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Addition theorems for dense subspaces

A.V. Arhangel’skii

Abstract. We study topological spaces that can be represented as the union of
a finite collection of dense metrizable subspaces. The assumption that the sub-
spaces are dense in the union plays a crucial role below. In particular, Ex-
ample 3.1 shows that a paracompact space X which is the union of two dense
metrizable subspaces need not be a p-space. However, if a normal space X is the
union of a finite family µ of dense subspaces each of which is metrizable by a
complete metric, then X is also metrizable by a complete metric (Theorem 2.6).
We also answer a question of M.V. Matveev by proving in the last section that if
a Lindelöf space X is the union of a finite family µ of dense metrizable subspaces,
then X is separable and metrizable.

Keywords: dense subspace; perfect space; Moore space; Čech-complete; p-space;
σ-disjoint base; uniform base; pseudocompact; point-countable base; pseudo-ω1-
compact

Classification: Primary 54A25; Secondary 54B05

1. Introduction

In this paper space stands for Tychonoff topological space. A space X is called
perfect if every closed subset of X is a Gδ-set in X . A base of countable order is
a base B such that every strictly decreasing sequence {Un : n ∈ ω} of members
of B with a nonempty intersection is a base at each point of this intersection. In
terminology and notation we follow [7].

Quite often topological spaces with an amazing combination of properties are
constructed as unions of finite collections of metrizable spaces. In particular,
Michael line, Mrówka space Ψ, Niemytzkiy half-plane, Alexandroff-Urysohn dou-
ble circumference, Alexandroff compactification of an uncountable discrete space,
and the countable Fréchet-Urysohn fan are spaces of this kind. However, they
do not look very similar, each of them has its own non-trivial combination of
properties. To provide a general framework for a systematic study of arbitrary
unions of metrizable subspaces, M. Ismail and A. Szymanski introduced the con-
cept of metrizability number m(X) of a topological space X . This is the smallest
cardinal number κ such that X can be represented as the union of κ many metriz-
able subspaces [10]. In particular, they studied locally compact spaces with finite
metrizability number [12].
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In this paper, we are focused on spaces which can be represented as the union
of a finite collection of dense metrizable subspaces. The class of such spaces is
denoted by Mduf .

The properties of spaces in Mduf turn out to be especially interesting. For
example, if X = Y ∪ Z, where Y and Z are dense metrizable subspaces of X ,
then X is not only first-countable, but has a point-countable base. In fact, even
countable unions of dense metrizable subspaces are easily seen to have a σ-disjoint
base. M. Ismail and A. Szymanski observed that a locally compact space which is
a union of countably many dense (or open) metrizable subspaces is metrizable, and
proved that any locally compact space with finite metrizability number contains
an open dense metrizable subspace [12]. Their papers contain a rich collection of
examples of compacta with finite metrizability number.

Below we establish that if X is the union of a finite family of dense metriz-
able subspaces each of which is a Gδ-subset of X , then X has a uniform base
(Theorem 2.2). If X is the union of a finite family of dense Čech-complete Moore
subspaces, then X is a Čech-complete Moore space (Theorem 2.4). Example 3.1
shows that the above results are sharp: we see that a paracompact space X which
is the union of two dense metrizable subspaces need not be a p-space and need not
have a base of countable order. We also prove that if a Lindelöf or pseudocompact
space X is the union of a finite family µ of dense metrizable subspaces, then X
is separable and metrizable (see Theorem 4.3 and its corollaries).

2. Some properties of spaces in Mduf

In this section, some sufficient conditions for a space in Mduf to be metrizable
or to have a uniform base are discussed. Notice that if a perfectly normal space
X is a subspace of a space Y which is the union of a countable family of dense
metrizable subspaces, then X is metrizable, since every perfectly normal space
with a σ-disjoint base is clearly metrizable, by an obvious application of R. Bing’s
metrization theorem. In connection with this well-known fact, see [1].

Theorem 2.1. Suppose that a space X is the union of a finite family µ of dense

perfect subspaces of X each of which is a Gδ-subset of X . Then X is perfect.

