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Abstract. In this paper a dynamic linear model of suspension bridge center spans is
formulated and three different ways of fixing the main cables are studied. The model
describes vertical and torsional oscillations of the deck under the action of lateral wind.
The mutual interactions of main cables, center span, and hangers are analyzed. Three
variational evolutions are analyzed. The variational equations correspond to the way how
the main cables are fixed. The existence, uniqueness, and continuous dependence on data
are proved.
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1. Introduction

The collapse of the original Tacoma suspension bridge on 7 November 1940 has

been studied in many papers. A wide list of references connected with that event

is possible to find, for instance, in [20]. The Tacoma bridge was opened on 1 July

1940 and since the opening day vertical oscillations appeared in lateral winds whose

speed reached more than 22m s−1. On 7 November 1940 the torsional oscillations

appeared after the midspan cable band on one main cable loosened. The motion of

the central span was primarily a one-nodded torsional oscillation with the maximum

twist angle about 35◦ and the corresponding maximum vertical amplitude about

4.3m. The bridge collapsed after approximately one hour and the central span fell

into the Tacoma Narrows. One can see the collapse in the clips [28] and [29]. The

The paper was prepared in connection with project Institute of Clean Technologies, areg.
no. CZ.1.05/2.1.00/03.0082 supported by Research and Development for Innovations
Operational Program financed by Structural Funds of European Union and from the
means of the state budget of the Czech Republic.
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basic scheme of the central span of the original Tacoma suspension bridge, which is

almost identical for all suspension bridges, is depicted in Fig. 1.

central span

fixed point

midspan band

diagonal tie

main cable

hanger

Figure 1. Specification of central span.

Here we mention some papers utilizing continuum models of the central span. The

authors of the paper [19] analyzed vertical motions of the central span together with

the reaction of hangers. The central span was modeled as a beam and the hang-

ers as an elastic nonlinear continuum. The fundamental nonlinearity of the model

is that the hangers strongly resist expansion, but do not resist compression. The

equations formulated in the paper are nonlinear and the authors studied periodic

solutions when the center span was exposed to a periodic force. The analysis showed

that the equation has at least two solutions. The same equation has been studied

in many papers, for instance, in [14], [2], [3], [6], [7], [4], [5], and [12], where the

authors analyzed the structure of periodic solutions and proved the multiplicity of

solutions. The same model was numerically studied in [10] for some concrete param-

eters which corresponded to the original Tacoma bridge and some other suspension

bridges. A different model of the central span was presented in [26] and [8], where the

main cable was modeled as a string and the central span as a beam. The hangers were

studied as a nonlinear continuum with the same properties as in the previous model.

The model was described by two nonlinear equations whose solution has similar prop-

erties as the solution of the equation studied in [19]. In the paper [1] the equation

formulated in [19] was analyzed as a general dynamic problem with initial conditions.

The authors of the paper [13] presented the model describing both the vertical and

the torsional oscillations of the center span. The main cables were modeled as strings

attached to the deck through a systems of hangers modeled as a continuum. The

hangers resisted expansion, but did not resist compression just as the hangers in the

model formulated in [19]. The authors of [13] studied a similar initial value problem

as was studied in [1]. In all of the above mentioned papers the main cables were mod-

eled as strings. In the papers [16] and [15] a different way was proposed. The main

cables were modeled as a system of stiff rods connected with joints in which hangers

678



were attached. In this model both the behavior of the main cables and the hangers

is nonlinear. It seems that the loosening of the midspan cable band had a significant

impact on the behavior of the original Tacoma bridge and in the end it resulted in

torsional oscillations. These questions were studied, for instance, in [18] and [21].

In this paper we suppose that the equilibrium state of the bridge under gravita-

tional forces is known. The variational equations studied in this paper were formu-

lated in [17]. They describe deflections from the equilibrium state due to the forces

induced by lateral wind. Deflections are described by two functions corresponding

to vertical and torsional motions of the central span. The variational equations cor-

respond to the way how the midspan cable bands are fixed. The equations describe

the mutual reaction of the center span and the cable system as well as the reaction

of the diagonal ties on the midspan cable bands. A simple analysis was carried out

in [17] and some hypotheses explaining the collapse were formulated. The analysis

was based on the restrictive condition that the mass of the deck is concentrated at

the position of hangers. In this paper the existence, uniqueness, and continuous

dependence on data for the variational equations are proved. We concentrate on ver-

tical and torsional motions of the central span in lateral wind and neglect horizontal

motions. Horizontal motions are not connected with vertical and torsional motions

and can be studied independently. Moreover, the coefficients describing the action of

lateral wind on horizontal motions of the central span are negligible as compared to

the coefficients connected with vertical and torsional motions. These are the reasons

why horizontal motions are not studied in this paper.

2. Formulation of problems and main results

In this section we fix our attention on the oscillations induced by lateral wind and

concentrate on the behavior of the central span which is attached by the hangers to

the deck. The analysis is based on the variational equations derived from the Hamil-

ton principle (see [17]). Solutions to the variational equations give the deflection of

the center span from the equilibrium under gravitational forces. This deflection is

described by functions u(x, t), θ(x, t), where u(x, t) corresponds to vertical displace-

ment and θ(x, t) corresponds to torsional deformation of the center span, where x

belongs to (− 1
2L,

1
2L) (see Fig. 2). In the derivation of the variational equations

in [17] it was supposed that the equilibrium under gravitational forces was known,

especially the shape of the main cable y(x) and the horizontal projection H of ten-

sion forces in the main cable. The value of H is constant as follows from the theory

in [22]. The formulation of the linearized models is based on the hypotheses formu-

lated in [17]. First of all we suppose that the main cables and hangers are inextensible

and flexible.
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Let us recall the parameters of the deck and the cable system. These parameters

are gathered in Table 1 and some of them are depicted in Fig. 2. The values of these

parameters for the original Tacoma bridge can be found, for instance, in [20]. The

variational equations describe the reactions of the center span and the cable system

to some additional forces which are significantly smaller than the gravitational forces

acting on the bridge.

D half the width of the deck

L the length of the central span

L1 the sag of the main cables

MD the mass of the deck per unit length

IP the polar mass moment of inertia of the deck

MC the mass of the main cable per unit length

ED the modulus of elasticity of the deck

ID the moment of inertia of the deck

GD the shear modulus of the deck

JD the torsional constant of the deck

g the gravitational acceleration

Table 1.

