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KYBER NET IKA — VOLUM E 5 1 ( 2 0 1 5 ) , NUMBE R 5 , P AGES 7 8 4 – 7 9 9

SYNCHRONIZATION OF TWO COUPLED HINDMARSH–
ROSE NEURONS

Ke Ding and Qing-Long Han

This paper is concerned with synchronization of two coupled Hind-marsh-Rose (HR) neu-
rons. Two synchronization criteria are derived by using nonlinear feedback control and linear
feedback control, respectively. A synchronization criterion for FitzHugh–Nagumo (FHN) neu-
rons is derived as the application of control method of this paper. Compared with some existing
synchronization results for chaotic systems, the contribution of this paper is that feedback gains
are only dependent on system parameters, rather than dependent on the norm bounds of state
variables of uncontrolled and controlled HR neurons. The effectiveness of our results are demon-
strated by two simulation examples.
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1. INTRODUCTION

Since Pecora and Carroll (1990) [19] studied synchronization of chaotic systems, chaotic
synchronization has been widely used in the secure communication, oscillator networks
and neural networks during the last 20 years, see for example, [2, 3, 4, 11, 12, 13, 14,
15, 16, 17, 20, 22, 23, 24, 25, 27, 28, 29, 30].

Some models for bursting behaviors, repetitive and patterned activities of mollus-
can neurones can be mathematically represented as the Hindmarsh–Rose (HR) model
[1, 5, 6, 7, 27]. Synchronization of coupled HR neurons has played a key role in the neu-
ronal information processing and communication within the brain area [2, 7, 21, 26, 27].
Some papers have studied how HR neurons can achieve synchronization. Hrg (2013) [8]
investigated synchronization of two HR neurons, but the couplings between two neurons
were unidirectional. Kuntanapreeda [10] studied synchronization of two unified chaotic
systems in which the control method can be applied to studying the master-slave syn-
chronization of HR neurons. Nguyen and Hong [18] investigated synchronization of
chaotic FitzHugh–Nagumo neurons which were the special cases of HR neurons. In
[10, 18], the norm bounds of state variables of both controlled and uncontrolled chaotic
systems were used to derive synchronization criteria. However, it is difficult or impossi-
ble to estimate the norm bounds of state variables of two coupled HR neurons (controlled
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and uncontrolled HR neurons). Thus, how to avoid to use the norm bounds of state
variables of controlled and uncontrolled neurons to achieve global synchronization for
two coupled HR neurons is the motivation of this paper.

In this paper, we will use the nonlinear feedback control and linear feedback con-
trol to achieve synchronization for two coupled HR neurons, respectively. The main
contribution of this paper is that the feedback gains are dependent on the system pa-
rameters, rather than the norm bounds of state variables of uncontrolled and controlled
HR neurons. As the application of the control method, a synchronization criterion is
derived for FHN neurons. Two examples will be used to reveal the effectiveness of our
synchronization results.

2. PROBLEM STATEMENT

Consider the following HR neuron model described by
ẏ1(t) = ay2

1(t)− y3
1(t) + y2(t)− y3(t) + I,

ẏ2(t) = 1 + by2
1(t)− y2(t),

ẏ3(t) = c(y1(t) + 1.56)− 0.006y3(t),

(1)

where y1(t), y2(t), y3(t) are the membrane potential, the recovery variable for the current
of Na+ or K+ ions, and the adaptation current for the current of Ca+ ions, respectively;
I represents the external applied current for mimicking the membrane current of neurons;
a, b, and c are system constants.

We consider the following two coupled HR neurons
ẏ1(t) = ay2

1(t)−y3
1(t)+y2(t)−y3(t)−p(y1(t)−z1(t))+I,

ẏ2(t) = 1 + by2
1(t)− y2(t),

ẏ3(t) = c(y1(t) + 1.56)− 0.006y3(t),

(2)

and 
ż1(t) = az2

1(t)−z3
1(t)+z2(t)−z3(t)−p(z1(t)−y1(t))+I+u(t),

ż2(t) = 1 + bz2
1(t)− z2(t),

ż3(t) = c(z1(t) + 1.56)− 0.006z3(t),

(3)

where system (2) is the uncontrolled HR neuron, system (3) is the controlled HR neuron;
p is the coupling strength; u(t) is the control; the initial condition is y1(0) = y10 ,
y2(0) = y20 , y3(0) = y30 , z1(0) = z10 , z2(0) = z20 , and z3(0) = z30 .

