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KYBER NET IKA — VOLUM E 5 1 ( 2 0 1 5 ) , NUMBE R 5 , P AGES 8 0 0 – 8 1 3

STABILITY ANALYSIS AND ABSOLUTE
SYNCHRONIZATION OF A THREE–UNIT
DELAYED NEURAL NETWORK

Linjun Wang, Youxiang Xie, Zhouchao Wei and Jian Peng

In this paper, we consider a three-unit delayed neural network system, investigate the linear
stability, and obtain some sufficient conditions ensuring the absolute synchronization of the
system by the Lyapunov function. Numerical simulations show that the theoretically predicted
results are in excellent agreement with the numerically observed behavior.
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1. INTRODUCTION

Artificial neural networks widely exist in lots of subjects, such as content-addressable
memories, neocortex, cerebellum, hippocampus, and even in chemistry and electrical
design. Information is stored as stable equilibrium points of the system, which has been
investigated and also become the subject of much recent activity.

It is not difficult to check that neural networks are complex and filled with lots of
rich nonlinear dynamics, especially the dynamics of the delayed neural networks, which
are even richer and more complicated [29]. In general, it has two ways to deal with these
kinds of problems: One is to linearize the system near the equilibrium; drive the condi-
tions in this way concerning the local stability around an equilibrium. The other method
is to obtain some sufficient conditions ensuring the stability of the system by construct-
ing a suitable Lyapunov function. In order to obtain a clear and deep understanding
of the dynamics of neural networks, more and more experts investigate and study the
delayed neural networks models with isolated neuron and two neurons [1, 2–7, 9, 11–13,
15–18, 28]. It is hoped to promote our understanding about the large networks by dis-
cussing the dynamics of such small networks. In fact, these theoretical results can help
us to improve the understanding of the dynamics of the system and are also important
complements to the experimental and numerical investigations exploiting analog circuits
and digital computers. Hopfield studied a simplified neural network model in which each
neuron is represented by a linear circuit consisting of a resistor and a capacitor and is
connected to the other neurons via nonlinear sigmoidal activation functions [14, 20, 21,
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30]. Dhamala studied that synchronization of individual neurons plays the crucial role
in the emergence of pathological rhythmic brain activity in Parkinsons disease, essential
tremor, and epilepsies [10]. Delayed feedback suppressed or facilitated the collective
synchrony in an ensemble of global coupled oscillators [22, 23, 26, 27, 31]. Artificial
neural network reveals the complex dynamic properties of the biological neural network
system by simulating the structure and function of human brain cells through the circuit
[8, 19, 24, 25, 32]. Herein we consider the dynamic characteristic of bidirectional ring
network model with the connections between three neurons, which is shown in Figure 1.
This kind of ring network is a kind of common loop network, which has been found
in a lot of neural structures, such as neocortex, cerebellum, hippocampus, and even in
chemistry and electrical design. We can know the basic mechanisms of recurrent network
by studying the ring network. Due to the complexity of the analysis, many researchers
study and discuss the sufficient condition of stability by traditional Lyapunov approach.
However, very few papers about stability analysis of bidirectional ring network model by
analyzing the characteristic of the eigenvalues can be found and very limited, especially
in high dimensional bidirectional ring network model with delay.
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Fig. 1. Architecture of the model described by (1.1).

In this paper, we consider the dynamic characteristic of bidirectional ring network
model (1.1) with the connections between three constant neurons, which is given as the
following model (see Figure 1): ẋ = −x+ αf(y(t− τ)) + βf(z(t− τ)),

ẏ = −y + αf(z(t− τ)) + βf(x(t− τ)),
ż = −z + αf(x(t− τ)) + βf(y(t− τ)),

(1.1)

where τ is nonnegative and denotes the synaptic transmission delay, and the strength
of the self and nearest-neighbour coupling is denoted by α and β, respectively. They
are the nonzero connection weights. f : R → R is the activation function. Throughout
this paper, we always assume that αβ 6= 0, and f : R → R is adequately smooth, and
satisfies the following conditions:

(C1) f(0) = 0, f ′(0) = 1;
(C2) f(x) 6= 0 for x 6= 0.
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The rest of the paper is organized as follows: In Section 2, we discuss the linear
stability of the trivial solution of system (1.1). We study the absolute synchronization
of the system exploiting the Lyapunov function in Section 3. Section 4 is devoted to
numerical simulations and we conclude this paper in Section 5.