D

u

L1

θ

L

Figure 2. Perspective view of central span.

Let us make a few remarks about the main cables under gravitational forces. The

main cables are assumed to be fixed at their end points which are immovable and
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ideally flexible, so the tension forces in cables are oriented in the tangential direction.

If gravitation is the only force acting on the bridge and the induced forces acting on

the main cables are regularly distributed along the central span, then the shape of

the main cables is a parabola (see [22]). The shape of the main cables reads

(1) y(x) =
4L1x

2

L2
,

where x belongs to (− 1
2L,

1
2L). The horizontal projection H of the tension forces in

the main cable is constant and is given by the formula (see [22])

(2) H =
g(MC + 1

2MD)L2

8L1
.

The formulas (1) and (2) approximate y(x) and H in real situations.

Now we will study the variational equations which were derived in [17]. We will

define a few bilinear forms connected with the formulation of our problems. Let us

have a bilinear form

ac(u, v) =

∫ L/2

−L/2

Ac
du

dx

dv

dx
dx,

where Ac is a function on (− 1
2L,

1
2L) defined by

(3) Ac = H
(
1 +

(dy
dx

)2)
.

The bilinear form is connected with the potential energy of the main cable corre-

sponding to the vertical deflection of the deck from the equilibrium under gravi-

tational forces. The vertical deformation of the deck transfers to the main cable

through the inextensible hangers. If we consider both the vertical and the torsional

deflections of the deck, the potential energy of the main cables reads

ac(u, u) +D2ac(θ, θ),

which was derived in [17]. Let us define other two bilinear forms

aver(u, v) =

∫ L/2

−L/2

EDID
d2u

dx2

d2v

dx2
dx, ator(θ, ϕ) =

∫ L/2

−L/2

GDJD
dθ

dx

dϕ

dx
dx

which are connected with the bending and the torsional deformation energy of the

deck. To simplify our equations for the dynamic problems, we define bilinear forms

(4) mver(u, v) =

∫ L/2

−L/2

Mveruv dx, mtor(θ, ϕ) =

∫ L/2

−L/2

Mtorθϕdx,
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where Mver,Mtor are functions on (− 1
2L,

1
2L) defined by

(5) Mver(x) = 2MC

(
1 +

(dy
dx

)2)1/2
+MD,

Mtor(x) = 2D2MC

(
1 +

(dy
dx

)2)1/2
+ IP .

These bilinear forms correspond to the kinetic energy of the deck and the main

cables.

In this paper we will analyze the aeroelastic forces induced by lateral wind. The

aeroelastic forces per unit length of the deck are given (see [25], [23]) by

(6) Lu = H1u̇+H2θ̇ +H3θ,

Mθ = A1u̇+A2θ̇ +A3θ,

where Lu and Mθ are the aeroelastic vertical lift force and the torsional moment of

the deck per unit length. The coefficients Hi(x, t), Ai(x, t) generally depend on the

shape of the deck and the speed of wind, so we can say that these coefficients are

functions defined on (− 1
2L,

1
2L)× (0, T ). The coefficients are characteristic for every

bridge and the values of these coefficients for the original Tacoma bridge are given,

for instance, in [25]. Let us define the bilinear forms with the parameter t from (0, T )

f1(u̇, v; t) =

∫ L/2

−L/2

H1(x, t)u̇v dx, g1(u̇, ϕ; t) =

∫ L/2

−L/2

A1(x, t)u̇ϕdx,

f2(θ̇, v; t) =

∫ L/2

−L/2

H2(x, t)θ̇v dx, g2(θ̇, ϕ; t) =

∫ L/2

−L/2

A2(x, t)θ̇ϕdx,

f3(θ, v; t) =

∫ L/2

−L/2

H3(x, t)θv dx, g3(θ, ϕ; t) =

∫ L/2

−L/2

A3(x, t)θϕdx

which correspond to the forces given by (6).

The variational equation for the dynamic problems was derived in [17] from the

Hamilton principle and reads

(7) mver(ü, v) +mtor(θ̈, ϕ) + 2ac(u, v) + 2D2ac(θ, ϕ) + aver(u, v) + ator(θ, ϕ)

= f1(u̇, v; t) + f2(θ̇, v; t) + f3(θ, v; t) + g1(u̇, ϕ; t) + g2(θ̇, ϕ; t) + g3(θ, ϕ; t).

The equation holds for all sufficiently smooth functions v(x), ϕ(x) defined on

(− 1
2L,

1
2L). In our models we assume that the central span is hinged at its end

points, so the functions u, θ satisfy the boundary conditions

(8) u(− 1
2L, t) = u(12L, t) = θ(− 1

2L, t) = θ(12L, t) = 0
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which hold for all t from (0, T ). The test functions v, ϕ satisfy the boundary condi-

tions

(9) v(− 1
2L) = v(12L) = ϕ(− 1

2L) = ϕ(12L) = 0.

So far we have not considered the fact that the main cables are inextensible and

fixed at the end points and fastened at the midspan cable bands. To simplify the

formulation of our problems, we define three linear forms

h(u) =

∫ L/2

−L/2

dy

dx

du

dx
dx, hr(u) =

∫ 0

−L/2

dy

dx

du

dx
dx, hl(u) =

∫ L/2

0

dy

dx

du

dx
dx.

If both the main cables are fixed at their end points, then u and θ satisfy the relations

(10) h(u) = h(θ) = 0.

If both the main cables are fixed at the midspan cable bands as well, the relations

(11) hr(u) = hr(θ) = hl(u) = hl(θ) = 0

hold. In the end let us study the case where both main cables are fixed at the

end points and only one main cable is fixed at the midspan cable band. Then the

relations

(12) hr(u−Dθ) = hl(u−Dθ) = h(u+Dθ) = 0

hold. These formulas were derived in [17].