Let

u(t) = k(y1(t)− z1(t))− k0(y2
1(t) + z2

1(t))(y1(t)− z1(t)), (4)

where k and k0 are gains which need to be determined.
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We define three error variables ei(t) = yi(t)− zi(t), i = 1, 2, 3. From (2) and (4), we
have the following error system

ė1(t) = ae1(t)(y1(t) + z1(t))− e1(t)(y2
1(t) + z2

1(t) + y1(t)z1(t))

+ e2(t)− e3(t)− 2pe1(t)− ke1(t) + k0(y2
1(t) + z2

1(t))e1(t),

ė2(t) = be1(t)(y1(t) + z1(t))− e2(t),

ė3(t) = ce1(t)− 0.006e3(t),

(5)

where the initial condition is e1(0) = y10 − z10 , e2(0) = y20 − z20 , and e3(0) = y30 − z30 .
This paper intends to obtain the synchronization criteria for two coupled HR neuron

(2), i. e., to find k0 and k such that

lim
t→∞

‖yi(t)− zi(t)‖ = 0, i = 1, 2, 3,

which also means that the error system described by (5) is globally asymptotically stable.

3. SYNCHRONIZATION CRITERIA

In this section, we provide two synchronization criteria for the system described by (2),
(3) and (4), which also guarantees the stability of the error system (5).

Now we can give the following result.

Proposition 1. Two coupled HR neurons described by (2), (3) and (4) can achieve
global synchronization, i. e., the error system described by (5) is globally asymptotically
stable, if 

k0 <
−b2+4−|b2−2|

4 ,

k >
( b
2+a)2(8k2

0−12k0+2b2k0+4−b2)

(3−b2+2b2k0+4k2
0−8k0)(4−b2−4k0)

+ 1
4 + (c−1)2

0.024 − 2p.
(6)

P r o o f . We use the following Lyapunov function

V (t) =
e21(t) + e22(t) + e23(t)

2
. (7)

Taking the derivative of V (t) with respect to t along the trajectory of (5) yields

dV (t)
dt

= −
(

(b(y1(t) + z1(t)) + 1)
2

e1(t)− e2(t)
)2

− 0.006
(
c− 1
0.012

e1(t)− e3(t)
)2

+ θ(t)e21(t) (8)

where

θ(t) = a(y1(t) + z1(t))− (y2
1(t) + z2

1(t) + y1(t)z1(t))

+
(b(y1(t) + z1(t)) + 1)2

4
+

(c− 1)2

0.024
−2p−k+k0(y2

1(t) + z2
1(t)). (9)
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By virtue of equations described by (8) and (9), we have θ(t) < 0 which can ensure
dV (t)

dt < 0. Thus, we need to find k0 and k such that θ(t) < 0.
Rewriting the right-side of the equation (9) as a function of z1(t), we have

θ(t) =
(
b2

4
− 1 + k0

)
z2
1(t) +

(
a+

b

2
+
(
b2

2
− 1
)
y1(t)

)
z1(t)

+
(
b2

4
− 1 + k0

)
y2
1(t) +

(
a+

b

2

)
y1(t)− k̃1, (10)

where k̃1 = 2p+ k − 1
4 −

(c−1)2

0.024 .
If

b2

4
− 1 + k0 < 0 and θ̃(t) < 0 (11)

where

θ̃(t) =
(
a+

b

2
+ (

b2

2
− 1
)
y1(t))2−4

(
b2

4
− 1 + k0

)((
b2

4
− 1 + k0

)
y2
1(t)

+
(
a+

b

2

)
y1(t)− k̃1

)
,

then θ(t) < 0.
Rearranging the right-side of θ̃(t) as a function of y1(t), we have

