Ω) such that

(3.2)
∂k πx̄,pu(x̄)

∂xl
1∂x

k−l
2

=
∂k u(x̄)

∂xl
1∂x

k−l
2

∀ l = 0, . . . , k, ∀ k = 0, . . . , p.

Thus, πx̄,pu is the Taylor polynomial of degree p about x̄ ∈ Ω. The existence and

uniqueness of πx̄,pu is obvious. Using the mapping πx̄,p, we define the projection into

the space Shp.

Definition 3.2. Let Thp = (Th, p) be an hp-mesh, xK the barycenter of K ∈ Th

and Shp the corresponding space of discontinuous piecewise polynomial functions

given by (3.1). We define the operator Πhp : V → Shp by

(3.3) (Πhpu)|K := πxK ,pK
(u|K) ∀K ∈ Th,

where πxK ,pK
is given by (3.2). The operator Πhp is defined separately for each

K ∈ Th and it is unique for the given hp-mesh. In the analysis, we are interested

in the optimization of the interpolation error u− Πhpu in the broken H1-seminorm

defined by

|v|H1(Th)
:=

( ∑

K∈Th

|v|2L2(K)

)1/2

, v ∈ {w ∈ L2(Ω); w|K ∈ H1(K) ∀K ∈ Th}.

Now, we are ready to formulate the following problem.
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Problem 3.1. Let u ∈ V be the given function and ω > 0 the given tolerance.

We seek a hp-mesh Thp (and therefore the corresponding space Shp) such that

(P1) |u−Πhpu|H1(Th)
6 ω, where Πhp : V → Shp is defined by (3.3),

(P2) the number of degrees of freedom Nhp of Thp (= dimShp) is minimal.

Problem 3.1 is complex and we are not able to solve it efficiently. Therefore,

we introduce an auxiliary local problem whose solution is an optimal anisotropic

element with the barycentre at the given node x̄ ∈ Ω. Then, using the solution of

the auxiliary problem and heuristic considerations, we derive the Riemann metric

M : Ω → Sym and the polynomial degree distribution function P : Ω → R+, which

define the hp-mesh Thp. This hp-mesh satisfies condition (P1) of Problem 3.1 and

the corresponding number Nhp is as small as we are able to achieve. Therefore, we

expect that this resulting hp-mesh is close to the solution of Problem 3.1.

3.2. Auxiliary problem. Let u ∈ V , x̄ = (x̄1, x̄2) ∈ Ω, and p ∈ N be given.

Using the Taylor expansion of degree p+ 1 at x̄, we have

(3.4) u(x) =

p+1∑

k=0

1

k!

( k∑

l=0

(
k

l

)
∂ku(x̄)

∂xl
1∂x

k−l
2

(x1 − x̄1)
l(x2 − x̄2)

k−l

)
+O(θp+2), x ∈ Ω,

where
(
k
l

)
= k!

l !(k−l)! and θ = |x− x̄|. Let πx̄,pu be given by (3.2), then (3.4) reads

(3.5) u(x)− πx̄,pu(x) = eintx̄,p(x) +O(θp+2),

where

(3.6) eintx̄,p(x) :=
1

(p+ 1)!

p+1∑

l=0

[(
p+ 1

l

)
∂p+1u(x̄)

∂xl
1∂x

p+1−l
2

(x1 − x̄1)
l(x2 − x̄2)

p+1−l

]

is the interpolation error function of degree p located at x̄. Obviously, eintx̄,p(x̄) = 0

and eintx̄,p(x) ≈ u(x)−πx̄,pu(x) up to the higher order terms. Moreover, (3.3) and (3.5)

give

(3.7) (u−Πhpu)|K ≈ eintxK ,pK
|K ∀K ∈ Th,

where xK is the barycentre of K ∈ Th.

Now, we introduce the following auxiliary local problem.

