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POROUS MEDIUM EQUATION AND FAST DIFFUSION EQUATION

AS GRADIENT SYSTEMS

Samuel Littig, Jürgen Voigt, Dresden

(Received September 19, 2011)

Abstract. We show that the Porous Medium Equation and the Fast Diffusion Equation,
u̇−∆um = f , with m ∈ (0,∞), can be modeled as a gradient system in the Hilbert space
H−1(Ω), and we obtain existence and uniqueness of solutions in this framework. We deal
with bounded and certain unbounded open sets Ω ⊆ R

n and do not require any boundary
regularity. Moreover, the approach is used to discuss the asymptotic behaviour and order
preservation of solutions.

Keywords: porous medium equation; gradient system; fast diffusion; asymptotic be-
haviour; order preservation

MSC 2010 : 35G25, 47J35, 47H99, 34G20

Introduction

The main objective of this paper is to present a treatment of the porous medium

equation and the fast diffusion equation (abbreviated PME/FDE)

(0.1) u̇−∆um = f

as a gradient system in a functional analytic framework. For m = 1, equation

(0.1) is the inhomogeneous heat equation. For m > 1, equation (0.1) is called

the porous medium equation. It models the flow of an ideal gas in a homogeneous

porous medium, the nonlinear heat transfer and the filtration of incompressible fluids

through a porous stratum. For 0 < m < 1, equation (0.1) is called the fast diffusion

equation, occurring in plasma physics (cf. [11], Chapter 2).

The first named author was supported by the DFG project “Variational problems related
to the 1-Laplace operator”.
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A gradient system is an evolution equation

(0.2) u̇+∇HE (u) = f

in a Hilbert space H , with a Gelfand triple V →֒ H →֒ V ′, where V is a reflexive

Banach space. The “energy functional” E : V → R and the “forcing term” f (a func-

tion with values in H) are given, and u (with values in V ) is the solution. We refer

to Section 1 for details, and we refer to [5] for the theory of gradient systems.

Let Ω ⊆ R
n be open and bounded, and let H := H−1(Ω) be the dual of the

Sobolev space H1
0 (Ω). Then we have V := Lm+1(Ω) ∩ H−1(Ω) ⊆ H−1(Ω) densely,

and with E : V → R defined by

(0.3) E (u) :=
1

m+ 1

∫

Ω

|u(x)|m+1 dx,

we show that the setting of gradient systems can be used for the PME/FDE, in order

to obtain solutions u : [0,∞) → V of Cauchy problems for (0.1), with initial values

u0 ∈ V and forcing terms f : [0,∞) → H . It is implicit in the setup that the solution

has the property that u(t)m ∈ H1
0 (Ω) a.e., and in this sense satisfies (generalized)

Dirichlet boundary values zero.

We note that this setting yields a unified treatment for the PME and the FDE

(including the heat equation). The existence, uniqueness and asymptotics of solu-

tions of the PME/FDE will be obtained by purely functional analytic arguments;

no arguments using elliptic regularity theory, comparison principles or smoothness

of the boundary of Ω are needed.

We treat the PME/FDE without any restriction on the parameter m and allow all

bounded, but also unbounded Ω, provided a Poincaré inequality holds. Our results on

the asymtotic decay rely on the requirement that Lm+1(Ω) should be continuously

embedded into H−1(Ω). This holds for all Ω with finite measure, provided m >

(n−2)/(n+2), and for unbounded Ω in certain cases of fast diffusion ((n−2)/(n+2) 6

m 6 1).

The importance of the space H−1(Ω) for the treatment of evolution equations of

porous medium type

u′(t)−∆β(u(t)) ∋ f(t)

(with a suitable “maximal monotone graph” β) was recognized in [3]. Solutions

of initial value problems in this context are obtained using the theory of evolution

equations involving accretive operators; see for example [3], Theorem 21, and more

recently [1], Theorem 53.

The perception that the porous medium equation (0.2) can be treated in the

context of gradient systems gives an alternative functional analytic access to the
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solution theory. Moreover, the additional structure obtained by the energy functional

E yields possibilities for further investigations of the system, e.g. concerning the

asymptotic behaviour of solutions.