2. LINEAR STABILITY OF THE TRIVIAL FIXED POINT

In this section, we focus on the linear stability of the trivial fixed point (x, y, z) = (0, 0, 0)
of the nonlinear DDE(1.1). Linearizing (1.1) about it produces ẋ = −x+ αy(t− τ) + βz(t− τ),

ẏ = −y + αz(t− τ) + βx(t− τ),
ż = −z + αx(t− τ) + βy(t− τ).

(2.1)

The characteristic matrix of (2.1) is

4(µ, λ) =

 λ+ 1 −αe−λτ −βe−λτ
−βe−λτ λ+ 1 −αe−λτ
−αe−λτ −βe−λτ λ+ 1

 ,

and hence the characteristic equation is

0 = det4(µ, λ) = (λ+ 1)3 − 3αβe−2λτ (λ+ 1)− (α3 + β3)e−3λτ = χ1(λ)χ2(λ), (2.2)

where
χ1(λ) = λ+ 1− (α+ β)e−λτ

and
χ2(λ) =

(
λ+ 1 +

α+ β

2
e−λτ

)2

+
3
4

(α− β)2e−2λτ .

So either
λ+ 1− (α+ β)e−λτ = 0 (2.3)

or (
λ+ 1 +

α+ β

2
e−λτ

)
= ±i

√
3

2
(α− β)e−λτ . (2.4)

It is well known that the trivial fixed point of the nonlinear DDE (1.1) is locally asymp-
totically stable if all the roots λ of the characteristic equation (2.2) satisfy Reλ < 0.
Our goal in this section is to give the largest subset of the parameters α, β, and τ , re-
spectively. All the roots of the characteristic equation (2.2) have negative real parts in
corresponding largest subset. We shall refer this subset as to the stability region of the
trivial fixed point.

Substituting λ = µ+ iω into the left sides of both (2.3) and (2.4) and separating the
real and imaginary parts, we can obtain

R(2.3)(µ, ω) = µ+ 1− (α+ β)e−µτ cos(ωτ),

I(2.3)(µ, ω) = ω + (α+ β)e−µτ sin(ωτ),
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R(2.4)(µ, ω) = µ+ 1 + αe−µτ cos
(
ωτ ± π

3

)
+ βe−µτ cos

(
ωτ ∓ π

3

)
,

I(2.4)(µ, ω) = ω − αe−µτ sin
(
ωτ ± π

3

)
− βe−µτ sin

(
ωτ ∓ π

3

)
.

It follows that if λ = µ+ iω is a solution to (2.3) then

µ = −1 + (α+ β)e−µτ cos(ωτ), (2.5)

ω = −(α+ β)e−µτ sin(ωτ), (2.6)

and if λ = µ+ iω is a solution to (2.4) then

µ = −1− αe−µτ cos
(
ωτ ± π

3

)
− βe−µτ cos

(
ωτ ∓ π

3

)
, (2.7)

ω = αe−µτ sin
(
ωτ ± π

3

)
+ βe−µτ sin

(
ωτ ∓ π

3

)
. (2.8)

Theorem 2.1. If |α + β| < 1 and αβ > 0, then all the roots of the characteristic
equation (2.2) have negative real parts.

P r o o f . Let R(µ) = µ+ 1− |α+ β|e−µτ . Obviously,

R2.3(µ, ω) ≥ R(µ) and R2.4(µ, ω) ≥ R(µ). (2.9)

Since |α+ β| < 1 and αβ > 0, we have

R(0) = 1− |α+ β| > 0.

Since dR(µ)
dµ = 1 + |α + β|τe−µτ > 0, it implies that R(µ) > 0 for µ > 0. Therefore, it

follows from (2.9) that

R(2.3)(µ, ω) > 0 and R(2.4)(µ, ω) > 0 for µ > 0 and ω ∈ R. (2.10)

Assume that λ = µ + iω is a solution to (2.2). By (2.10), we only need to show that
λ 6= iω. If |α + β| < 1 and αβ > 0, this is true from R(0) = 1 − |α + β| > 0 and (2.9).
This completes the proof. �

Theorem 2.1 presents a delay-independent sufficient condition for the linear stability
of the trivial solution. In other words, under the condition that If |α+β| < 1 and αβ > 0,
the delay τ is harmless to (1.1). In the following, we will give some delay-dependent
conditions about the linear stability of the trivial solution of (1.1).