Proof: Take any closed subset F of X . Take also any M ∈ µ, and put FM =
F ∩ M . Since M is perfect, we can fix a decreasing sequence ηM = {V M

i : i ∈ ω}
of open subsets of M such that FM =

⋂
ηM . Since M is a Gδ-subset of X , there

exists a decreasing sequence ξM = {WM
i : i ∈ ω} of open subsets of X such

that M =
⋂

ξM . Now we can choose open subsets UM
i of X for i ∈ ω so that

V M
i = UM

i ∩ M , UM
i ⊂ WM

i , and the sequence {UM
i : i ∈ ω} is decreasing. Put

Ui =
⋃
{UM

i : M ∈ µ} for i ∈ ω.

Claim 1: F =
⋂
{Ui : i ∈ ω}.

Indeed, FM ⊂ V M
i ⊂ UM

i and F =
⋃
{FM : M ∈ µ}. Therefore, F ⊂

⋂
{Ui :

i ∈ ω}.
To verify the converse inclusion, take any z ∈ X \ F . Then z /∈ FM .



Addition theorems for dense subspaces 533

Claim 2: There exists k ∈ ω such that z /∈ UM
k , for every M ∈ µ.

Fix any M ∈ µ. Since the sets UM
i are decreasing for each M , it is enough to

show that there exists k ∈ ω such that z /∈ UM
k . We distinguish two cases.

Case 1: z /∈ M . Then z /∈ WM
k , for some k ∈ ω, since M =

⋂
{WM

i : i ∈ ω}.
Therefore, z /∈ UM

k , since UM
k ⊂ WM

k .

Case 2: z ∈ M . Then z ∈ M \ FM . Hence, there exists k ∈ ω such that z /∈ V M
k .

Then z /∈ UM
k , since V M

k = UM
k ∩M . Thus, Claim 2 is established. This completes

the proof of Claim 1. Now we see that F is a Gδ-subset of X . �

Theorem 2.2. Suppose that X is the union of a finite family µ of dense metrizable

subspaces of X each of which is a Gδ-subset of X . Then X has a uniform base.

Proof: Every metrizable space is perfect. Therefore, it follows from Theorem 2.1
that X is perfect. Observe that the space X has a σ-disjoint base, since X is the
union of a countable family of dense metrizable subspaces. Therefore, X has a
uniform base, since every perfect space with a σ-disjoint base has a uniform base

(see [4] for a simple direct proof of this fact). �

The next result is “parallel” to Theorem 2.2.

Theorem 2.3. Suppose that X is the union of a finite family µ of dense Moore

subspaces of X each of which is a Gδ-subset of X . Then X is a Moore space.

Proof: For each M ∈ µ, we fix a decreasing sequence ηM = {GM
n : n ∈ ω} of

open subsets of X such that M =
⋂

ηM . We also fix a sequence ξM = {γM
n : n ∈

ω} of families of open subsets of X such that {λM
n : n ∈ ω} is a development of

M , where λM
n = {V ∩M : V ∈ γM

n } and each γM
n+1 is a refinement of γM

n . Clearly,

we can also assume that every V ∈ γM
n is contained in GM

n . Put κn =
⋃
{γM

n :
M ∈ µ}.

Claim 1: The family {κn : n ∈ ω} is a development for X .
Let us verify the last statement. Fix x ∈ X , and let K be any infinite subset

of ω. Take any family η = {Un : n ∈ K} such that x ∈ Un ∈ κn for every n ∈ K.
We have to show that η is a base for X at x. Since µ is finite, we can assume
that there exists M ∈ µ such that Un ∈ γM

n , for every n ∈ K. We need now the
following fact:

Claim 2: x ∈ M .
Assume the contrary. Then there exists j ∈ ω such that x /∈ GM

j . For any

n > j with n ∈ K, we have x /∈ Un, since Un ⊂ GM
j . This is a contradiction.