In Section 1 we first give an outline of gradient systems, mainly referring to and

using the notation of [5]. We show that the term ∆um can be interpreted as the

gradient in the space H−1(Ω) of the “energy functional” E defined in (0.3) (Propo-

sition 1.7), and then draw the conclusion concerning the existence and uniqueness

of solutions of the Cauchy problem for the PME/FDE (Theorem 1.8). The section

closes with the proof that the solutions obtained in this way are also “weak solutions”

as considered, for instance, in Vazquez’ monograph [11] (Proposition 1.10).

Under the additional assumption that Lm+1(Ω) is imbedded into H
−1(Ω) we de-

rive the asymptotic behaviour of solutions of the PME/FDE in Section 2. Using

a Grönwall type procedure the PME, the heat equation, and the FDE are treated

simultaneously (Theorem 2.5). In particular, for the FDE, the usual extinction of

the solution in finite time is shown.

In Section 3 we treat order and positivity preservation of the time development

of the PME/FDE. For these results we cannot simply rely on “gradient system

methods”, but rather use a mixture of subgradient system procedures and classical

techniques (Theorem 3.1).

The paper is an outgrowth of a project from phase 2 of the 13th International

Internet Seminar on Gradient Systems, 2009/10. Besides the lectures of the ISEM

Team, R.Chill and E.Fašangová, the material presented in [7] and [11] and ideas

contained in [8] led to our approach. In contrast to the recent treatment in [2],

Section 4, Example 3, where the PME is considered as a gradient system with a non-

constant metric, we need no a priori assumption that the solution takes values in an

interval [ε, 1/ε].

Concerning notation, we only mention some rather fundamental issues and com-

ment on additional notions when they occur in the text. We mention that the

functions in all function spaces are real-valued, and accordingly all vector spaces are

over R. We will denote duality forms on dual pairs and scalar products by 〈 · , · 〉,
with indices indicating the pair of spaces or the underlying Hilbert space, respec-

tively.

1. The PME/FDE as a gradient system

We start by describing the context of gradient systems in more detail. Let V be

a reflexive Banach space that embeds continuously and densely into a Hilbert space

H . Moreover, let E be a continuously differentiable functional defined on V . By the

Gelfand triple setting V →֒ H = H ′ →֒ V ′ we can define the gradient ∇HE of E
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in H as the restriction of the derivative E
′ : V → V ′ of E in the image on H , that

is, ∇HE is the operator given by

D(∇HE ) := {u ∈ V ; ∃v =: ∇HE (u) ∈ H ∀w ∈ V : 〈v, w〉H = 〈E ′(u), w〉V ′,V }.

A gradient system is a differential equation of the form

(1.1) u̇(t) +∇HE (u(t)) = f(t),

where the spaces V and H and the functional E are as above, t ∈ I, where I is

an interval in R, and f ∈ L2,loc(I,H) is given. A solution of (1.1) is a measurable

function u : I → V such that

u ∈ W 1
2,loc(I;H) ∩ L∞(I;V ),

u(t) ∈ D(∇HE ) for almost all t ∈ I, and

equation (1.1) holds for almost all t ∈ I.

Note that by the Sobolev embeddingW 1
2 (I,H) →֒ C(I,H) it makes sense to evaluate

a solution u pointwise and an initial value u(0) = u0 has a well-defined meaning.

The central theorem for existence and uniqueness of gradient systems is the fol-

lowing theorem, which we essentially quote from [5], Theorem 6.1.