Let u(x, t), θ(x, t) be functions defined on (− 1
2L,

1
2L) × (0, T ). To simplify our

notation, the symbols u(t), θ(t) denote the functions whose values are the functions

defined by u(t)(x) = u(x, t) and θ(t)(x) = θ(x, t). Let us consider the embeddings

(13) H2(− 1
2L,

1
2L) ⊂ L2(− 1

2L,
1
2L), H1(− 1

2L,
1
2L) ⊂ L2(− 1

2L,
1
2L),

then we can define spaces where we are looking for solutions to our problems. Let

us suppose that

u(t) ∈ L2(0, T ;H2(− 1
2L,

1
2L)), u̇(t) ∈ L2(0, T ;L2(− 1

2L,
1
2L)),

θ(t) ∈ L2(0, T ;H1(− 1
2L,

1
2L)), θ̇(t) ∈ L2(0, T ;L2(− 1

2L,
1
2L)),
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where the over dots represent the generalized time derivative and the embeddings (13)

are applied. The test functions v and ϕ in (7) belong respectively to H2(− 1
2L,

1
2L)

and H1(− 1
2L,

1
2L). Moreover, u(t) and θ(t) satisfy the initial conditions

(14) u(0) = u0 ∈ H2(− 1
2L,

1
2L),

θ(0) = θ0 ∈ H1(− 1
2L,

1
2L),

u̇(0) = u1 ∈ L2(− 1
2L,

1
2L),

θ̇(0) = θ1 ∈ L2(− 1
2L,

1
2L).

If we talk about solutions to the variational equation (7), we have in mind that

this equation holds in the generalized sense with respect to t, which means that the

equality ∫ T

0

M(t)ξ̈(t) +A(t)ξ(t) dt =

∫ T

0

F (t)ξ(t) dt

holds for all ξ(t) ∈ C∞
0 (0, T ) which is the space of smooth functions on (0, T ) with

compact support, where

M(t) = mver(u(t), v) +mtor(θ(t), ϕ),

A(t) = 2ac(u(t), v) + 2D2ac(θ(t), ϕ) + aver(u(t), v) + ator(θ(t), ϕ),

F (t) = f1(u̇(t), v; t) + f2(θ̇(t), v; t) + f3(θ(t), v; t)

+ g1(u̇(t), ϕ; t) + g2(θ̇(t), ϕ; t) + g3(θ(t), ϕ; t).

Now we will formulate three dynamic problems connected with the way how the

main cables are fixed, which puts some restrictions on solutions and initial condi-

tions. The first dynamic problem D1 describes oscillations of the center span if the

main cables are fixed at the end points. The second dynamic problem D2 describes

oscillations of the center span if the main cables are fixed at the end points and

the midspan bands. The third dynamic problem D3 describes oscillations of the

center span if the main cables are fixed at the end points, one midspan band holds

and the other loosens. Let us define spaces W1, W2, W3, which are subspaces of

H2(− 1
2L,

1
2L)×H1(− 1

2L,
1
2L), as follows:

W1 = {(v, ϕ) : h(v) = h(ϕ) = 0},

W1 = {(v, ϕ) : hr(v) = hr(ϕ) = hl(v) = hl(ϕ) = 0},

W1 = {(v, ϕ) : hr(v −Dϕ) = hl(v −Dϕ) = h(v +Dϕ) = 0}.

The subspaces V1, V2, V3 are the closures of W1, W2, W3 in L2(− 1
2L,

1
2L) ×

L2(− 1
2L,

1
2L).

Functions u(t), θ(t) are a solution to D1 if they satisfy the relations

h(u(t)) = h(θ(t)) = 0
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for all t, the boundary conditions (8), and the variational equation (7). The varia-

tional equation (7) holds for all v, ϕ which satisfy the relations

h(v) = h(ϕ) = 0

and the boundary conditions (9). The initial conditions (14) are compatible with D1,

which means that (u0, θ0) ∈ W1 and (u1, θ1) ∈ V1. Moreover, u0, θ0 satisfy the

boundary conditions (9).

The functions u(t), θ(t) are a solution to the dynamic problem D2 if they satisfy

the relations

hr(u(t)) = hr(θ(t)) = hl(u(t)) = hl(θ(t)) = 0

for all t, the boundary conditions (8), and the variational equation (7). The varia-

tional equation (7) holds for all v, ϕ which satisfy the relations

hr(v) = hr(ϕ) = hl(v) = hl(ϕ) = 0

and the boundary conditions (9). The initial conditions (14) are compatible with

D2, which means that (u0, θ0) ∈ W2 and (u1, θ1) ∈ V2. Moreover, u0, θ0 satisfy the

boundary conditions (9).

The functions u(t), θ(t) are a solution to the third dynamic problem D3 if they

satisfy the relations

hr(u(t)−Dθ(t)) = hl(u(t)−Dθ(t)) = h(u(t) +Dθ(t)) = 0

for all t, the boundary conditions (8), and the variational equation (7). The varia-

tional equation (7) holds for all v, ϕ which satisfy the relations

hr(v −Dϕ) = hl(v −Dϕ) = h(v +Dϕ) = 0

and the boundary conditions (9). The initial conditions (14) are compatible with

D3, which means that (u0, θ0) ∈ W3 and (u1, θ1) ∈ V3. Moreover, u0, θ0 satisfy the

boundary conditions (9).

Now we are going to formulate two main theorems whose proofs will be given in

Section 4. The coefficients MC ,MD, IP , ID, JD, ED, GD, H are positive.

Theorem 2.1. Let y belong to C1([− 1
2L,

1
2L]) and let the initial conditions be

compatible with D1, D2, D3. Let H1, H2, A1, A2 belong to C
1([− 1

2L,
1
2L]×[0, T ]) and

H3, A3 belong to C([− 1
2L,

1
2L] ×[0, T ]). Then the problems D1, D2, D3 are uniquely

solvable.
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Let us study the continuous dependence on the forces acting on the deck and the

initial conditions. In the rest of this paper the superscripts n are connected with

the continuous dependence on the data while the subscripts 0, 1, 2, 3 describe the

concrete components of forces or initial conditions, which one can see in the text.

Let Hn
1 , H

n
2 , A

n
1 , A

n
2 , n = 0, 1, 2, . . . belong to C1([− 1

2L,
1
2L]× [0, T ]) and Hn

3 , A
n
3

belong to C([− 1
2L,

1
2L]× [0, T ]). Moreover, assume that

(15) Hn
1 , H

n
2 , H

n
3 , A

n
1 , A

n
2 , A

n
3 → H0

1 , H
0
2 , H

0
3 , A

0
1, A

0
2, A

0
3 in C([− 1

2L,
1
2L]× [0, T ])

as n → ∞. Let un
0 and θ

n
0 , n = 0, 1, 2, . . . belong to H2(− 1

2L,
1
2L) and H

1(− 1
2L,

1
2L),

satisfy the boundary conditions (9) and un
1 , θ

n
1 , i = 0, 1, 2, . . . belong to L2(− 1

2L,
1
2L).