Claim 2 is established.
Thus, we have that Vn = Un ∩ M ∈ λM

n , for every n ∈ K. Since K is infinite,
and {λM

n : n ∈ ω} is a development for M , it follows that {Vn : n ∈ K} is a
base for X at the point x. Notice that Vn is dense in Un, since M is dense in X .
Therefore, {Un : n ∈ K} is a base for X at x. Claim 1 is proved. Hence, X is a
Moore space. �
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Theorem 2.4. Suppose that X is the union of a finite family µ of dense Čech-

complete Moore subspaces of X . Then X is a Čech-complete Moore space.

Proof: It is easy to see that X is Čech-complete. Any M ∈ µ is a Gδ-subset
of X , since M is dense in X and Čech-complete. Therefore, Theorem 2.3 is
applicable. Hence, X is a Moore space. �

Similarly, applying Theorems 2.2 and 2.4, we obtain one of the main results in
this paper:

Corollary 2.5. If a space X is the union of a finite family µ of dense subspaces

of X such that each Y ∈ µ is metrizable by a complete metric, then X is a

Čech-complete space with a uniform base.

Here is an application of the above statement.

Theorem 2.6. If a normal space X is the union of a finite family µ of dense sub-

spaces each of which is metrizable by a complete metric, then X is also metrizable

by a complete metric.

Proof: Indeed, it follows from Corollary 2.5 that X is a Čech-complete perfectly
normal space with a σ-disjoint base. Therefore, X is metrizable by a complete
metric. �

Notice that the problem whether every normal space with a uniform base is
metrizable is still open.

3. The main example and other related examples

In this section we show that the results obtained in the preceding section are
quite sharp.

It is known that a perfect space with a point-countable base need not have a
uniform base. For example, a hereditarily Lindelöf non-metrizable space S with a
point-countable base was constructed in [6] under the Continuum Hypothesis CH .
The space S is perfect, but does not have a uniform base, since it is a non-
metrizable Lindelöf space. Of course, the space S cannot be represented as the
union of a countable family of dense metrizable subspaces, since otherwise it would
have a σ-disjoint base and a uniform base.

Heath’s space H (see [7, 5.4.B]) is the union of two dense open Čech-complete
metrizable subspaces. Hence, by Theorem 2.2 and Corollary 2.5, the space H is
Čech-complete. Clearly, H has a uniform base which is also a σ-disjoint base.
However, H is not metrizable and not normal. Thus, the space X in Theorem 2.2
and Corollary 2.5 need not be metrizable or paracompact. On the other hand, H
is metacompact, since it has a uniform base.

Mrówka’s space M(ω), denoted also by Ψ, is the union of two discrete sub-
spaces. However, one of these subspaces is not dense in M(ω). Even more, M(ω)
cannot be embedded in a space which is the union of a countable family of dense

metrizable subspaces. Indeed, M(ω) is separable but not metrizable. Therefore,
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it does not have a point-countable base. Hence, M(ω) is not a subspace of a space
in Mduf .

The next example is a modification of the Michael line.

Example 3.1. Let us show that there exists a space T with the following pro-
perties:

1) T is the union of two dense metrizable subspaces;
2) T is paracompact;
3) T is submetrizable (that is, there exists a one-to-one continuous mapping

of T onto a metrizable space);
4) T is not perfect;
5) T is not a p-space.

It follows from 1)–5) that T has some other classical properties:

6) T has a Gδ-diagonal;
7) T has a σ-disjoint base;
8) T is collectionwise normal;
9) T is not metrizable;

10) T is not stratifiable;
11) T is not a Moore space;
12) T is not symmetrizable;
13) T is not a σ-space (that is, T does not have a σ-discrete network);
14) T is not Čech-complete;
15) T is an s-space (see the definition in [3]);
16) T is a space of countable type.

Observe that the Michael line has all the properties listed above except for
the first one: it cannot be represented as the union of a finite collection of dense
metrizable subspaces (see Proposition 3.2).