Theorem 2.2. Assume
√

2β > −1, 0 ≤ τ ≤ − 1
2α , −2 < α < β < 0. Then all the roots

of the characteristic equation (2.2) have negative real parts .
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P r o o f . Let λ = µ + iω be a root of (2.2). Since the roots of (2.2) appear in com-
plex conjugate pairs, without loss of generality, we can assume that ω ≥ 0. By way of
contradiction, we assume that µ ≥ 0. We will finish the proof in the following two cases.

First, we assume that µ and ω satisfy (2.5) and (2.6) simultaneously. It follows from
(2.6) that ω ≤ −α − β and hence 0 ≤ ωτ ≤ 1 < π

3 . It also follows from (2.5) and (2.6)
that

M1(µ, ω) = 0, (2.11)

where

M1(µ, ω) = (µ+1)2+ω2−2α(µ+1)e−µτ cos(ωτ)+2αωe−µτ sin(ωτ)+α2e−2µτ−β2e−2µτ .

For the fixed ω, we have

M1(0, ω) = 1 + ω2 − 2α cos(ωτ) + 2αω sin(ωτ) + α2 − β2

≥ 1− 2α cos(ωτ) + ω2 + 2αω(ωτ) + α2 − β2 (because sin(ωτ) ≤ ωτ)
= 1− 2α cos(ωτ) + ω2(1 + 2ατ) + α2 − β2

> 0 (because− 1 ≤ 2ατ ≤ 0).

Taking the partial derivative of M1(µ, ω) with respect to µ, we have

∂M1(µ, ω)
∂µ

= 2(µ+ 1)− 2αe−µτ cos(ωτ) + 2ατ(µ+ 1)e−µτ cos(ωτ)− 2αωτe−µτ sin(ωτ)

−2α2τe−2µτ + 2β2τe−2µτ

= 2(µ+ 1)[1 + ατe−µτ cos(ωτ)]− 2αe−µτ [cos(ωτ) + ατe−µτ ]− 2αωτe−µτ sin(ωτ)

+2β2τe−2µτ .

Noticing that α < 0 for 0 ≤ τ ≤ − 1
2α . Then the last two terms −2αωτe−µτ sin(ωτ) and

2β2τe−2µτ are nonnegative.

On the other hand, due to

0 ≤ τ ≤ − 1
2α

and
1
2

= cos
π

3
< cos 1 ≤ cos(ωτ) ≤ 1,

we have
(µ+ 1)[1 + ατe−µτ cos(ωτ)] ≥ (µ+ 1)

(
1− 1

2

)
≥ 0

and

−αe−µτ [cos(ωτ) + ατe−µτ ] ≥ −αe−µτ
(

cos 1− 1
2

)
> 0.

So ∂M1(µ,ω)
∂µ > 0. This, combined with M1(0, ω) > 0, implies that M1(µ, ω) > 0 for

µ ≥ 0, which contradicts (2.11).

Now, we assume that µ and ω simultaneously satisfy (2.7) and (2.8). We first assume
that

µ = −1− αe−µτ cos
(
ωτ +

π

3

)
− βe−µτ cos

(
ωτ − π

3

)
(2.12)
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ω = αe−µτ sin
(
ωτ +

π

3

)
+ βe−µτ sin

(
ωτ − π

3

)
. (2.13)

It follows from (2.13) easily that ω ≤ −α− β and hence 0 ≤ ωτ ≤ 1 < π
3 .

Then
π

3
≤ ωτ +

π

3
<

2π
3

and − π

3
≤ ωτ − π

3
< 0.

Thus
ω = αe−µτ sin

(
ωτ + π

3

)
+ βe−µτ sin

(
ωτ − π

3

)
< βe−µτ sin

(
ωτ − π

3

)
< −β.

This, combined with the assumptions 0 ≤ τ ≤ − 1
2α , gives us

0 ≤ ωτ < 1
2
<
π

6
.

Then we can obtain
π

3
≤ ωτ +

π

3
<
π

2
, −π

3
≤ ωτ − π

3
< −π

6
.

Then

αe−µτ sin
(
ωτ + π

3

)
+ βe−µτ sin

(
ωτ − π

3

)
< αe−µτ sin π

3 + βe−µτ sin
(
− π

3

)
=

√
3

2 e
−µτ (α− β)

< 0.