θ̃(t) = (−3 + b2 − 4k2
0 − 2b2k0 + 8k0)y2

1(t) + 2
(
b

2
+ a

)
(1− 2k0)y1(t)

+
(
b

2
+ a

)2

− 4
(

1− b2

4
− k0

)
k̃1. (12)

If

− 3 + b2 − 4k2
0 − 2b2k0 + 8k0 < 0 and θ̂(t) < 0 (13)

where

θ̂(t) = 4
(
b

2
+ a

)2

(1− 2k0)2 − 4(−3 + b2 − 4k2
0 − 2b2k0 + 8k0)

(
b

2
+ a

)2

−16(−3 + b2 − 4k2
0 − 2b2k0 + 8k0)

(
−1 +

b2

4
+ k0

)
k̃1, (14)

then θ̃(t) < 0. From (13), (14), we obtain that

k̃1 = 2p+ k − 1
4
− (c− 1)2

0.024
>

( b
2 + a)2(8k2

0 − 12k0 + 2b2k0 + 4− b2)
(3− b2 + 2b2k0 + 4k2

0 − 8k0)(4− b2 − 4k0)

will ensure θ̂(t) < 0. Therefore,

k >
( b
2 + a)2(8k2

0 − 12k0 + 2b2k0 + 4− b2)
(3− b2 + 2b2k0 + 4k2

0 − 8k0)(4− b2 − 4k0)
+

1
4

+
(c− 1)2

0.024
− 2p (15)
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can guarantee θ(t) < 0 and k0 <
−b2+4−|b2−2|

4 can guarantee −3+b2−4k2
0−2b2k0+8k0 <

0 and b2

4 − 1 + k0 < 0. It follows from (6) that

dV (t)
dt

< 0 (16)

for all ei(t) 6= 0, i = 1, 2, 3. Moreover, it is clear that

dV (t)
dt

= 0, for e1(t) = e2(t) = e3(t) = 0. (17)

By virtue of LaSalle Invariant principle, the solution of the error system described by
(5), which starts from arbitrary initial value, will be convergent to the largest invariant
set which is constrained in dV (t)

dt = 0 as t → ∞ [9]. Thus, (16) and (17) can ensure
that the error system (5) is globally asymptotically stable, which also means that two
coupled HR neurons described by (2), (3) and (4) can achieve global synchronization.
This completes the proof. �

Remark 1. In [10] and [18], trajectories of chaotic systems were assumed to be bounded
which were used to derive the synchronization criteria. However, it is difficult or impos-
sible to estimate the bound of trajectories of two coupled systems (2) and (3). Compared
with synchronization criteria in [10] and [18], the norm bounds of trajectories of systems
(2) and (3) are not used to derive synchronization criteria in Proposition 1, and gains k0

and k are dependent on system constants a, b, c and p which is the main contribution
of this paper.

If k0 = 0, the control (4) reduces to the following linear feedback control

u(t) = k(y1(t)− z1(t)). (18)

We consider the following two coupled HR neurons with linear feedback control (18)
ẏ1(t) = ay2

1(t)− y3
1(t) + y2(t)− y3(t)− p(y1(t)− z1(t)) + I,

ẏ2(t) = 1 + by2
1(t)− y2(t),

ẏ3(t) = c(y1(t) + 1.56)− 0.006y3(t),

(19)

and
ż1(t) = az2

1(t)−z3
1(t)+z2(t)−z3(t)−p(z1(t)−y1(t))+I+k(y1(t)−z1(t)),

ż2(t) = 1 + bz2
1(t)− z2(t),

ż3(t) = c(z1(t) + 1.56)− 0.006z3(t),

(20)

where yi(t), zi(t), i = 1, 2, 3, a, b, c, p, and I are the same as those defined in (2); the
initial condition is y1(0) = y10 , y2(0) = y20 , y3(0) = y30 , z1(0) = z10 , z2(0) = z20 , and
z3(0) = z30 .
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We define three error variables ei(t) = yi(t) − zi(t), i = 1, 2, 3. From (19), we have
the following error system

ė1(t) = ae1(t)(y1(t) + z1(t))− e1(t)(y2
1(t) + z2

1(t) + y1(t)z1(t))
+ e2(t)− e3(t)− 2pe1(t)− ke1(t),

ė2(t) = be1(t)(y1(t) + z1(t))− e2(t),

ė3(t) = ce1(t)− 0.006e3(t),

(21)

where the initial condition is e1(0) = y10 − z10 , e2(0) = y20 − z20 , and e3(0) = y30 − z30 .
Using the Lyapunov function (7) and the similar proof method to Proposition 1, we

have the following result.