Problem 3.2. Let u ∈ V , x̄ ∈ Ω, p ∈ N, and ω > 0 be given. We seek an

anisotropic triangle K (i.e., its anisotropy {hK , σK , φK}, cf. Definition 2.2) having
the barycentre at x̄ such that

(p1) |eintx̄,p|H1(K) 6 ω,

(p2) the area of K is the maximal possible.
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The condition (p2) follows from the consideration that in order to minimize the

number Nhp of the hp-mesh, we have to construct triangles with the maximal possible

area (for the given polynomial approximation degree p).

3.3. Solution of the auxiliary problem. We write the function eintx̄,p defined

by (3.6) in the form

(3.8) eintx̄,p(ξ) :=

p+1∑

l=0

αlξ
l
1ξ

p+1−l
2 ,

where ξi := xi − x̄i, i = 1, 2, and

(3.9) αl :=
1

(p+ 1)!

(
p+ 1

l

)
∂p+1u(x̄)

∂xl
1∂x

p+1−l
2

, l = 0, . . . , p+ 1.

Using the definition of the H1-seminorm, we have

(3.10) |eintx̄,p|2H1(K) =

∫

K

|∇eintx̄,p|2 dx.

Let us consider the integrand of (3.10). Taking into account (3.8)–(3.9), we have

(3.11) |∇eintx̄,p(x)|2 =

(
∂

∂x1

p+1∑

l=0

αlξ
l
1ξ

p+1−l
2

)2
+

(
∂

∂x2

p+1∑

l=0

αlξ
l
1ξ

p+1−l
2

)2

=

(p+1∑

l=1

l αlξ
l−1
1 ξp+1−l

2

)2
+

( p∑

l=0

(p+ 1− l)αlξ
l
1ξ

p−l
2

)2

=

( p∑

l=0

β
(1)
l ξl1ξ

p−l
2

)2
+

( p∑

l=0

β
(2)
l ξl1ξ

p−l
2

)2
,

where

(3.12) β
(1)
l := (l + 1)αl+1, β

(2)
l := (p+ 1− l)αl, l = 0, . . . , p.

In order to simplify the last terms in (3.11), we introduce the following lemma.
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Lemma 3.1. Let βl ∈ R for l = 0, . . . , p. Then

(3.13)

( p∑

l=0

βlξ
l
1ξ

p−l
2

)2
=

2p∑

i=0

γiξ
i
1ξ

2p−i
2 ,

where

γi =

i∑

j=1

βjβi−j , γ2p−i =

i∑

j=0

βp−jβp−(i−j), i = 0, . . . , p.

P r o o f. The identity can be derived by a direct computation. �

The next lemma is a direct consequence of (3.8), (3.11), and Lemma 3.1:

Lemma 3.2. Let eintx̄,p be the interpolation error function (3.6) written in the form

(3.8)–(3.9). Then

(3.14) |∇eintx̄,p(x)|2 =

2p∑

i=0

γi(x1 − x̄1)
i(x2 − x̄2)

2p−i,

where γi =
i∑

j=1

(β
(1)
j β

(1)
i−j + β

(2)
j β

(2)
i−j), γ2k−i =

i∑
j=1

(β
(1)
p−jβ

(1)
p−(i−j) + β

(2)
p−jβ

(2)
p−(i−j)),

i = 0, . . . , p, and β
(1)
l , β

(2)
l , l = 0, . . . , p, are given by (3.12).

Lemma 3.2 implies that |∇eintx̄,p|2 is a polynomial function of degree 2p, i.e., a func-
tion depending on 2p+ 1 coefficients. On the other hand, the sought anisotropy of

a triangle is given by three parameters. Therefore, in order to solve Problem 3.2, it

is advantageous to bound |∇eintx̄,p|2 by an expression depending on three parameters.
Motivated by [4], [5], we derived in [13] a bound of the interpolation error function

(which is a polynomial function of degree p+ 1) in the form

(3.15) |eintx̄,p(x)| 6 Āp((x− x̄)TQϕ̄p
D̺p

Q
T
ϕ̄p
(x− x̄))(p+1)/2 ∀x ∈ Ω,

where Āp > 0, Qϕ̄p
is the rotation matrix by the angle ϕ̄p and D̺p

is the matrix

given by

(3.16) D̺ :=

(
1 0

0 ̺−2/(p+1)

)
, ̺ > 1.