Moreover, assume that

(16) un
0 → u0

0 in H2(− 1
2L,

1
2L), θn0 → θ00 in H1(− 1

2L,
1
2L),

un
1 → u0

1 in L2(− 1
2L,

1
2L), θn1 → θ01 in L2(− 1

2L,
1
2L)

as n → ∞. Let us study the sequence of solutions un, θn which correspond to the

forces and the initial conditions. Then the following theorem holds.

Theorem 2.2. Let y belong to C1([− 1
2L,

1
2L]). Let H

n
1 , H

n
2 , A

n
1 , A

n
2 belong to

C1([− 1
2L,

1
2L] ×[0, T ]), Hn

3 , A
n
3 belong to C([− 1

2L,
1
2L] ×[0, T ]) and satisfy (15). Let

the initial conditions un
0 , θ

n
0 , u

n
1 , θ

n
1 be compatible with D1, D2, D3 and satisfy (16).

Then the solutions un, θn satisfy the limits

un → u0 in L2(0, T ;H2(− 1
2L,

1
2L)), u̇n → u̇0 in L2(0, T ;L2(− 1

2L,
1
2L)),

θn → θ0 in L2(0, T ;H1(− 1
2L,

1
2L)), θ̇n → θ̇0 in L2(0, T ;L2(− 1

2L,
1
2L))

as n → ∞.

Let us close this section with a few remarks. From the relations (10)–(11) it follows

that the variational equation (7) for the problems D1,D2 can be rewritten into the

two variational equations

(17) mver(ü, v) + 2ac(u, v) + aver(u, v) = f1(u̇, v; t) + f2(θ̇, v; t) + f3(θ, v; t),

mtor(θ̈, ϕ) + 2D2ac(θ, ϕ) + ator(θ, ϕ) = g1(u̇, ϕ; t) + g2(θ̇, ϕ; t) + g3(θ, ϕ; t).

The problemD3 cannot admit such a reformulation, because the relations (12) cannot

be rewritten in an equivalent form so that the new relations would contain either

u or θ. Moreover, it is not possible to rewrite the variational equations (7) and

(17) into partial differential equations, because the test functions v, ϕ satisfy the

restrictions (10)–(12).
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3. Some auxiliary abstract results

In this section we prove some auxiliary assertions which we apply in the proof of

the uniqueness, existence, and continuous dependence on data for the three problems

formulated in Section 2. Let us recall some facts whose proofs we can find, for

instance, in [27], [9], [11]. Let V be a real Banach space, then L2(0, T ;V ) is the

space of all measurable functions from the real interval (0, T ) to V which satisfy

∫ T

0

‖u(t)‖2V dt < ∞.

Let u ∈ L2(0, T ;V ) have the generalized derivative u̇ ∈ L2(0, T ;V ). Then u ∈

C([0, T ];V ) and the inequality

(18) ‖u‖C([0,T ];V ) 6 C(‖u‖L2(0,T ;V ) + ‖u̇‖L2(0,T ;V ))

holds, where the constant C is independent of u. If u ∈ L2(0, T ;V ) then the functions

w(t) and v(t) defined by

(19) w(t) =

∫ t

0

u(s) ds, v(t) =

∫ T

t

u(s) ds

belong to C([0, T ];V ) and their generalized derivatives are u(t) and −u(t), respec-

tively. Let V , H be separable Hilbert spaces with the embedding V ⊂ H which is

continuous, i.e.

‖u‖H 6 C‖u‖V

for all u ∈ V . Moreover, V is dense in H . Let WV and WH be the Banach space of

continuous bilinear forms on V and H with the norms

‖a(·, ·)‖WV
= sup

u,v 6=0;u,v∈V

|a(u, v)|

‖u‖V ‖v‖V
, ‖m(·, ·)‖WH

= sup
u,v 6=0;u,v∈H

|m(u, v)|

‖u‖H‖v‖H
.

In this section for brevity we set

|u| = ‖u‖H, ‖v‖ = ‖v‖V .

Let m(·, ·), a(·, ·) be continuous symmetric bilinear forms on H and V which satisfy

the inequalities

(20) α|u|2 6 m(u, u), α‖v‖2 6 a(v, v),
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where α is a positive constant and the inequalities hold for all u ∈ H and v ∈ V . In

the sequel we frequently use the triple

V ⊂ H ⊂ V ∗,

where the embedding H ⊂ V ∗ is given by

〈u, v〉V = m(u, v).

In the last formula u ∈ H and v ∈ V . Moreover, we say that V is embedded in V ∗

via m(·, ·).

Let b(·, ·; t), c(·, ·; t) be a continuous bilinear form on H with the parameter t ∈

[0, T ] and

(21) b(·, ·; t) ∈ C1([0, T ];WH), c(·, ·; t) ∈ C([0, T ];WH).

We study the initial value problem

d2

dt2
m(u(t), v) + a(u(t), v) = b(u̇(t), v; t) + c(u(t), v; t),(22)

u(0) = u0 ∈ V, u̇(0) = u1 ∈ H,(23)

u ∈ L2(0, T ;V ), u̇ ∈ L2(0, T ;H).(24)

The equation (22) is valid for all v ∈ V in the generalized sense, which means that

the equality

∫ T

0

m(u(t), v)ϕ̈(t) + (a(u(t), v)− b(u̇(t), v; t) − c(u(t), v; t))ϕ(t) dt = 0

holds for all ϕ ∈ C∞
0 (0, T ) which is the space of smooth functions on (0, T ) with

compact support. Moreover, the relations (20) and (21) hold.