Theorem 1.1. Let V be a separable reflexive Banach space that is continuously

and densely embedded into a Hilbert space H , and suppose that E : V → R is

an H-elliptic (i.e., there exists ω > 0 such that the function Eω : V → R, u 7→
E (u)+ 1

2ω‖u‖2H is coercive and convex), convex, continuously differentiable function
and that E

′ maps bounded sets of V to bounded sets of V ′. Then for all T > 0,

f ∈ L2(0, T ;H) and u0 ∈ V the gradient system with initial value,

(1.2)

{
u̇+∇HE (u) = f,

u(0) = u0,

admits a unique solution u ∈ W 1
2 (0, T ;H)∩L∞(0, T ;V ). The solution can be chosen

as a weakly continuous function u : [0, T ] → V , and for this function one has the

energy inequality

(1.3)

∫ t

s

‖u̇(τ)‖2H dτ + E (u(t)) 6 E (u(s)) +

∫ t

s

〈f(τ), u̇(τ)〉H dτ

for all 0 6 s 6 t 6 T .
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P r o o f. For the existence and uniqueness of u we refer to [5], Theorem 6.1.

In this reference the function E is assumed to be coercive. This property is used

in order to obtain bounds for approximating solutions. Replacing [5], Part 2 of the

proof of Theorem 6.1, by [5] Part 2 of the proof of Theorem 8.1, one obtains that

H-ellipticity is sufficient for existence and uniqueness of the solution.

The fact that the solution can be chosen as a weakly continuous function u :

[0, T ] → V is a consequence of [5], Exercise 5.4. In fact, this weakly continuous

function is nothing but the continuous representative u : [0, T ] → H of the function

u ∈ W 1
2 (0, T ;H).

Finally, the energy inequality (1.3), which is stated in [5] only for s = 0, is now

a consequence of the fact that the function u(· + s) is a solution of (1.2), with the

initial value u(s) ∈ V and the right hand side f(·+ s). �

Remark 1.2. The basic idea in the proof of [5], Theorem 6.1, for the construction

of solutions is to apply a Ritz-Galerkin procedure, to solve approximating finite

dimensional gradient systems, and then to take the limit.

This is in contrast to the theory of evolution equations with accretive operators,

where solutions are constructed using the “implicit Euler method” involving Yosida

approximations; see for example [1], Chapter 3.

In the following, a solution u will always be assumed to be the weakly continuous

representative u : [0, T ] → V .

As a consequence of (1.3) we obtain that the energy E (u(t)) is strictly decreasing

in t, provided the force f is zero and the solution is not stationary.

Our goal is to show that the porous medium equation

(1.4)

{
u̇−∆u[m] = f,

u(0) = u0,

for a given power m ∈ (0,∞) and the initial value u0 and the force f in appropriate

spaces, has the structure of a gradient system. In (1.4) we have used the notation

r[m] := sgn(r)|r|m

for r ∈ R. It is common in the theory of the porous medium equation to simply

use the notation rm for the above introduced r[m]. We avoid this abuse of notation

because of apparent inconsistencies. E.g., for negative r and even m the “signed

power” r[m] is negative (whereas, in standard notation, rm is positive).

In view of the physical interpretation of u as a density it might seem unreasonable

to allow negative u. It is known that the PME/FDE is positivity preserving, i.e.,

starting with a positive initial value u0 and assuming the force f to be zero, the

873



solution u(t) remains positive for all times t > 0. In Section 3 we will show this

property in our context.

For the following we assume that Ω ⊆ R
n is open and such that for some C > 0

the Poincaré inequality

(1.5) ‖u‖2 6 C‖∇u‖2
holds for all u ∈ C∞

c (Ω). This is true if Ω is bounded. For a more detailed discussion

of necessary and sufficient conditions for this hypothesis we refer to [10], where it is

shown that it suffices that

̺′(Ω) := sup{R > 0; there exists a ball B ⊆ R
n with radius R,

such that B ∩ (Rn \Ω) contains no interior point}
is finite. Loosely speaking, the above condition says that Ω must not contain arbi-

trarily large balls.

As usual define H1
0 (Ω) to be the closure of C

∞

c (Ω) with respect to the H1(Ω)-norm

(‖ ·‖22+‖∇·‖22)1/2. Due to the Poincaré inequality, on H1
0 (Ω) this norm is equivalent

to the norm ‖∇ · ‖2, and in the following we will use the latter norm. Then H1
0 (Ω)

with the modified norm is a Hilbert space with the scalar product

(u, v) 7→ 〈u, v〉H1
0
:= 〈∇u,∇v〉L2 :=

∫

Ω

∇u · ∇v dx.