By virtue of (3.15)–(3.16), we seek a bound of the magnitude of the gradient of the

interpolation error functions (which is the polynomial of degree 2p) in the form

(3.17) |∇eintx̄,p(x)|2 6 Ap((x− x̄)TQϕp
D̺p

Q
T
ϕp
(x − x̄))p ∀ x ∈ Ω,
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where Ap > 0, Qϕp
is the rotation by the angle ϕp and D̺p

is given by

(3.18) D̺ :=

(
1 0

0 ̺−1/p

)
, ̺ > 1.

The values Ap > 0, ̺p > 1, and ϕp ∈ [0, 2π) represent the size, the aspect ratio, and

the orientation of the square of the magnitude of the gradient of the interpolation

error functions |∇eintx̄,p|2 and they are defined in such a way that the bound (3.17) is
as sharp as possible in the following sense:

Obviously, both sides of (3.17) are 2p-homogeneous functions of (x − x̄), i.e.,

f(x− x̄) = |x− x̄|2pf
(
(x− x̄)/|x− x̄|

)
. Hence, it is enough to verify (3.18) for x ∈ Ω,

|x− x̄| = 1. Moreover, both sides of (3.17) define bounded domains F p and Gp in R2,

namely F p and Gp are the interiors of the closed curves

(3.19)

{y ∈ R
2 ; y = |∇eintx̄,p(x)|2(x− x̄), |x− x̄| = 1, x ∈ R

2} and
{y ∈ R

2 ; y = Ap((x − x̄)TQϕp
D̺p

Q
T
ϕp
(x− x̄))p(x− x̄), |x− x̄| = 1, x ∈ R

2},

respectively.

Obviously, if F p ⊂ Gp then (3.17) is valid. Therefore, in order to guarantee

sharpness of (3.17), we set parameters Ap > 0, ̺p > 1, and ϕp ∈ [0, 2π) in such

a way that F p ⊂ Gp and the area of Gp is minimal.

Definition 3.3. The triplet {Ap, ̺p, ϕp} arising in (3.17) is called the anisotropy
of the magnitude of the gradient of the interpolation error function |∇eintx̄,p|2.

R em a r k 3.1. The triplet {Ap, ̺p, ϕp} can be easily found numerically with
the aid of the algorithm introduced in [13], Section 3.2. First, we set the triplet

{Ãp, ˜̺p, ϕ̃p}, where Ãp is the maximal value of |∇eintx̄,p(x̄ + ξ)| for ξ ∈ R2, |ξ| = 1,

given by (3.14), ϕ̃p is the angle of the direction ξ along which the maximal value

|∇eintx̄,p(x̄+ξ)| is attained and ˜̺p is the ratio between Ãp and the value of |∇eintx̄,p(x̄+ξ)|
along the direction perpendicular to the direction with the maximal value.

However, in the general case, inequality (3.17) is not valid for {Ãp, ˜̺p, ϕ̃p}. There-
fore, the triplet {Ãp, ˜̺p, ϕ̃p} has to be modified in such a way that the corresponding
set Gp is increased in order to contain F p.

E x am p l e 3.1. Figure 2 shows the sets F p and Gp for p = 1, 2, 3, x̄ = (1, 1), and

u(x1, x2) = 0.01(6x7
1 + 4x6

1x2 − 3x5
1x

2
2 + 8x4

1x
3
2 + 12x3

1x
4
2 + 5x2

1x
5
2 + x1x

6
2 − x7

2).

The bound (3.17) is the basis for the solution of Problem 3.2 formulated below.
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−2.5 0 2.5 5

F 1

G1

F 2

G2

0 0.875 1.75 2.625

0.9375 0.975 1.0125 1.05

F 3

G3

Figure 2. Boundaries of F p, Gp, p = 1, 2, 3, for Example 3.1.