Lemma 3.1. Let the equation (22) be satisfied, then there exists ü ∈ L2(0, T ;V ∗),

where V is embedded in V ∗ via m(·, ·), such that the equality

(25)

∫ T

0

〈ü(t), v〉V ϕ(t) dt =

∫ T

0

m(u(t), v)ϕ̈(t) dt

holds for all v ∈ V and ϕ ∈ C∞
0 (0, T ). Moreover, there exists N ⊂ (0, T ) of measure

zero such that the equality

(26) 〈ü(t), v〉V + a(u(t), v) = b(u̇(t), v; t) + c(u(t), v; t)

holds for all v ∈ V and t ∈ (0, T ) \N .
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P r o o f. Let us consider the expression

∫ T

0

b(u̇(t), v(t); t) + c(u(t), v(t); t) − a(u(t), v(t)) dt,

where v(t) ∈ L2(0, T ;V ). This expression is a linear continuous functional on

L2(0, T ;V ), which yields the existence of w(t) ∈ L2(0, T ;V ∗) such that the equality

∫ T

0

〈w(t), v(t)〉V dt =

∫ T

0

b(u̇(t), v(t); t) + c(u(t), v(t); t) − a(u(t), v(t)) dt

holds for all v(t) ∈ L2(0, T ;V ). Comparing the last equation with (22), we obtain

that the equality

∫ T

0

〈w(t), v〉V ϕ(t) dt =

∫ T

0

m(u(t), v)ϕ̈(t) dt

holds for all v ∈ V and ϕ ∈ C∞
0 (0, T ), which yields w(t) = ü(t), and the equation

∫ T

0

(〈ü(t), v〉V + a(u(t), v)− b(u̇(t), v; t)− c(u(t), v; t))ϕ(t) dt = 0

holds for all v ∈ V and ϕ ∈ C∞
0 (0, T ). Let vn be a dense sequence in V , then the

last equation yields that there exists a set N of measure zero such that (26) holds

for all vn and t ∈ (0, T ) \N . Thus (26) holds for all v ∈ V and t ∈ (0, T ) \N . �

The last lemma and (18) implies that u ∈ C([0, T ];H) and u̇ ∈ C([0, T ];V ∗), thus

the initial conditions (23) make sense.

Lemma 3.2 (Uniqueness). A solution to (22)–(24) is unique.

P r o o f. It suffices to show that the only solution with u0 = u1 = 0 is u = 0.

Let us define

v(t) =

∫ s

t

u(τ) dτ

on the interval (0, s) where t 6 s 6 T and v(t) = 0 on the interval (s, T ). Then from

(19) it follows that v ∈ C([0, T ];V ) and v̇(t) = −u(t) on (0, s) in the generalized

sense. Lemma 3.1 yields the equation

(27)

∫ s

0

〈ü, v〉V + a(u, v)− b(u̇, v; t)− c(u, v; t) dt = 0.
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Assume that u ∈ C2([0, T ];V ) is an arbitrary function. Since m(·, ·) is symmetric

and v(s) = 0, the relations

∫ s

0

〈ü, v〉V dt =

∫ s

0

m(ü, v) dt =

∫ s

0

m(u̇, u) dt− 〈u̇(0), v(0)〉V

=
1

2

∫ s

0

d

dt
m(u(t), u(t)) dt− 〈u̇(0), v(0)〉V

=
1

2
m(u(s), u(s))−

1

2
m(u(0), u(0))− 〈u̇(0), v(0)〉V

hold. Denoting

bt(u, v; t) =
∂

∂t
b(u, v; t),

we have the relation

∫ s

0

b(u̇, v; t) dt =

∫ s

0

b(u, u; t)− bt(u, v; t) dt− b(u(0), v(0); 0).

Since a(·, ·) is symmetric, the relations

∫ s

0

a(u(t), v(t)) dt = −

∫ s

0

a(v̇(t), v(t)) dt

= −
1

2

∫ s

0

d

dt
a(v(t), v(t)) dt =

1

2
a(v(0), v(0))

hold. Let u ∈ L2(0, T ;V ), u̇ ∈ L2(0, T ;H), ü ∈ L2(0, T ;V ∗), then there exists

a sequence un ∈ C2([0, T ];V ) (see [24], [9], mollifier technique) such that un, u̇n, ün

converge to u, u̇, ü in the spaces L2(0, T ;V ), L2(0, T ;H), L2(0, T ;V ∗). From (18) and

(19) it follows that un, u̇n converge to u, u̇ in the spaces C([0, T ];H), C([0, T ];V ∗)

and vn converges to v in the space C([0, T ];V ), where

vn(t) =

∫ s

t

un(τ) dτ

on the interval (0, s) and vn(t) = 0 on the interval (s, T ). These facts and the

relations above yield the equations

∫ s

0

〈ü, v〉V dt =
1

2
m(u(s), u(s)),

∫ s

0

a(u, v) dt =
1

2
a(v(0), v(0)),

∫ s

0

b(u̇, v; t) dt =

∫ s

0

b(u, u; t)− bt(u, v; t) dt,
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where u is the solution. We have applied u(0) = u̇(0) = 0. The last relations and

(27) imply the equation

1

2
m(u(s), u(s)) +

1

2
a(v(0), v(0)) =

∫ s

0

b(u, u; t)− bt(u, v; t) + c(u, v; t) dt

which gives the inequality

|u(s)|2 + ‖v(0)‖2 6 C

(∫ s

0

|u(t)|2 + ‖v(t)‖2 dt

)
.

Let us define

w(t) =

∫ t

0

u(τ) dτ, 0 6 t 6 s,

then v(t) = w(s)− w(t) and the last inequality can be rewritten into

|u(s)|2 + ‖w(s)‖2 < C

(∫ s

0

|u(t)|2 + ‖w(s)− w(t)‖2 dt

)
.

Let us consider the inequality

‖w(t) − w(s)‖2 6 2‖w(t)‖2 + 2‖w(s)‖2,

then the last inequality yields

|u(s)|2 + ‖w(s)‖2 6 C

(∫ s

0

|u(t)|2 + ‖w(t)‖2 dt+ s‖w(s)‖2
)
.

If s satisfies the relation Cs 6 1
2 , then on the interval (0, S), where CS 6 1

2 , the

inequality

|u(s)|2 + ‖w(s)‖2 6 C

∫ s

0

|u(t)|2 + ‖w(t)‖2 dt

holds. Then Gronwall’s inequality yields u(t) = w(t) = 0 on the interval (0, S). Ap-

plying the same argument for the intervals (S, 2S), (2S, 3S), . . ., we have the desired

result. �
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Lemma 3.3 (Existence). There exists a solution to (22)–(24) and the inequality

(28) ‖u‖L2(0,T ;V ) + ‖u̇‖L2(0,T ;H) 6 C(‖u0‖+ |u1|)

holds.