This contradicts the fact that ω ≥ 0. Finally, we assume that

µ = −1− αe−µτ cos
(
ωτ − π

3

)
− βe−µτ cos

(
ωτ +

π

3

)
, (2.14)

ω = αe−µτ sin
(
ωτ − π

3

)
+ βe−µτ sin

(
ωτ +

π

3

)
. (2.15)

Then it follows from (2.14) and (2.15) that

M2(µ, ω) = 0, (2.16)

where

M2(µ, ω) = (µ+ 1)2 + ω2 − α2e−2µτ − β2e−2µτ − 2αβe−2µτ cos
(
− 2π

3

)
= (µ+ 1)2 + ω2 − α2e−2µτ − β2e−2µτ + αβe−2µτ

and
M2(0, ω) = 1 + ω2 − α2 − β2 + αβ > 0.

Herein we have used the condition α > −2. Again, taking the partial derivative of
M2(µ, ω) with respect to µ, we have

∂M2(µ, ω)
∂µ

= 2(µ+ 1) + 2α2τe−2µτ + 2β2τe−2µτ − 2αβτe−2µτ

= 2[µ+ 1 + α2τe−2µτ + β2τe−2µτ − αβτe−2µτ ].
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Noticing

−1 + αβτe−2µτ ≤ −1 + αβ
(
− 1

2α

)
< −1 + αβ

1
−α− β

< −1− α

2

and α > −2, we have

∂M2(µ, ω)
∂µ

> 0.

This, combined with M2(0, ω) > 0, implies that M2(µ, ω) > 0 for µ ≥ 0, which is
contradictory to (2.16). This completes the proof. �

In the remaining of this section, we will give two results for the unstability of the
trivial solution. One is delay-independent, and the other is delay-dependent.

Theorem 2.3. Assume that α+β > 1. Then the characteristic equation (2.2) has a root
with positive real part for any τ .

P r o o f . Under the assumption, we have that

χ1(0) = 1− α− β < 0.

It is easy to check

lim
λ→+∞

χ1(λ) = lim
λ→+∞

[λ+ 1− (α+ β)e−λτ ] = +∞.

It follows from the mean value theorem that there exists a λ∗ > 0 such that χ1(λ∗) = 0.
So (2.2) has a positive real root. This completes the proof. �

Theorem 2.4. Assume that τ > 1, ln τ + τ − (α + β) < 0. Then the characteristic
equation (2.2) has a root with positive real part.

P r o o f . Under the assumption, we can obtain that

χ1

( ln τ
τ

)
=

ln τ
τ

+ 1− (α+ β)e−τ
ln τ

τ =
ln τ
τ

+ 1− (α+ β)
1
τ
< 0

( ln τ
τ

> 0
)
,

lim
λ→+∞

χ1(λ) = lim
λ→+∞

[λ+ 1− (α+ β)e−λτ ] = +∞.

Then it is not difficult to check that there exists λ∗ > 0 such that χ1(λ∗) = 0. So (2.2)
has a positive real root. This completes the proof. �

3. THE ABSOLUTE SYNCHRONIZATION OF THE SYSTEM

In this section, we will study the absolute synchronization of the delayed network system
(1.1). Throughout this section, we need to assume: f satisfies the following conditions:

(1) f ′(x) > 0, ∀x ∈ R;
(2) f ′′(x)x < 0, ∀x 6= 0;
(3) f ′′′(0) < 0;
(4) −∞ < lim

x→±∞
f(x) < +∞.
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Definition 3.1. The solution xϕ of the system (1.1) is asymptotic synchronous, if its
one ω− finite set is in the following synchronous image set:

{ψ = (ψ1, · · · , ψ3)T ∈ C([−τ, 0],R3) : ψ1 = ψ2, ψ2 = ψ3}.

If all the solutions of system (1.1) are asymptotic synchronous, then the system (1.1) is
absolute synchronous, i. e. the following conditions hold for all nonnegative τ :

lim
t→∞

|x(t)− y(t)| = 0, lim
t→∞

|y(t)− z(t)| = 0, lim
t→∞

|z(t)− x(t)| = 0.

Theorem 3.1. If α + β < 1, then all the solutions of system (1.1) are asymptotic
synchronous for all the nonnegative τ.