Theorem 3.1. Let u ∈ V , x̄ ∈ Ω, p ∈ N, and ω > 0 be given. Let {Ap, ϕp, ̺p} be
the anisotropy of the gradient of the corresponding interpolation error function eintx̄,p

satisfying (3.17). We set νx̄,p by

(3.20) νx̄,p := (ω2̺1/2p /(cpAp))
1/(p+1),

where cp := π
−p/(p+ 1) and π = 3.1415 . . . Then the triangle Kx̄,p with the

anisotropy {hE, σE , φE} given by

(3.21) hE = (̺1/(2p)p νx̄,p/π)1/2, σE = ̺1/(2p)p , φE = ϕp − π/2

is (almost) the solution of Problem 3.2, namely we have

(3.22) |eintx̄,p|H1(Kx̄,p)
6 (cpAp̺

−1/2
p (νx̄,p)

p+1)1/2 = ω.

The word “almost” means that the condition (p1) in Problem 3.2 is satisfied and the

condition (p2) is satisfied up to a replacement of K by its corresponding ellipse, cf.

Definition 2.1.

P r o o f. The proof uses the same technique as the derivation of [13], Lemma 3.15.

Since it is relatively long, we present only the main steps.

(i) Instead maximizing the area K for a fixed error |eintx̄,p|H1(K) = ω, we fix the

area K and minimize the error |eintx̄,p|H1(K). These tasks are equivalent.

(ii) In order to simplify the integration, we replace the triangle Kx̄,p by the corre-

sponding ellipse Ex̄,p, cf. Definition 2.1. Obviously, |eintx̄,p|H1(Kx̄,p)
6 |eintx̄,p|H1(Ex̄,p)

.

(iii) We denote by hE and h⊥
E = hE/σE the size of the semi-axes of the sought

ellipse Ex̄,p and by φE the angle between the main axes of E and axis x1. Let

Ê := {ξ ∈ R2 ; |ξ| 6 1} be the closed unit ball (= the reference circle), we define the
mapping FE : Ê → R2 by FE(x̂) := QφE

SE x̂+ x̄, where QφE
is the rotation by the

angle φE and SE = diag(hE , h
⊥
E) = hE diag(1, σ−1

E ). We can simply verify that FE

maps Ê onto Ex̄,p, i.e., FE(Ê) = Ex̄,p.
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(iv) Furthermore, the definition of the mapping FE gives the implications

(3.23) x = FE(x̂) ⇒ x− x̄ = QφE
SE x̂ ⇒ (x− x̄)T = x̂T

S
T
EQ

T
φE

.

The Jacobi matrix DFE/Dx̂ has the determinant equal to hEh
⊥
E and the area of the

ellipse Ex̄,p is equal to

(3.24) νx̄,p := πhEh
⊥
E = πh2

E/σE .

(v) With the aid of (3.17), the theorem on substitution and (3.23), we have

|eintx̄,p|2H1(Ex̄,p)
=

∫

Ex̄,p

|∇eintx̄,p(x)|2 dx 6

∫

Ex̄,p

Ap((x− x̄)TQϕp
D̺p

Q
T
ϕp
(x− x̄))p dx

=

∫

Ê

Ap(x̂
T
S
T
EQ

T
φE

Qϕp
D̺p

Q
T
ϕp
QφE

SE x̂)
phEh

⊥
E dx̂.

(vi) After some manipulations, we derive the inequality

(3.25) |eintx̄,p|2H1(Ex̄,p)
6 Ap

(νx̄,p
π

)p+1
∫

Ê

(x̂T
Gx̂)p dx̂,

where

G :=




σE(cos
2 τ + ̺

−1/p
p sin2 τ) − sin τ cos τ(1− ̺

−1/p
p )

− sin τ cos τ(1 − ̺
−1/p
p ) σ−1

E (sin2 τ + ̺
−1/p
p cos2 τ)


 , τ := φE − ϕp.