P r o o f. Let wk be a sequence of linearly independent elements of V such that

the linear span of this sequence is dense in V , so it is dense in H as well. Let us

consider

(29) um(t) =

m∑

k=1

dkm(t)wk,

where dkm(t), k = 1, . . . ,m, are real functions from C2([0, T ]) such that

(30) um(0) → u0 in V, u̇m(0) → u1 in H

as m → ∞. Moreover, these functions are solutions to the system of ordinary

differential equations

m(üm(t), wk) + a(um(t), wk) = b(u̇m(t), wk; t) + c(um(t), wk; t),

where k = 1, . . . ,m, t ∈ [0, T ]. The last equations yield

(31) m(üm, u̇m) + a(um, u̇m) = b(u̇m, u̇m; t) + c(um, u̇m; t).

From the symmetry of m(·, ·), a(·, ·) we obtain

m(üm, u̇m) =
1

2

d

dt
m(u̇m, u̇m), a(um, u̇m) =

1

2

d

dt
a(um, um).

The last formulas and (31) give

1

2
m(u̇m(s), u̇m(s)) +

1

2
a(um(s), um(s)) =

1

2
m(u̇m(0), u̇m(0)) +

1

2
a(um(0), um(0))

+

∫ s

0

b(u̇m(t), u̇m(t); t) + c(um(t), u̇m(t); t) dt.

The last equality, (30), and Gronwall’s inequality give the inequality

(32) |u̇m(s)|+ ‖um(s)‖ 6 C(‖u0‖+ |u1|),
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where s ∈ [0, T ] and the constant C is independent of m. The inequality (32) shows

that um, u̇m, m = 1, 2, . . . , are bounded in L2(0, T ;V ), L2(0, T ;H). Thus there exist

subsequences denoted by um, u̇m again such that

um ⇀ u in L2(0, T ;V ), u̇ ⇀ u̇ in L2(0, T ;H)

as m → ∞. The symbol ⇀ denotes the weak convergence. The last limits yield

that u is a solution to (22) and the relations (24) are fulfilled. Moreover, (32) gives

the inequality (28). It remains to prove the initial conditions (23). Let us consider

v(t) = wkϕ(t), where wk is an arbitrary element from the sequence defined at the

beginning of the proof and ϕ(t) is a smooth function which satisfies ϕ(T ) = ϕ̇(T ) = 0.

If we follow the ideas in the proof of Lemma 3.2, then (26) yields the equality

∫ T

0

m(u(t), wk)ϕ̈(t) + (a(u(t), wk)− b(u̇(t), wk; t)− c(u(t), wk; t))ϕ(t) dt

= m(u(0), wk)ϕ̇(0)− 〈u̇(0), wk〉V ϕ(0).

Moreover, for all m > k the equalities

∫ T

0

m(um(t), wk)ϕ̈(t) + (a(um(t), wk)− b(u̇m(t), wk; t)− c(um(t), wk; t))ϕ(t) dt

= m(um(0), wk)ϕ̇(0)−m(u̇m(0), wk)ϕ(0)

hold. Then the last two equalities and (30) yield

m(u(0), wk)ϕ̇(0)− 〈u̇(0), wk〉V ϕ(0) = m(u0, wk)ϕ̇(0)−m(u1, wk)ϕ(0).

Since ϕ̇(0), ϕ(0), and k are arbitrary, the initial conditions (23) are satisfied. �

Let bn(·, ·; t), cn(·, ·; t), n = 0, 1, . . . , belong to C1([0, T ];WH), C([0, T ];WH) and

(33) bn(·, ·; t) → b0(·, ·; t), cn(·, ·; t) → c0(·, ·; t) in C([0, T ];WH)

as n → ∞. Let un
0 , u

n
1 , n = 0, 1, . . . , belong to V and H and

(34) un
0 → u0

0 in V, un
1 → u0

1 in H

as n → ∞. We study the sequence of the initial value problems

d2

dt2
m(un(t), v) + a(un(t), v) = bn(u̇n(t), v; t) + cn(un(t), v; t),(35)

un(0) = un
0 , u̇n(0) = un

1 ,(36)

un ∈ L2(0, T ;V ), u̇n ∈ L2(0, T ;H),(37)

where (35) holds for all v ∈ V and these equations are satisfied in the generalized

sense.
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Lemma 3.4 (Continuous dependence). Let m(·, ·), a(·, ·) be continuous symmet-

ric bilinear forms on H and V satisfying (20). Let un
0 , u

n
1 , n = 0, 1, . . ., satisfy

the limits (34) and bn(·, ·; t), cn(·, ·; t) from C1([0, T ];WH), C([0, T ];WH) satisfy the

limits (33). If un are solutions to (35)–(37), then

un → u0 in L2(0, T ;V ), u̇n → u̇0 in L2(0, T ;H)

as n → ∞.

P r o o f. Let wk, k = 1, 2, . . . , be the same sequence as in the proof of Lemma 3.3

and un
m(t) are the approximations of solutions to the n-th problem (35)–(37), then

we have

(38) m(ün
m(t), wk) + a(un

m(t), wk) = bn(u̇n
m(t), wk; t) + cn(un

m(t), wk; t),

where k = 1, . . . ,m and t ∈ [0, T ]. If we follow the proof of Lemma 3.4 and consider

the limits (34), we have the inequality

(39) |u̇n
m(t)|+ ‖un

m(t)‖ 6 C(‖u0‖+ |u1|),

where t ∈ [0, T ] and C is a constant independent of n and m. The equations (38)

yield the equations

(40) m(ün
m(t)− ü0

m(t), u̇n
m(t)− u̇0

m(t)) + a(un
m(t)− u0

m(t), u̇n
m(t)− u̇0

m(t))

= A1(t) +A2(t) +A3(t),

where

A1(t) = b0(u̇n
m(t)− u̇0

m(t), u̇n
m(t)− u̇0

m(t)) + c0(un
m(t)− u0

m(t), u̇n
m(t)− u̇0

m(t)),

A2(t) = bn(u̇n
m(t), u̇n

m(t)− u̇0
m(t))− b0(u̇n

m(t), u̇n
m(t)− u̇0

m(t)),

A3(t) = cn(un
m(t), u̇n

m(t)− u̇0
m(t))− c0(un

m(t), u̇n
m(t)− u̇0

m(t)).