P r o o f . We consider the given solution x : [−τ,∞)→ R3 of system (1.1). Set

m(t) = x(t)− y(t), n(t) = y(t)− z(t), l(t) = z(t)− x(t).

Exploiting the system (1.1), we can obtain for t ≥ 0,

m′(t) = −m(t) + α[f(y(t− τ))− f(z(t− τ))] + β[f(z(t− τ))− f(x(t− τ))]
= −m(t) + αp1(t)n(t− τ) + βp2(t)l(t− τ),

n′(t) = −n(t) + α[f(z(t− τ))− f(x(t− τ))] + β[f(x(t− τ))− f(y(t− τ))]
= −n(t) + αp2(t)l(t− τ) + βp3(t)m(t− τ),

l′(t) = −l(t) + α[f(x(t− τ))− f(y(t− τ))] + β[f(y(t− τ))− f(z(t− τ))]
= −l(t) + αp3(t)m(t− τ) + βp1(t)n(t− τ),

where

p1(t) =
∫ 1

0

f ′(sy(t− τ) + (1− s)z(t− τ)) ds,

p2(t) =
∫ 1

0

f ′(sz(t− τ) + (1− s)x(t− τ)) ds,

p3(t) =
∫ 1

0

f ′(sx(t− τ) + (1− s)y(t− τ)) ds.

Using the property of f, there exists p∗ ∈ (0, 1] such that p1,2,3(t) ≤ p∗ for all t ≥ 0.
We consider the Lyapunov function candidate:

V (t) = m2(t)+n2(t)+ l2(t)+(α+β)p∗
(∫ t

t−τ
m2(s) ds+

∫ t

t−τ
n2(s) ds+

∫ t

t−τ
l2(s) ds

)
.

Thus the differential coefficient of V is described by

d
dt
V (t) = 2m(t)(−m(t) + αp1(t)n(t− τ) + βp2(t)l(t− τ))

+2n(t)(−n(t) + αp2(t)l(t− τ) + βp3(t)m(t− τ))
+2l(t)(−l(t) + αp3(t)m(t− τ) + βp1(t)n(t− τ))
+(α+ β)p∗(n2(t)− n2(t− τ) +m2(t)−m2(t− τ) + l2(t)− l2(t− τ))

≤ −2(m2(t) + n2(t) + l2(t)) + 2(α+ β)p∗(m2(t) + n2(t) + l2(t))
≤ −2(1− α− β)(m2(t) + n2(t) + l2(t)) < 0.
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Therefore, we have

lim
t→+∞

m(t) = lim
t→+∞

n(t) = lim
t→+∞

l(t) = 0.

�

4. NUMERICAL SIMULATION EXAMPLE

In this section, some numerical results of simulating system (1.1) are presented at dif-
ferent data of α, β, τ. In the simulations, we will find that the theoretically predicted
results are in excellent agreement with the numerically observed behavior.

Example 4.1. We consider the system as follows: ẋ = −x+ α tanh(y(t− τ)) + β tanh(z(t− τ)),
ẏ = −y + α tanh(z(t− τ)) + β tanh(x(t− τ)),
ż = −z + α tanh(x(t− τ)) + β tanh(y(t− τ)).

(4.1)

0 20 40 60 80 100
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−0.2

0

0.2

0.4

0.6

0.8

 t

x(t)
y(t)
z(t)

Fig. 2. α = −0.5, β = −0.25, τ = 0.25.

Choosing α = −0.5, β = −0.25, τ = 0.25, by Theorem 2.1, we know that the
equilibrium (0, 0, 0) is asymptotically stable, which is shown in Figure 2. Choosing
α = −0.75, β = −0.5, τ = 0.5, by Theorem 2.2, we can find that the equilibrium
(0, 0, 0) is asymptotically stable, which is shown in Figure 3. Choosing α = 1, β = 2,
τ = 0.5, by Theorem 2.3, we know that the equilibrium (0, 0, 0) is not stable, which is
shown in Figure 4. Choosing α = 3, β = 2, τ = 2, by Theorem 2.4, we can find that the
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Fig. 3. α = −0.75, β = −0.5, τ = 0.5.
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Fig. 4. α = 1, β = 2, τ = 0.5.
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Fig. 5. α = 3, β = 2, τ = 2.
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Fig. 6. α = 0.5,β = 0.25,τ = 0.25.
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equilibrium (0, 0, 0) is not stable, which is shown in Figure 5. Choosing α = 0.5, β = 0.25,
τ = 0.25, by Theorem 3.1, we have that the system (1.1) is absolute synchronous, i. e.
the following conditions hold for all nonnegative τ , which is shown in Figure 6. These
numerical simulations are in accordance with the theoretical results of this paper.