The space H−1(Ω) is defined to be the dual space of H1
0 (Ω). It will not be

identified with H1
0 (Ω), but rather interpreted as a space of distributions, as stated

in the following lemma.

Lemma 1.3. Let Ω ⊆ R
n be open and such that the Poincaré inequality (1.5)

holds. Then the mapping −∆: H1
0 (Ω) → H−1(Ω) is an isometric isomorphism (and

in fact the Riesz mapping) between H1
0 (Ω) and H−1(Ω). In particular, H−1(Ω) can

be identified with the set of all distributions of the form −∆v for v ∈ H1
0 (Ω).

P r o o f. Let w ∈ H−1(Ω). Then, by the Fréchet-Riesz representation theorem,

there exists v ∈ H1
0 (Ω) such that for all u ∈ H1

0 (Ω) one has

w(u) = 〈v, u〉H1
0
=

∫

Ω

∇v · ∇u dx.

Considering u ∈ C∞

c (Ω) ⊆ H1
0 (Ω), we obtain that w = −∆v in the sense of distribu-

tions. This shows that −∆: H1
0 (Ω) → H−1(Ω) is surjective.

Let B denote the unit ball in H1
0 (Ω). Then the elementary identity

‖w‖H−1 = sup
u∈B

w(u) = sup
u∈B

〈v, u〉H1
0
= sup

u∈B

∫

Ω

∇v · ∇u dx = ‖v‖H1
0

shows that −∆ is isometric. �
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In the following let

G := (−∆)−1

denote the inverse of −∆: H1
0 (Ω) → H−1(Ω). Then the scalar product in H−1(Ω)

can be written as

〈u, v〉H−1 = 〈Gu,Gv〉H1
0
=

∫

Ω

∇Gu · ∇Gv dx,

because G is an isometry.

Proposition 1.4. Let Ω ⊆ R
n be open, m ∈ (0,∞), and define E : Lm+1(Ω) → R

by

(1.6) E (u) :=
1

m+ 1

∫

Ω

|u|m+1 dx.

Then E is continuously differentiable and convex, and one has

E
′(u)v =

∫

Ω

u[m] v dx

for all u, v ∈ Lm+1(Ω). Moreover, E
′ : Lm+1(Ω) → L(m+1)/m(Ω) maps bounded sets

to bounded sets.

For a proof of this result we refer to [5], Theorem 4.3, or [6], Theorem 3.12

(page 24), Theorem 2.14 (page 53) and Theorem 4.7 (page 71).

In analogy to other gradient systems, where the functional E often has an inter-

pretation as a physical energy, we will call E energy in the following, although there

is no physical energy related to E .

Proposition 1.5. Let Ω ⊆ R
n be open and such that the Poincaré inequality

(1.5) holds. Then:

(a) For all

m ∈ (0, 1] ∩
[n− 2

n+ 2
,∞

)

the space Lm+1(Ω) embeds continuously and densely into H
−1(Ω).

(b) Assume additionally that the measure of Ω is finite. Then the embedding

Lm+1(Ω) →֒ H−1(Ω) is continuous and dense for

m ∈ (0,∞) ∩
[n− 2

n+ 2
,∞

)
.

Note that for bounded Ω the continuous embeddings above (except for m =

(n− 2)/(n+ 2)) are even compact, a fact that we will not use.
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P r o o f. Let us first note that due to the Poincaré inequality, H1
0 (Ω) is contin-

uously embedded into L2(Ω). Thus, due to the Sobolev embedding theorem, H
1
0 (Ω)

is continuously (and densely) embedded into Lp(Ω)

(i) for all p ∈ [2, 2n/(n− 2)] if n > 3 and all p ∈ [2,∞) if n = 1, 2,

(ii) and additionally for all p ∈ (1, 2), if Ω has finite measure.

Standard dualization arguments show that

Lq(Ω) →֒ H−1(Ω)

continuously, where q is chosen conjugate to some admissible p above, the embedding

being injective and dense by the denseness and the injectivity of the embeddings

above. In particular,

(i) q ∈ (1, 2] ∩ [2n/(n+ 2), 2] for arbitrary Ω and

(ii) q ∈ (1,∞) ∩ [2n/(n+ 2),∞), if Ω has finite measure.