(vii) We find that the right-hand side of (3.25) is minimal if the matrix G is

diagonal and the two diagonal terms are equal. Hence, taking into account that

σE > 1 and ̺p > 1, we obtain cos τ = 0 and consequently

(3.26) τ = φE − ϕp = π/2 & σE = ̺1/(2p)p .

(viii) Inserting (3.26) in (3.25), we have

|eintx̄,p|2H1(Ex̄,p)
6 Ap

(νx̄,p
π

)p+1
∫

Ê

(̺−1/(2p)
p |x̂|2)p dx̂ = Ap

(νx̄,p
π

)p+1

̺−1/2
p

2π

2p+ 2
,

which together with (3.24) and (3.26) proves the theorem. �
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Finally, let us note that the value νx̄,p is equal to the area of the element (up to

a multiplicative constant) and due to (3.20), it is related to the local tolerance ω. It

will be specified in the next section.

3.4. Setting of the size of a triangle. We need to set the area νx̄,p of a triangle,

i.e., its size since its ratio was already specified. The main Problem 3.1 requires the

error bound |u− Πhpu|H1(Th)
6 ω, where ω > 0 is the given (global) tolerance. In

order to set ω in Problem 3.2, we use the implication

(3.27) |u−Πhpu|H1(Th)
6 ω ⇐= |u−Πhpu|H1(K) 6 ω(|K|/|Ω|)1/2 ∀K ∈ Th.

Although the equidistribution condition on the right-hand side of (3.27) does not

guarantee that the resulting grid is the globally optimal one, we employ it for the

setting of the local tolerance ω in (3.20), since we do know how to solve this complex

problem in an effective way.

In virtue of (3.7) and the right-hand side of (3.27), we require that

(3.28) |eintx̄,p|H1(Kx̄,p)
6 ω(νx̄,p/|Ω|)1/2.

Hence, in order to specify the area νx̄,p, using (3.22) and (3.28), we set the condition

cpAp̺
−1/2
p (νx̄,p)

p+1 = ω2νx̄,p/|Ω|, which implies

(3.29) νx̄,p =
( ω2̺

1/2
p

|Ω|cpAp

)1/p

.

3.5. Choice of the polynomial approximation degree. In the previous sec-

tions, we have derived the anisotropy of the optimal triangle Kx̄,p which minimizes

the norm of the interpolation error function eintx̄,p on Kx̄,p for any x̄ ∈ Ω and for

an arbitrary given polynomial approximation degree p. In this section, we set the

optimal polynomial degree p.

We introduced the so-called density of the number of degrees of freedom (DOF) by

(3.30) ηp(x̄) :=
(p+ 1)(p+ 2)

2νx̄,p
, p ∈ N, x̄ ∈ Ω,

representing the number of degree of freedom per unit area. Formal integration of

(3.30) over Ω gives the total number of DOF. Hence, in order to minimize the number

of DOF, we minimize the integrand ηp(x̄). Therefore, for each x̄ ∈ Ω, we choose the

polynomial degree p ∈ N such that the corresponding value ηx̄,p is minimal, i.e., we

put

(3.31) px̄ := argmin
p∈N

ηp(x̄).
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Let us note that in the practical implementation, the degree p is bounded from above

by pmax (= the maximal implemented polynomial approximation degree), hence the

minimum in (3.31) always exists.

3.6. Anisotropic hp-adaptation algorithm. Now we are ready to define the

Riemann metric M and the polynomial degree distribution function P , which gen-
erate the hp-mesh Thp by Definitions 2.3 and 2.4, such that Thp is “close” to the

solution of the main Problem 3.1. The word “close” means the best hp-mesh which

we are able to achieve. It is possible to show that for some special problems, the

resulting hp-grid is exactly the solution of Problem 3.1. We introduce the following

algorithm.