The equations (40) can be rewritten into

1

2
m(u̇n

m(s)− u̇0
m(s), u̇n

m(s)− u̇0
m(s)) +

1

2
a(un

m(s)− u0
m(s), un

m(s)− u0
m(s))

=
1

2
m(u̇n

m(0)− u̇0
m(0), u̇n

m(0)− u̇0
m(0)) +

1

2
a(un

m(0)− u0
m(0), un

m(0)− u0
m(0))

+

∫ s

0

A1(t) +A2(t) +A3(t) dt,
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where s ∈ [0, T ]. Then the inequality (39), Gronwall’s inequality, and the shapes of

A1(t), A2(t), A3(t) imply the inequality

|u̇n
m(s)− u̇0

m(s)|2 + ‖un
m(s)− u0

m(s)‖2

6 C(‖un
0 − u0

0‖
2 + |un

1 − u0
1|

2 + ‖bn(·, ·; t)− b0(·, ·; t)‖C([0,T ];WH)

+ ‖cn(·, ·; t)− c0(·, ·; t)‖C([0,T ];WH)),

where C is independent of n and m, from which the assertion of this lemma follows.

�

Let di(·), i = 1, . . . , k, be a linear continuous functional on V . Let us define the

subspace V̂ ⊂ V as follows:

V̂ = {u : di(u) = 0, i = 1, . . . , k}.

The subspace Ĥ ⊂ H is the closure of V̂ in H . We say that the initial conditions

u0 ∈ V , u1 ∈ H are compatible with di(·), i = 1, . . . , k, if u0 ∈ V̂ and u1 ∈ Ĥ .

Let un
0 , u

n
1 , n = 0, 1, . . . , belong to V and H and let

(41) un
0 → u0

0 in V, un
1 → u0

1 in H

as n → ∞. We study the problems

d2

dt2
m(un(t), v) + a(un(t)v) = bn(u̇n(t), v) + cn(un(t), v),(42)

un(0) = un
0 ∈ V, u̇n(0) = un

1 ∈ H,(43)

un ∈ L2(0, T ;V ), u̇n ∈ L2(0, T ;H),(44)

di(u
n(t)) = 0, i = 1, . . . , k,(45)

where un
0 , u

n
1 are compatible with di(·), i = 1, . . . , k, the equations (42) are fulfilled

in the generalized sense for all v satisfying di(v) = 0, i = 1, . . . , k, and the relations

(45) are satisfied almost everywhere on (0, T ).

Theorem 3.1. Letm(·, ·), a(·, ·) be symmetric continuous bilinear forms onH and

V satisfying (20). Let bn(·, ·; t), cn(·, ·; t) belong to C1([0, T ];WH) and C([0, T ];WH)

and satisfy the limits (33). Let the initial conditions un
0 , u

n
1 satisfy the limits (41)

and be compatible with di(·), i = 1, . . . , k. Then the problems (42)–(45) are uniquely

solvable and

un → u0 in L2(0, T ;V ), u̇n → u̇0 in L2(0, T ;H)

as n → ∞.
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P r o o f. The subspaces V̂ and Ĥ were defined above. Let Ĥ⊥ be the orthogonal

complement of Ĥ in H . Let u ∈ L2(0, T ;V ) and u̇ ∈ L2(0, T ;H), then for all v ∈ H

and ϕ ∈ C∞
0 (0, T ) the formula

∫ T

0

(u̇, v)Hϕdt =

∫ T

0

(u, v)H ϕ̇dt

holds. Moreover, u(t) ∈ V̂ for almost all t ∈ (0, T ) and thus for every w ∈ Ĥ⊥ the

equality ∫ T

0

(u̇, w)Hϕdt = 0

holds. This yields that u̇(t) ∈ Ĥ for almost every t ∈ (0, T ). Applying Lem-

mas 3.2–3.4 and substituting in these lemmas the spaces V , H for the spaces V̂ , Ĥ ,

we have the assertion of this theorem. �

4. Proofs of main theorems

In this section we apply the abstract results from Section 3 to prove the theorems

formulated in Section 2, which includes the existence, uniqueness, and continuous

dependence on data for the problems D1, D2, and D3. To apply the abstract re-

sults from Section 3, let us define some auxiliary spaces, bilinear forms and linear

functionals. The Hilbert space V is the subspace of H2(− 1
2L,

1
2L) ×H1(− 1

2L,
1
2L),

where (u, θ) belongs to V if the functions u, θ satisfy the boundary conditions (9).

The Hilbert space H is the space L2(− 1
2L,

1
2L) × L2(− 1

2L,
1
2L). The spaces V , H

are equipped with scalar products

((u, θ), (v, ϕ))V = (u, v)H2(−L/2,L/2) + (θ, ϕ)H1(−L/2,L/2),

((u, θ), (v, ϕ))H = (u, v)L2(−L/2,L/2) + (θ, ϕ)L2(−L/2,L/2).

Let us define a bilinear form on V

a((u, θ), (v, ϕ)) = 2ac(u, v) + 2D2ac(θ, ϕ) + aver(u, v) + ator(θ, ϕ)

and a bilinear form on H

m((u, θ), (v, ϕ)) = mver(u, v) +mtor(θ, ϕ).

Let us define other bilinear forms on H with the parameter t

b((u̇, θ̇), (v, ϕ); t) = f1(u̇, v; t) + f2(θ̇, v; t) + g1(u̇, ϕ; t) + g2(θ̇, ϕ; t),

c((u, θ), (v, ϕ); t) = f3(θ, v; t) + g3(θ, ϕ; t),
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where fi(·, ·, t) and gi(·, ·, t) are defined in Section 2 and correspond to the functions

Hi(x, t) and Ai(x, t), i = 1, 2, 3.