The assertion follows by the substitution m = q − 1. �

Remark 1.6. (a) The spaces Lm+1(Ω) and H−1(Ω) are separable and reflex-

ive, and both of the spaces are continuously embedded into the space of distribu-

tions D(Ω)′. This implies that their intersection Lm+1 ∩ H−1(Ω) := Lm+1(Ω) ∩
H−1(Ω) (with norm given by ‖u‖ := ‖u‖m+1 + ‖u‖H−1) is a Banach space. It is

separable and reflexive because it is isomorphic to the closed subspace {(u, u);u ∈
Lm+1 ∩H−1(Ω)} of the product space Lm+1(Ω)×H−1(Ω). The embedding Lm+1 ∩
H−1(Ω) →֒ H−1(Ω) is dense, because C∞

c (Ω) is contained in Lm+1 ∩ H−1(Ω) and

dense in H−1(Ω).

(b) The restriction of E to Lm+1 ∩H−1(Ω) is continuously differentiable, and

(E
∣∣
Lm+1∩H−1)

′ : Lm+1 ∩H−1(Ω) → (Lm+1 ∩H−1(Ω))′

maps bounded sets to bounded sets. This is immediate from Proposition 1.4 and the

continuity of the injection Lm+1∩H−1(Ω) →֒ H−1(Ω). The (obvious) coerciveness of

the functional E implies the H−1(Ω)-ellipticity of its restriction to Lm+1 ∩H−1(Ω).

In the following we will use the notation E also for its restriction to Lm+1∩H−1(Ω).

The following proposition is the key observation which makes it possible to consider

the PME/FDE as a gradient system in H−1(Ω).
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Proposition 1.7. Assume that the Poincaré inequality (1.5) holds for Ω. Then

the gradient ∇HE of E : Lm+1 ∩H−1(Ω) → R,

E (u) :=
1

m+ 1

∫

Ω

|u|m+1 dx,

in the Hilbert space H := H−1(Ω) is given by

D(∇HE ) := {u ∈ Lm+1 ∩H−1(Ω); −∆u[m] ∈ H−1(Ω)},
∇HE (u) = −∆u[m].

P r o o f. By definition, a function u ∈ Lm+1 ∩ H−1(Ω) belongs to D(∇HE ) if

and only if there exists w ∈ H−1(Ω) such that

〈w, v〉H−1 =

∫

Ω

u[m] v dx

for all v ∈ Lm+1 ∩ H−1(Ω), and in this case w is the gradient ∇HE (u) at u. Now

the calculation

〈w, v〉H−1 = 〈Gw,Gv〉H1
0
=

∫

Ω

∇Gw · ∇Gv dx =

∫

Ω

Gwv dx,

valid for all v ∈ Lm+1∩H−1(Ω), yields that Gw = u[m], or equivalently w = −∆u[m].

�

Next we state the main existence and uniqueness theorem of this article.

Theorem 1.8. Let Ω ⊆ R
n be open and such that the Poincaré inequality (1.5)

holds on Ω, and let m ∈ (0,∞). Then for all T > 0, f ∈ L2(0, T ;H
−1(Ω)) and

u0 ∈ Lm+1 ∩H−1(Ω) the PME/FDE gradient system
{
u̇+∇HE (u) = f,

u(0, ·) = u0

admits a unique solution u ∈ W 1
2 (0, T ;H

−1(Ω)) ∩ L∞(0, T ;Lm+1 ∩ H−1(Ω)). The

solution can be chosen as a weakly continuous mapping u : [0, T ] → Lm+1∩H−1(Ω),

and for this mapping one has the energy inequality
∫ t

s

‖u̇(τ)‖2H−1 dτ + E (u(t)) 6 E (u(s)) +

∫ t

s

〈f(τ), u̇(τ)〉H−1 dτ

for all 0 6 s 6 t 6 T . (Recall that Lm+1 ∩ H−1(Ω) reduces to Lm+1(Ω) provided

the embedding Lm+1(Ω) →֒ H−1(Ω) holds; cf. Proposition 1.5.)