A construction. We denote by Z the usual Michael line. Hence, Z = J ∪ Q,
where J is the set of irrational numbers and all points of J are isolated in Z,
Q is the set of rational numbers with usual intervals in the role of basic open
neighbourhoods in Z of the points in Q. On the set Z × Q we define a new
topology T∗ (which is stronger than the product topology) as follows.

The basic open neighbourhoods of the points of Z ×{0} are the same as in the
product topology of the Michael line with the usual space Q of rational numbers.

For any z ∈ Z and any q 6= 0, we declare the sets {z} × V , where V is an
arbitrary open subset of Q in the usual topology such that q ∈ V , to be basic
open neighbourhoods of (z, q) with respect to the new topology T∗.

The set Z ×Q with the new topology is denoted by T . It is easy to see that T
is zero-dimensional and hence, is Tychonoff.

Put M1 = T \ (Q × {0}) and M2 = T \ (J × {0}). Clearly, M1 and M2 are
dense in T and T = M1 ∪ M2. The subspace M1 of T is metrizable, since it can
be represented as the union of a disjoint family of open and closed subspaces of T
each of which is homeomorphic to the space Q of rational numbers. The subspace
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M2 of T is also metrizable. This follows from the classical Bing-Nagata-Smirnov
metrization theorem and the fact that Q × {0} is a Gδ-subset of M2. Therefore,
T has a σ-disjoint base.

The Michael line Z is homeomorphic to the closed subspace L = Z ×{0} of T .
Hence, the subspace L of T is not perfect, since the Michael line is not perfect.
Therefore, T is not perfect as well. Hence, T does not have a uniform base and
is not developable. On the other hand, T is obviously paracompact. It has a
Gδ-diagonal, since the identity mapping of the space T onto the product space
R × Q of the usual space R of real numbers with the space Q is continuous.
Since the space R × Q is metrizable, and T is paracompact but not metrizable,
it follows that T is not a p-space [2]. However, T is an s-space (see the definition
and properties of s-spaces in [3]).

To construct subspaces M1 and M2, we could use two dense complementary
subspaces Q1 and Q2 of Q instead of Q (as the range for the second coordinate).
Then the subspaces M1 and M2 would become disjoint.

The space T described above, and the Michael line itself, show that the main
results obtained in the preceding section are sharp. In particular, using the spaces
Z and T , we can verify by standard straightforward arguments that the following
statements hold:

(a) If a space X is the union of a countable family of dense Čech-complete

metrizable subspaces, then X need not be a Moore space and need not be Čech-

complete.
Compare this fact with Theorem 2.4 and Corollary 2.5.
(b) A paracompact space X, which is the union of two dense metrizable sub-

spaces, need not be a p-space and need not have a base of countable order .
Recall that a paracompact space with a base of countable order is metrizable [1].
(c) There exists a non-perfect space X which is the union of a countable family

of dense perfect subspaces of X each of which is a Gδ-subset of X .
Compare the last statement with Theorem 2.1.

In the last example we have stated that the Michael line Z cannot be rep-
resented as the union of finitely many dense metrizable subspaces. This easily
follows from the next simple general statement (which is probably known) an
easy proof of which is omitted:

Proposition 3.2. If the set of non-isolated points of a first-countable space X is

countable, and X can be represented as the union of a finite collection of dense

metrizable subspaces, then X is metrizable.

In certain respects, the above example is the best possible. Indeed, if a para-
compact space X is a subspace of a space Y which is the union of a countable
family of dense metrizable subspaces, and X is either perfect or a p-space, then
X is metrizable. This follows from a theorem of V.V. Filippov [8], since X has a
point-countable base.
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3.1 Unions of finite and locally finite collections of metrizable sub-

spaces. We denote by Mfu the class of spaces which can be represented as the
union of a finite family of metrizable subspaces (which are not necessarily dense in
the union). The class Mfu is much wider than the class of subspaces of members
of Mduf . Nevertheless, we show that the results obtained in Section 2 can be ap-
plied to members of Mfu and provide certain new information on their structure.
Note that S. Oka has studied paracompact perfectly normal spaces which are
unions of finite collections of metrizable subspaces and extended to them some
important theorems of the dimension theory [15]. A brief concentrated survey
of results on finite unions of metrizable spaces is given in the last section of [9].
See this major survey article for the interesting results mentioned there and for
further references.