Lemma 4.1. Let y belong to C1([− 1
2L,

1
2L]), H1, H2, A1, A2 belong to

C1([− 1
2L,

1
2L] × [0, T ]) and H3, A3 belong to C([− 1

2L,
1
2L] × [0, T ]). Then b(·, ·; t)

and c(·, ·; t) belong to C1([0, T ];WH) and C([0, T ];WH). The space WH is defined

in Section 3. Moreover, there exists a positive number α such that the inequalities

(46) α‖u‖2H 6 m(u, u), α‖v‖2V 6 a(v, v)

hold for all u ∈ H and v ∈ V .

P r o o f. The definition of f1(·, ·; t) yields the inequality

|f1(u, v : t1)− f1(u, v : t2)|

6 ‖H1(t1, ·)−H1(t2, ·)‖C([−L/2,L/2])‖u‖L2(−L/2,L/2)‖v‖L2(−L/2,L/2)

which holds for all u, v from L2(− 1
2L,

1
2L). We can prove similar inequalities for all

fi(·, ·; t), gi(·, ·; t), i = 1, 2, 3. If we consider the definitions of b(·, ·; t), c(·, ·; t), and

WH , then we see that b(·, ·; t) and c(·, ·; t) belong to C([0, T ];WH).

The definition of f1(·, ·; t) yields the equality

∂

∂t
f1(u, v; t) =

∫ L/2

−L/2

∂

∂t
H1(x, t)uv dx

which holds for all u, v from L2(− 1
2L,

1
2L). The last equality yields the inequality

∣∣∣ ∂
∂t

f1(u, v; t1)−
∂

∂t
f1(u, v; t2)

∣∣∣

6

∥∥∥ ∂

∂t
H1(t1, ·)−

∂

∂t
H1(t2, ·)

∥∥∥
C([−L/2,L/2])

‖u‖L2(−L/2,L/2)‖v‖L2(−L/2,L/2)

which holds for all u, v from L2(− 1
2L,

1
2L). We can prove similar inequalities for

all fi(·, ·; t), gi(·, ·; t), i = 1, 2, which yields that b(·, ·; t) belongs to C1([0, T ];WH).

The first inequality in (46) is obvious. To prove the other inequality in (46), it is

necessary to find a positive number β such that the inequalities

(47) β‖u‖2H2(−L/2,L/2) 6

∥∥∥d
2u

dx2

∥∥∥
2

L2(−L/2,L/2)
,

β‖v‖2H1(−L/2,L/2) 6

∥∥∥dv
dx

∥∥∥
2

L2(−L/2,L/2)
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hold for all u and v from H2(− 1
2L,

1
2L) and H1(− 1

2L,
1
2L) which satisfy the bound-

ary conditions (9). Let us prove the first inequality by contradiction. Then

there exist sequences βn and un ∈ H2(− 1
2L,

1
2L) such that βn → 0 as n → ∞,

‖un‖
2
H2(−L/2,L/2) = 1 and the inequalities

βn‖un‖
2
H2(−L/2,L/2) >

∥∥∥d
2un

dx2

∥∥∥
2

L2(−L/2,L/2)

hold. This yields

d2un

dx2
→ 0 in L2(− 1

2L,
1
2L)

as n → ∞. From Rellich’s theorem it follows that there exists a convergent subse-

quence un in H
2(− 1

2L,
1
2L) whose limit is w. The norm of w in H

2(− 1
2L,

1
2L) is 1, w

satisfies the boundary conditions (9), and the second derivative of w vanishes, which

yields that w is a linear polynomial. Since w satisfies the boundary conditions (9), it

vanishes, which is a contradiction. The remaining inequality in (47) can be proved

in a similar way. �

Lemma 4.2. Let the limits

Hn
1 , H

n
2 , H

n
3 , A

n
1 , A

n
2 , A

n
3 → H0

1 , H
0
2 , H

0
3 , A

0
1, A

0
2, A

0
3 in C([− 1

2L,
1
2L]× [0, T ])

hold as n → ∞. Then we have

bn(·, ·; t) → b0(·, ·; t) in C([0, T ];WH),

cn(·, ·; t) → c0(·, ·; t) in C([0, T ];WH),

as n → ∞.

P r o o f. Lemma 4.1 implies that bn(·, ·; t) and cn(·, ·; t) belong to C([0, T ];WH).

The definitions yield the inequality

sup
t∈[0,T ]

|cn(u, v; t)− c0(u, v; t)| 6 C(‖Hn
3 −H0

3‖C([−L/2,L/2]×[0,T ])

+ ‖An
3 −A0

3‖C([−L/2,L/2]×[0,T ]))‖u‖H‖v‖H

which holds for all u, v from H , where C is a constant independent of u, v, Hn
3 , A

n
3 .

A similar inequality holds for bn(·, ·; t). �
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Let us study the questions connected with the way the main cables are fixed and

deal with the problems D1, D2, D3 separately. Let us start with D1, and define linear

functionals on V

(48) d1((u, θ)) = h(u), d2((u, θ)) = h(θ).

Let us continue with D2 and define linear functionals

(49) d1((u, θ)) = hl(u), d2((u, θ)) = hr(u), d3((u, θ)) = hl(θ), d4((u, θ)) = hr(θ).

Let us finish with D3 and define the functionals

(50) d1((u, θ)) = hl(u−Dθ), d2((u, θ)) = hr(u −Dθ), d3((u, θ)) = h(u+Dθ).

If we consider that the linear forms di(·) in in Theorem 3.1 are defined by (48), (49),

(50), which correspond to D1, D2, D3, then Theorem 2.1 immediately follows from

Lemma 4.1 and Theorem 3.1 and Theorem 2.2 immediately follows from Lemmas 4.1–

4.2 and Theorem 3.1.

5. Conclusion

The original Tacoma bridge exhibited relatively small vertical oscillations since the

time it was opened. The bridge was stable with respect to torsional oscillations until

one midspan cable band loosened. This led to torsional oscillations which lasted for

approximately one hour and then the deck broke. The problems formulated in this

paper describe motions of the center span and main cables under time dependent

forces created by lateral winds. The problems describe deflections of the center span

from the steady state equilibrium under the gravitational forces acting on the center

span and main cables. The evolution variational equations were formulated and

analyzed. These equations describe the behavior of the center span and the main

cables in three different situations: both main cables have the fastened midspan cable

bands, only one cable has the fastened midspan cable band, and the main cables have

no fastened midspan cable bands. The problems were analyzed and the existence,

uniqueness and continuous dependence on data were proved.
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