P r o o f. Taking into account Proposition 1.7 and recalling Proposition 1.4 to-

gether with Remark 1.6 (b) we obtain the assertion as an immediate consequence of

Theorem 1.1. �
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Remark 1.9. (a) The property that u(t) ∈ D(∇HE ), or equivalently, that

u(t)[m] ∈ H1
0 (Ω), is a weak replacement for u(t)|∂Ω = 0

(b) Note that elements of the domain of ∇HE are regular distributions and thus

have a reasonable physical interpretation.

(c) For a more detailed analysis it might be helpful to get a better understanding

of the structure of D(∇HE ). Note that by the invertibility of −∆: H1
0 → H−1 we

obtain that

(1.7) D(∇HE ) = {u ∈ Lm+1 ∩H−1(Ω); −∆u[m] ∈ H−1(Ω)}
= {u ∈ Lm+1 ∩H−1(Ω); u[m] ∈ H1

0 (Ω)}.

Moreover, recall that u 7→ u[m] is the duality map from Lm+1 → L(m+1)′ =

L(m+1)/m. This continuous nonlinear map is bijective and we have

〈u, u[m]〉Lm+1,L(m+1)/m
= ‖u‖m+1

m+1 and ‖u[m]‖(m+1)/m = ‖u‖mm+1,

and the inverse of u 7→ u[m] is given by v 7→ v[1/m]. (For details on duality mappings

we refer to [6], Chapter II, § 4.) If Ω andm are such that the embedding Lm+1(Ω) →֒
H−1(Ω) holds (cf. Proposition 1.5), this allows to rewrite

D(∇HE ) = {u ∈ Lm+1(Ω); u[m] ∈ H1
0 (Ω)} = {v[1/m]; v ∈ L(m+1)/m(Ω) ∩H1

0 (Ω)}.

Note that Lm+1(Ω) →֒ H−1(Ω) if and only if H1
0 (Ω) →֒ L(m+1)/m(Ω) (see the proof

of Proposition 1.5), and then

D(∇HE ) = {v[1/m]; v ∈ H1
0 (Ω)}.

To illustrate the connection to other common notions of solutions we recall the

concept of a weak solution of the PME/FDE. Let Ω ⊆ R
n be open and bounded,

with Lipschitz boundary, T > 0, QT := (0, T ) × Ω, f ∈ L1(QT ) and u0 ∈ L1(Ω).

A function u ∈ L1(QT ) is called a weak solution of the initial boundary value problem




∂

∂t
u = ∆u[m] + f on QT ,

u(0, ·) = u0, u|[0,T ]×∂Ω = 0,

if

(1) u[m] ∈ L1(0, T ;W
1
1,0(Ω)) and

(2) u satisfies

(1.8)

∫

QT

(
∇u[m] · ∇η − u

∂

∂t
η
)
dxdt =

∫

Ω

u0(x)η(0, x) dx+

∫

QT

fη dxdt

for all (test functions) η ∈ C1(QT ) with η|[0,T ]×∂Ω = 0 and η(T, ·) = 0.

We refer to [11], Definition 5.4, for this notion of a weak solution.
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Proposition 1.10. Assume that Ω is bounded and has a Lipschitz boundary.

Let T > 0, f ∈ L2(0, T ;H
−1(Ω)) ∩ L1(0, T ;L1(Ω)), u0 ∈ Lm+1 ∩H−1(Ω) and let u

be the gradient system solution of the PME/FDE according to Theorem 1.8, with

weakly continuous u : [0, T ] → Lm+1 ∩H−1(Ω).

Then u is a weak solution of the initial boundary value problem for the PME/FDE.

P r o o f. (i) First we show property (1) of weak solutions. We know that u ∈
W 1

2 (0, T ;H
−1(Ω)), and the fact that u is a solution of the gradient system implies

that u(t) ∈ D(∇HE ) for t ∈ [0, T ] a.e.,

−∆u[m] = ∇HE (u) = f − u̇ ∈ L2(0, T ;H
−1(Ω)),

and therefore

u[m] = G(−∆u[m]) ∈ L2(0, T ;H
1
0 (Ω)) ⊆ L1(0, T ;W

1
1,0(Ω)).