Proposition 2. Two coupled HR neurons described by (19) and (20) can achieve global
synchronization, i. e., the error system described by (21) is globally asymptotically stable,
if 

3− b2 > 0,

k >
( b
2+a)2

(3−b2) + 1
4 + (c−1)2

0.024 − 2p.
(22)

Remark 2. In Proposition 1, a synchronization criterion is derived by using the non-
linear feedback control (4). In Proposition 2, a synchronization criterion is obtained
by using the linear feedback control (18). It should be pointed out that an additional
constraint for 3 > b2 is required in Proposition 2. If b2 > 3, Proposition 2 can not be
used to derive the synchronization criterion. Proposition 1 can be used for any b such
that b2 ≥ 3 or b2 < 3.

Remark 3. In [24], some synchronization criteria for chaotic systems were derived by
using the backstepping method, in which the final control u(t) was obtained after sev-
eral virtual controls were designed. The backstepping method can also be applied to
achieving synchronization of HR neurons, in which the control u(t) could be nonlinear.
Using our control method, a linear control u(t) can be derived by Proposition 2.

If k0 = 0 and k = 0, we consider the following two coupled HR neurons
ẏ1(t) = ay2

1(t)− y3
1(t) + y2(t)− y3(t)− p(y1(t)− z1(t)) + I,

ẏ2(t) = 1 + by2
1(t)− y2(t),

ẏ3(t) = c(y1(t) + 1.56)− 0.006y3(t),

(23)

and 
ż1(t) = az2

1(t)− z3
1(t) + z2(t)− z3(t)− p(z1(t)− y1(t)) + I,

ż2(t) = 1 + bz2
1(t)− z2(t),

ż3(t) = c(z1(t) + 1.56)− 0.006z3(t),

(24)
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without control u(t), where yi(t), zi(t), i = 1, 2, 3, a, b, c, p, and I are the same as those
defined in (2); the initial condition is y1(0) = y10 , y2(0) = y20 , y3(0) = y30 , z1(0) = z10 ,
z2(0) = z20 , and z3(0) = z30 .

We define three error variables ei(t) = yi(t)− zi(t), i = 1, 2, 3, which can lead to the
following error system

ė1(t) = ae1(t)(y1(t) + z1(t))− e1(t)(y2
1(t) + z2

1(t) + y1(t)z1(t))

+ e2(t)− e3(t)− 2pe1(t),

ė2(t) = be1(t)(y1(t) + z1(t))− e2(t),

ė3(t) = ce1(t)− 0.006e3(t),

(25)

where the initial condition is e1(0) = y10 − z10 , e2(0) = y20 − z20 , and e3(0) = y30 − z30 .
From Proposition 2, we have the following result.

Corollary 1. Two coupled HR neurons described by (23) and (24) can achieve global
synchronization, i. e., the error system described by (25) is globally asymptotically stable,
if 

3− b2 > 0,

p >
( b
2+a)2

2(3−b2) + 1
8 + (c−1)2

0.048 .