Algorithm Generation of M(x) and P(x) for x ∈ Ω

let u ∈ V and ω > 0 be given

for all p = 1, 2, . . . , pmax do

evaluate the anisotropy {Ap, ϕp, ̺p} introduced in Definition 3.3
using (3.29), set the area νp(x) of the triangle Kx,p

using (3.21), set the anisotropy of triangle Kx,p by {hE(x), σE(x), φE(x)}
using Definition 2.2, set matrix Mp(x) defining Kx,p

using (3.30), evaluate the quantity ηp(x) := (p+ 1)(p+ 2)/(2νp(x))

end for

find px ∈ N minimizing ηp(x), i.e. px := arg min
p=1,...,pmax

ηp(x).

setM(x) := Mpx
(x) and P(x) := px.

Theoretically, we can employ the above algorithm for any x ∈ Ω. In practical

applications, we evaluate M and P only for a finite number of x ∈ Ω and then we

continuously interpolateM and P on Ω.

3.7. Extension toW k,q-seminorm. The technique can be extended to the mesh

optimization with respect to the broken W k,q-seminorm for k > 1 and q ∈ [1,∞].

First, let us discuss the case k = 1 and q < ∞. Using (3.17), the corresponding
modification of step (v) in the proof of Theorem 3.1 leads to

|eintx̄,p|qW 1,q(Ex̄,p)
=

∫

Ex̄,p

|∇eintx̄,p(x)|q dx =

∫

Ex̄,p

(|∇eintx̄,p(x)|2)q/2 dx

6

∫

Ex̄,p

(Ap((x − x̄)TQϕp
D̺p

Q
T
ϕp
(x− x̄))p)q/2 dx.

Then the subsequent steps have to be modified appropriately.
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Furthermore, for k > 1, it is necessary to evaluate the kth-order derivative of the

interpolation error function, namely |∇keintx̄,p(x)|2. After some calculation it would
be possible to derive an analogue to Lemma 3.2, whose result is a polynomial of

degree 2(p + 1 − k). However, there is a restriction k 6 p + 1. Otherwise, the

corresponding seminorm vanishes. Finally, the case q = ∞ is simpler and can be

carried out analogously.

4. Application of Algorithm 1 to the numerical solution of BVP

Algorithm 1 defines an anisotropic hp-mesh for the given function u : Ω → R

which is optimal in the broken H1-seminorm. This algorithm can be employed for

the numerical solution of boundary value problems (BVP) where the function u

represents the exact solution.

Since u is unknown, we replace it by the approximate solution uhp ∈ Shp of BVP.

Using a higher-order reconstruction, we approximate the anisotropy of the magnitude

of the gradient of the interpolation error function. Then, using Algorithm 1, we

generate a new (better) mesh T N
hp where the more accurate approximate solution can

be obtained. The whole iteration loop is repeated until the desired stopping criterion

is achieved. The mesh T N
hp is generated by our in-house code ANGENER [10], some

implementation details can be found in [13].

5. Numerical examples

In this section, we present numerical examples, which demonstrate the efficiency

of the proposed anisotropic hp-adaptive method in comparison with other adaptive

techniques. We consider two linear convection-diffusion problems which are solved

with the aid of the discontinuous Galerkin method (DGM). We employ the incom-

plete interior penalty Galerkin (IIPG) variant of DGM, which was analysed in several

papers [7], [27], [11]; the solution strategy used is given in [12].

5.1. Linear convection-diffusion equation with boundary layers.

We consider the scalar linear convection-diffusion equation (similarly to [6], [15])

(5.1) −ε△u− ∂u

∂x1
− ∂u

∂x2
= g in Ω = (0, 1)2,

where ε > 0 is a constant diffusion coefficient. We prescribe the Dirichlet boundary

condition on ∂Ω and the source term g such that the exact solution has the form

u(x1, x2) = (c1+ c2(1−x1)+ e−x1/ε)(c1+ c2(1−x2)+ e−x2/ε) with c1 = −e−1/ε and
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c2 = −1 − c1. The solution contains two boundary layers along x1 = 0 and x2 = 0,

whose width is proportional to ε. Here we consider ε = 10−2 and ε = 10−3. This

example is suitable for the anisotropic adaptation since thin and long triangles can

be employed in the boundary layers.