The key role in the study below belongs to the next elementary lemma. It may
turn out to be a part of the folklore, but in any case I want to give its proof for
the sake of completeness.

Lemma 3.3. Suppose that a space X is the union of a finite family µ of subspaces.

Then there exists a finite disjoint family η of open subsets of X such that
⋃

η is

dense in X , and, for every V ∈ η, there exists a subfamily ν of µ such that V ∩M
is dense in V for every M ∈ ν, and V ⊂

⋃
ν.

Proof: We will prove this statement by induction on the number of elements
in µ. Let µ = {Mi : i = 1, . . . , k} and Zj =

⋃
{Mi : i ∈ ({1, . . . , k}) \ {j}}, for

j = 1, . . . , k. We denote by Vj the largest open subset of X such that Vj ⊂ Zj,

for j = 1, . . . , k, and let Y = X \
⋃
{Vi : i = 1, . . . , k} and Yi = Mi \ V , where

V =
⋃
{Vi : i = 1, . . . , k} and the closure is taken in X . Clearly, Y is open in

X , and Y =
⋃
{Yi : i = 1, . . . , k}. It follows that

⋃
{Yi : i ∈ ({1, . . . , k}) \ {j}

contains no nonempty open subset of Y . Therefore, Yj is dense in Y , for every
j = 1, . . . , k.

By the inductive assumption, the lemma is applicable to each Vj . Hence,
we can fix a finite family ηj of open subsets of X such as in the lemma. Put
η =

⋃
{ηj : j = 1, . . . , k}∪{Y }. Clearly,

⋃
η is dense in X , and each member of η

has the property mentioned in the lemma. The family η need not be disjoint, but
it is finite. Obviously, we can modify η so that it becomes disjoint and satisfies
the other conditions of the lemma. �

Theorem 3.4. Suppose that X =
⋃
{Mα : α ∈ A}, where γ = {Mα : α ∈ A} is

a locally finite family of metrizable subspaces of X . Then:

1) if X is perfect, then X has an open dense subspace with a uniform base

and a σ-disjoint base;

2) if each Mα is Čech-complete, then X has an open dense Čech-complete

subspace with a uniform base and a σ-disjoint base.

Proof: Claim 1: For every nonempty open subset U of X , there exists a nonempty
open subset V of U such that the set {α ∈ A : Mα ∩ V 6= ∅} is finite, and if
Mα ∩ V 6= ∅, then Mα ∩ V is dense in V .
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Indeed, since γ is locally finite, we may assume that A is finite. Now Claim 1
easily follows from Lemma 3.3.

To give a slightly more elementary proof of Claim 1, assume that Mβ ∩ U is
not dense in U for some β ∈ A. Then, for some open nonempty subset U1 of U ,
Mβ ∩U1 = ∅. Let A1 = {α ∈ A : Mα ∩U1 6= ∅}. Then |A1| < |A|. Repeating this
step with U1 and A1 in the role of U and A, at the end of the process we get the
set V we want. Claim 1 is established.

Let us denote by E the family of all nonempty open subsets V of X such that,
for some finite subfamily µ of γ, we have that V ⊂

⋃
µ and Mα ∩ V is dense in

V , for each Mα ∈ µ. The next statement immediately follows from Claim 1:

Claim 2: The family E is a π-base for X .

Claim 3: If X is perfect, then every V ∈ E is a space with a uniform base and a
σ-disjoint base.

Since every subspace of a perfect space is perfect, this statement immediately
follows from the definition of E and the results established in Section 2.

Claim 4: If X is Čech-complete, then every V ∈ E is a Čech-complete space with
a uniform base and a σ-disjoint base.

Since every open subspace of a Čech-complete space is Čech-complete, this
statement follows from the definition of E and Corollary 2.5.