(26)

Remark 4. The FitzHugh–Nagumo (FHN) model has been widely used to study the
dynamical evolution of brain neurons. The mathematical model of FHN can be described
as  ẏ1(t) = y1(t)(y1(t)− 1)(1− ry1(t))− y2(t) + l

w cos(wt) + I,

ẏ2(t) = dy1(t)− vy2(t),
(27)

where y1(t), y2(t) are the state variables; r, l, w, d and v are system constants. Two
coupled FHN neurons can be described as ẏ1(t) = y1(t)(y1(t)− 1)(1− ry1(t))− y2(t)− p(y1(t)− z1(t)) + l

w cos(wt) + I,

ẏ2(t) = dy1(t)− vy2(t),
(28)

and ż1(t) = z1(t)(z1(t)−1)(1−rz1(t))−z2(t)−p(z1(t)−y1(t))+ l
w cos(wt)+I+u(t),

ż2(t) = dz1(t)− vz2(t),
(29)

where z1(t), z2(t) are the state variables; p is the coupling strength; u(t) is the control;
the initial condition is y1(0) = y10 , y2(0) = y20 , z1(0) = z10 , and z2(0) = z20 . It should
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be pointed out that our control method for HR neurons is still valid for the FHN neurons.
Choosing the control (4) and defining two error variables ei(t) = yi(t) − zi(t), i = 1, 2,
we have the error system

ė1(t) = −re1(t)(y2
1(t) + z2

1(t) + y1(t)z1(t)) + (r + 1)(y1(t) + z1(t))e1(t)
− e1(t)− e2(t)− 2pe1(t)− ke1(t) + k0(y2

1(t) + z2
1(t))e1(t),

ė2(t) = de1(t)− ve2(t),

(30)

where the initial condition is e1(0) = y10 − z10 and e2(0) = y20 − z20 .

Using the Lyapunov function (7), we can obtain the following Corollary for FHN
neurons.

Corollary 2. Two coupled FHN neurons described by (28) and (29) can achieve global
synchronization, i. e., the error system described by (30) is globally asymptotically stable,
if 

r − k0 > 0,

k > (d−1)2

4v − 1− 2p− (r+1)2

4(k0−r) −
(r+1)2(2k0−r)

4(2k0−3r)(k0−r) .
(31)

4. EXAMPLES

Example 1. Consider the HR model
ẏ1(t) = 3y2

1(t)− y3
1(t) + y2(t)− y3(t) + 3.2,

ẏ2(t) = 1− 5y2
1(t)− y2(t),

ẏ3(t) = 0.024(y1(t) + 1.56)− 0.006y3(t).

(32)

If we choose the initial condition of (32) as y10 = 0.3, y20 = 0.3, and y30 = 3, there is a
chaotic attractor which can be demonstrated by Figure 1.

Let p = 0.1. Consider the following two coupled HR neurons
ẏ1(t) = 3y2

1(t)− y3
1(t) + y2(t)− y3(t)− 0.1(y1(t)− z1(t)) + 3.2,

ẏ2(t) = 1− 5y2
1(t)− y2(t),

ẏ3(t) = 0.024(y1(t) + 1.56)− 0.006y3(t),

(33)

and 
ż1(t) = 3z2

1(t)− z3
1(t) + z2(t)− z3(t)− 0.1(z1(t)− y1(t)) + 3.2 + u(t),

ż2(t) = 1− 5z2
1(t)− z2(t),

ż3(t) = 0.024(z1(t) + 1.56)− 0.006z3(t),

(34)
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Fig. 1. The phase figure of the HR neuron with a = 3, b = −5, and

c = 0.024.

where the control u(t) is defined by (4). The error system is

ė1(t) = 3e1(t)(y1(t) + z1(t))− e1(t)(y2
1(t) + z2

1(t) + y1(t)z1(t))
+ e2(t)− e3(t)− 0.2e1(t)− ke1(t) + k0(y2

1(t) + z2
1(t))e1(t),

ė2(t) = −5e1(t)(y1(t) + z1(t))− e2(t),

ė3(t) = 0.024e1(t)− 0.006e3(t),

(35)

Since 3 < b2, Proposition 2 fails to derive the synchronization criterion. By using
Proposition 1 and the control (4), we have

k0 <
−b2+4−|b2−2|

4 = −11,

k >
( b
2+a)2(8k2

0−12k0+2b2k0+4−b2)

(3−b2+2b2k0+4k2
0−8k0)(4−b2−4k0)

+ 1
4 + (c−1)2

0.024 − 2p = 39.75.

Choosing k0 = −11.1 and k = 40, the control (4) is

u(t) = 40e1(t) + 11.1(z2
1(t) + y2

1(t))e1(t).