In order to demonstrate the efficiency of the presented method in the comparison

with other approaches, we carried out the following types of the mesh adaptation:

⊲ isotropic hp-adaptive algorithm,

⊲ anisotropic h-adaptive algorithm with the fixed p = 3,

⊲ anisotropic hp-adaptive algorithm from [13], which optimizes the hp-mesh with

respect to the L2-norm,

⊲ the anisotropic hp-adaptive Algorithm 1 presented above, which optimizes the

hp-mesh with respect to the broken H1-seminorm.

We investigate the convergence of these algorithms in the broken H1-seminorm

with respect to the number of degrees of freedom, the results are plotted in Figure 3.

We observe an evident efficiency of the anisotropic hp-method in comparison to the

isotropic hp- as well as anisotropic h-methods. Moreover, the anisotropic hp-method

based on the optimization with respect to the broken H1-seminorm is a little more

efficient than the one based on the optimization with respect to the L2-norm which

is in agreement with our expectations.

Furthermore, Algorithm 1 seems to be exponentially convergent, which means that

the decrease of the error is faster than any linear decrease in logarithmic scale. We

also observe that when Algorithm 1 is approaching the prescribed error tolerance, it

reduces the computational error as well as the number of degrees of freedom. The

final hp-grids are shown in Figure 4, each element is drawn in the grey scale colour

corresponding to the polynomial approximation degree.
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Figure 3. Example (5.1), convergence of the errors in the broken H1-seminorm with respect
to DOF.
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Figure 4. Example (5.1), the final hp-meshes.

5.2. Double curved interior layers problem. We consider a linear convection-

dominated problem (see [18], Example 6.2)

(5.2) −ε△u+ b1
∂u

∂x1
+ b2

∂u

∂x2
= 0 in Ω = (0, 1)2,

where ε = 10−6 and (b1, b2) = (−x2, x1) is the velocity field with curved characteris-

tics. We prescribe the homogeneous Neumann data at the outflow part ∂ΩN = {0}×
(0, 1) and the discontinuous Dirichlet data u = 1 at (x1, x2) ∈ (13 ,

2
3 )×{0} and u = 0

elsewhere on ∂ΩD := ∂Ω \ ∂ΩN . Then this discontinuous profile is basically trans-

ported along the characteristic curves leading to sharp characteristic interior layers.

We investigate the ability of the proposed anisotropic hp-algorithm to capture the

sharp curved interior layers. Figure 5 shows the final hp-grid with the zooms of both

interior layers. Furthermore, Figure 6 shows the isolines of the solution obtained

on the final grid and the diagonal cut of the approximate solution along x2 = x1.

We observe a sharp capturing of both the interior layers without any overshoots and

undershoots of the solution. We recall that no stabilization technique (see, e.g., [17])

was used in the discontinuous Galerkin solver.
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P4

P5

P6

P7

P8

hp

Figure 5. Example (5.2), the final hp-mesh (left), 50× zoom of the begin of the outer arc
(centre) and 20× zoom of the end of the inner arc (right).
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Figure 6. Example (5.2), the isolines of the solution (left) and the diagonal cut (right).

6. Conclusion

We presented the technique which generates anisotropic hp-grids based on the

interpolation error estimates in the brokenH1-seminorm. These grids were employed

for the numerical solution of second order boundary value problems with the aid of

the discontinuous Galerkin method. Although the presented numerical examples

demonstrate the efficiency of this approach in comparison to isotropic hp- as well as

anisotropic h-methods we have no information about the computational error. We

suppose that it will be possible to combine this approach with some a posteriori error

estimation technique. Particularly, we expect that a posteriori error estimate gives

us the information about the size of the error and the presented technique about the

anisotropy of the elements. This will be the subject of future research.
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