It follows from Claims 2, 3, and 4 that if the assumption in 1) is satisfied, then
X has a π-base E each member of which has a uniform base and a σ-disjoint base.
Similarly, if the assumption in 2) is satisfied, then X has a π-base E each member
of which is Čech-complete and has a uniform base and a σ-disjoint base.

Take any maximal disjoint subfamily ξ of E. Then H =
⋃

ξ is an open subspace
of X , H is dense in X , and X has a uniform base and a σ-disjoint base. Besides,
the space H is Čech-complete if the assumption in 2) is satisfied. �

In the same way, we can prove the next statement, just replace the reference
to Corollary 2.5 by a reference to Theorem 2.4.

Theorem 3.5. Suppose that X =
⋃
{Mα : α ∈ A}, where γ = {Mα : α ∈ A} is

a locally finite family of Čech-complete Moore subspaces of X . Then X has an

open dense Čech-complete Moore subspace.

4. Lindelöf spaces and pseudocompact spaces which are unions of

dense metrizable subspaces

In this section, we consider Lindelöf spaces and pseudocompact spaces that are
members of Mduf , and some other closely related situations. A question posed
10–15 years ago by M.V. Matveev in a letter to the author is answered below.

It is well known that there exists a non-metrizable Lindelöf space with a σ-
disjoint base, just take the version of the Michael line generated by a Bernstein
subset of the space of real numbers. Notice that this space is the union of two
metrizable subspaces. However, it is less easy to answer the question posed by



Addition theorems for dense subspaces 539

M.V. Matveev: Does there exist a non-metrizable Lindelöf space X such that

X = Y ∪ Z, where Y and Z are dense metrizable subspaces of X?
We will call a space X pseudo-ω1-compact, if for every uncountable family

ξ = {Uα : α ∈ A} of nonempty open subsets of X there exists an accumulation
point in X , i.e. x ∈ X such that every neighbourhood of x intersects Uα for
infinitely many α ∈ A. In particular, every Lindelöf space is pseudo-ω1-compact.
Every pseudocompact space is also pseudo-ω1-compact.

Let us call a space X strictly perfect, if for every closed subset F of X there
exists a countable family η of open neighbourhoods of F such that F =

⋂
{U :

U ∈ η}. Clearly, every perfectly normal space is strictly perfect.

Proposition 4.1. Suppose that X = Y ∪Z, where Y and Z are dense subspaces

of X , Z is strictly perfect, and X is pseudo-ω1-compact. Then Y is pseudo-ω1-

compact.

Proof: Assume that Y is not pseudo-ω1-compact. Then, since Y is dense in X ,
there exists an uncountable family ξ = {Wα : α ∈ ω1} of nonempty open subsets
of X such that there is no accumulation point for ξ in Y . Therefore, the set F
of accumulation points for ξ in X is a subset of Z. Clearly, F is closed in Z and
in X . Let us fix a sequence η = {Un : n ∈ ω} of open neighbourhoods of F in Z
such that F is the intersection of the closures in Z of members of η.

The set F is nowhere dense in Z. Indeed, otherwise F would contain a
nonempty open subset of X , since Z is dense in X and F is closed in X . Then
F would intersect Y , which is not the case. Hence, (Wα ∩ Z) \ F 6= ∅, for each
α ∈ ω1, and we can fix n(α) ∈ ω such that the set Vα = (Wα ∩ Z) \ Un(α) is
nonempty. Clearly, there exist an uncountable subset A of ω1 and k ∈ ω such
that n(α) = k, for every α ∈ A. Then γ = {Vα : α ∈ A} is an uncountable
family of nonempty open subsets of Z. Notice that Vα ⊂ Wα, for every α ∈ A.
We also have that Vα ∩ Uk = ∅, for every α ∈ A. Since F ⊂ Uk, it follows
that no point of F is an accumulation point for γ. Hence, no point of X is an
accumulation point for γ. For each α ∈ A we can fix an open subset Hα of X
such that Hα ∩ Z = Vα. Since Z is dense in X , the set Vα is dense in Hα for
α ∈ A. It follows that the uncountable family {Hα : α ∈ A} of nonempty open
subsets of X also does not have accumulation points in X . Therefore, X is not
pseudo-ω1-compact, a contradiction. �

Proposition 4.2. Suppose that X =
⋃
{Zi : i = 1, . . . , n}, for some positive

n ∈ ω, where Zi is a dense strictly perfect subspace of X , for i = 1, . . . , n, and X
is pseudo-ω1-compact. Then Zi is pseudo-ω1-compact, for each i = 1, . . . , n.

Proof: We will prove this statement by induction on n. For n = 1 we have
nothing to prove. In the general case of arbitrary n ∈ ω, we observe that, by
Proposition 4.1, the space

⋃
{Zi : i = 1, . . . , n − 1} (taken in the role of Y ) is

pseudo-ω1-compact. By the inductive assumption, it follows that Z1 is pseudo-
ω1-compact. Since we can take any Zi in the role of Z1, we conclude that each
Zi is pseudo-ω1-compact. �
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Now we are ready to establish one of the main results in this paper:

Theorem 4.3. Suppose that a pseudo-ω1-compact space X is the union of a

finite family µ of dense metrizable subspaces of X . Then X is separable and

metrizable.

Proof: This statement immediately follows from Proposition 4.2, since every
metrizable space is strictly perfect, and every metrizable pseudo-ω1-compact space
is, obviously, separable. �

Recall that the extent e(X) of a space X is countable if every closed discrete
subspace of X is countable. Clearly, if the extent of X is countable, then X is
pseudo-ω1-compact. Therefore, we have:

Corollary 4.4. Suppose that a space X is the union of a finite family µ of dense

metrizable subspaces and satisfies at least one of the following conditions:

1) the extent of X is countable;

2) X is Lindelöf;

3) X has a dense open Lindelöf subspace;

4) X is pseudocompact.

Then X is separable and metrizable.

See [5, Theorem 2.15] for yet another result of similar nature on dense unions
of nice subspaces.

Example 4.5. Let us assume that the Continuum Hypothesis CH holds. Ac-
cording to [13, Chapter 3, Section 40, Subsection 7], there exists a nonempty
subspace L of the space R of real numbers with the following properties:

1) Every nonempty open subset of the space L is uncountable;
2) There exists a countable subset A ⊂ L such that A is dense in L and L \ U

is countable, for every open subset U of R such that A ⊂ U .
Fix a subset A of L satisfying condition 2). Let T be the usual topology on L.

Put B = T ∪ {{x} : x ∈ L \ A}. Clearly, B is a base for some new topology T∗

on the set L, which is stronger than T. The set L with the new topology T∗ is a
topological space L∗.

It follows from conditions 1) and 2) and the definition of the topology T∗ that
the next condition holds:

3) L \ A is dense in L∗, and L \ U is countable, for each U ∈ T
∗ such that

A ⊂ U .
Since A is countable, it follows from 3) that L∗ is Lindelöf. Condition 1) implies

that L \ A is an uncountable discrete (in itself) subspace of L∗. Hence, L∗ does
not have a countable base. Since L∗ is Lindelöf, we see that L∗ is not metrizable.

Put Xa = (L \ A) ∪ {a}, for every a ∈ A. Clearly,

L∗ =
⋃

{Xa : a ∈ A}.

The subspace Xa of L∗ is dense in L∗, since L\A is dense in L∗. The subspace Xa

is metrizable, since it is first-countable and only one point of Xa is non-isolated.
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Since A is countable, we see that the Lindelöf non-metrizable space L∗ is the
union of a countable family of dense metrizable subspaces. Thus, Theorem 4.3
and Corollary 4.4 do not extend to unions of countable families of dense metrizable
subspaces.

Problem 4.6. Must a space X be Dieudonné complete if it can be represented

as the union of two (of finitely many) dense metrizable subspaces?
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