We give Figures 2, 3, and Figure 4 for variables yi(t), zi(t), and ei(t), i = 1, 2, 3, respec-
tively, where the initial condition is y10 = 0.3, y20 = 0.3, y30 = 3, z10 = 1.3, z20 = 1.3,
and z30 = 2. Figure 4 indicates that error system (5) is globally asymptotically stable,
i. e., two coupled HR neurons described by (33) and (34) can achieve global synchro-
nization.
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with k0 = −11.1, k = 40.
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Fig. 4. The simulation result for error variables e1(t), e2(t), e3(t)

with k0 = −11.1, k = 40.

Example 2. Consider the HR model (1)
ẏ1(t) = −y2

1(t)− y3
1(t) + y2(t)− y3(t) + 3.2,

ẏ2(t) = 1− 1.5y2
1(t)− y2(t),

ẏ3(t) = 0.76(y1(t) + 1.56)− 0.006y3(t).

(36)

If we choose the initial condition of (1) as y10 = 1.3 and y20 = 1.3, y30 = 4, a chaotic
attractor can be demonstrated by Figure 5.

Let p = 0.1. Now we consider the coupled HR neurons
ẏ1(t) = −y2

1(t)− y3
1(t) + y2(t)− y3(t)− 0.1(y1(t)− z1(t)) + 3.2,

ẏ2(t) = 1− 1.5y2
1(t)− y2(t),

ẏ3(t) = 0.76(y1(t) + 1.56)− 0.006y3(t),

(37)

and 
ż1(t) = −z2

1(t)− z3
1(t) + z2(t)− z3(t)− 0.1(z1(t)− y1(t)) + 3.2 + u(t),

ż2(t) = 1− 1.5z2
1(t)− z2(t),

ż3(t) = 0.76(z1(t) + 1.56)− 0.006z3(t).

(38)
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Fig. 5. The phase figure of the HR neuron with a = −1, b = −1.5,

c = 0.76.

where the initial condition is y10 = 1.3, y20 = 1.3, y30 = 4, z10 = 2.3, z20 = 2.3, and
z30 = 2. The control u(t) is defined by (18), in which gain k can be determined later.
The error system can be obtained as following

ė1(t) = −e1(t)(y1(t) + z1(t))− e1(t)(y2
1(t) + z2

1(t) + y1(t)z1(t))

+ e2(t)− e3(t)− 2pe1(t)− ke1(t),

ė2(t) = −1.5e1(t)(y1(t) + z1(t))− e2(t),

ė3(t) = 0.76e1(t)− 0.006e3(t).

(39)

Since 3 > b2, we can use Proposition 2 to obtain k > ( b
2+a)2

(3−b2) + 1
4 + (c−1)2

0.024 − 2p = 6.5333.
We choose k = 6.6. The control is u(t) = 6.6e1(t).

Figures 6, 7, and Figure 8 demonstrate variables of yi(t), zi(t), ei(t), i = 1, 2, 3,
with k = 6.6, respectively. From Figure 8, we know that error system (39) is globally
asymptotically stable which means that two coupled HR neurons described by (37) and
(38) can achieve global synchronization.
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Fig. 6. The simulation result for state variables y1(t), y2(t), y3(t).
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Fig. 7. The simulation result for state variables z1(t), z2(t), z3(t)

with k = 6.6.

5. CONCLUSION

We have derived two global synchronization criteria for two coupled HR neurons by
using the nonlinear feedback control and linear feedback control, respectively. The
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Fig. 8. The simulation result for error variables e1(t), e2(t), e3(t)

with k = 6.6.

feedback control gains are dependent on the system parameters. The norm bounds
of state variables of controlled and uncontrolled HR neurons are not used to derive
synchronization criteria. We have applied the control method to derive a synchronization
criterion for FHN neurons. We have used two simulation examples to illustrate the
effectiveness of our results. In this paper, the synchronization of two coupled HR neurons
are studied. How to derive synchronization criteria for networks of HR neurons by using
the linear control is our future research focus.
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