5. CONCLUSIONS

We investigate the linear stability of trivial solution of three-unit delayed neural network
and obtain the sufficient condition of absolute synchronization of the system in this
paper. Meanwhile, the performances of numerical simulations have demonstrated the
correctness of the theoretical results.
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[8] Y. Chen, J. H. Lü, and Z. L. Lin: Consensus of discrete-time multi-agent
systems with transmission nonlinearity. Automatica 49 (2013), 1768–1775.
DOI:10.1016/j.automatica.2013.02.021

http://dx.doi.org/10.1109/81.847877
http://dx.doi.org/10.1137/s0036139994274526
http://dx.doi.org/10.1007/bf01049141
http://dx.doi.org/10.1137/s0036139993248853
http://dx.doi.org/10.1016/s0092-8240(05)80238-1
http://dx.doi.org/10.1090/s0002-9939-00-05635-5
http://dx.doi.org/10.1016/j.automatica.2013.02.021


812 L. WANG, Y. XIE, Z. WEI AND J. PENG

[9] J. M. Cushing: Integro-differential Equations and Delay Models in Population Dynamics.
Lecture Notes in Biomath, vol. 20, Springer, New York 1977. DOI:10.1007/978-3-642-
93073-7

[10] M. Dhamala, V. Jirsa, and M. Ding: Enhancement of neural synchrony by time delay.
Phys. Rev. Lett. 92 (2004), 74–104. DOI:10.1103/physrevlett.92.074104

[11] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel, and H. O. Walther: Delay Equa-
tions, Functional, Complex, and Nonlinear Analysis. Springer Verlag, New York 1995.
DOI:10.1007/978-1-4612-4206-2

[12] P. ., Driessche and X. Zou: Global attractivity in delayed Hopfield neural network models.
SIAM J. Appl. Math. 58 (1998), 1878–1890. DOI:10.1137/s0036139997321219

[13] T. Faria: On a planar system modelling a neuron network with memory. J. Diff. Equns.
168 (2000), 129–149. DOI:10.1006/jdeq.2000.3881

[14] T. Faria and L. T. Magalhes: Normal forms for retarded functional differential equations
with parameters and applications to Hopf bifurcation. J. Diff. Equations. 122 (1995),
181–200. DOI:10.1006/jdeq.1995.1144

[15] K. Gopalsamy and I. Leung: Delay induced periodicity in a neural network of excitation
and inhibition. Physica D. 89 (1996), 395–426. DOI:10.1016/0167-2789(95)00203-0

[16] J. Hale: Theory of Functional Differential Equations. Springer, New York 1997.

[17] J. Hale and H. Kocak: Dynamics and Bifurcations. Springer, New York 1991.

[18] J. Hale and S. V. Lunel: Introduction to Functional Differential Equations. Springer,
New York 1993. DOI:10.1007/978-1-4612-4342-7

[19] M. W. Hirsch: Convergent activation dynamics in continuous-time networks. Neural
Networks 2 (1989), 331–349. DOI:10.1016/0893-6080(89)90018-x

[20] J. Hopfield: Neurons with graded response have collective computational properties like
those of two-state neurons. Proc. Natl. Acad. Sci. USA 81 (1994), 3088–3092.

[21] L. Huang and J. Wu: Dynamics of inhibitory artificial neural networks with threshold
nonlinearity. Fields Ins. Commun. 29 (2001), 235–243.

[22] H. R. Karimi and H. J. Gao: New Delay-Dependent Exponential H∞ Synchro-
nization for Uncertain Neural Networks with Mixed Time Delays. IEEE Transac-
tions on Systems, Man, and Cybernetics-Part B: Cybernetics 40 (2010), 173–185.
DOI:10.1109/tsmcb.2009.2024408

[23] Y. R. Liu, Z. D. Wang, and J. L. Liang: Stability and synchronization of discrete-time
Markovian jumping neural networks with mixed mode-dependent time delays. IEEE
Transactions on Neural Networks 20 (2009), 1102–1116. DOI:10.1109/tnn.2009.2016210
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