(ii) As a first step for the proof of property (2) of weak solutions let η ∈ C1(QT )

be such that η|[0,T ]×∂Ω = 0 and η(T, ·) = 0, and assume additionally that also

(∂/∂t)η ∈ C1(QT ). It is well-known that C
1(Ω) ∩ C0(Ω) ⊆ H1

0 (Ω), with continuous

inclusion, and our hypotheses on η imply that the function [0, T ] ∋ t 7→ η(t, ·) belongs
to C1([0, T ];C1(Ω)∩C0(Ω)) ⊆ C1([0, T ];H1

0 (Ω)). It is not too difficult to show that

then the function [0, T ] ∋ t 7→
∫
Ω u(t, x)η(t, x) dx = 〈u(t), η(t)〉H−1,H1

0
belongs to

W 1
2 (0, T ), with the weak derivative

d

dt

∫

Ω

u(t, x)η(t, x) dx =
d

dt
〈u(t), η(t)〉H−1,H1

0

= 〈u̇(t), η(t)〉H−1,H1
0
+
〈
u(t),

∂

∂t
η(t)

〉

H−1,H1
0

= 〈u̇(t), η(t)〉H−1,H1
0
+

∫

Ω

u(t, x)
∂

∂t
η(t, x) dx.

Integrating and using the fact that u is a solution of the PME/FDE we obtain that

∫ T

0

∫

Ω

u(x, t)
∂

∂t
η(t, x) dxdt = 〈u(T ), η(T )〉H−1,H1

0
− 〈u(0), η(0)〉H−1,H1

0

−
∫ T

0

〈∆u[m](t), η(t)〉H−1 ,H1
0
dt−

∫

QT

fη dxdt

= −
∫

Ω

u0(x)η(0, x) dx+

∫

QT

∇u[m] · ∇η dxdt−
∫

QT

fη dxdt.

This shows equation (1.8) for the present case.

879



(iii) Next, let η ∈ C1(QT ) be such that η|[0,T ]×∂Ω = 0, and assume that there exists

δ > 0 such that η(t, ·) = 0 for all t ∈ (T − δ, T ]. Performing suitable convolutions in

the t-direction one can show that there exists a sequence (ηk) consisting of functions

as in part (ii) such that ηk and the first derivatives of ηk converge uniformly on QT

to η and the corresponding first derivatives of η. Using the validity of (1.8) for η

replaced by ηk, as established in part (ii), we conclude the validity of (1.8) for η.

(iv) Finally, let η ∈ C1(QT ) be such that η|[0,T ]×∂Ω = 0 and η(T, ·) = 0. Let

α ∈ C1(R) be an increasing function, α|(−∞,1/2] = 0, α|[1,∞] = 1. For k ∈ N define

αk and ηk by

αk(t) := α(k(T − t)), ηk(t, x) := αk(t)η(t, x).

Then evidently the functions ηk are of the kind considered in step (iii), and therefore

(1.8) holds for η replaced by ηk. Letting k → ∞ in (1.8) with ηk, the only term

for which it is not evident that it converges to the corresponding term with η is

the second,
∫
QT

u(∂/∂t)ηk dxdt. In fact, because of (∂/∂t)ηk(t, x) = α′

k(t)η(t, x) +

αk(t)(∂/∂t)η(t, x), we only have to show that

∫

QT

u(t, x)η(t, x)α′

k(t) dxdt =

∫ T

0

〈u(t), η(t)〉H−1,H1
0
α′

k(t) dt

tends to zero as k → ∞. Now, u : [0, T ] → H−1(Ω) is continuous, [0, T ] ∋ t 7→
η(t, ·) ∈ H1

0 (Ω) is continuous with η(T, ·) = 0, and therefore 〈u(t), η(t)〉H−1,H1
0
→ 0

as t → T . Using that
∫
R
α′

k(t) dt = 1 and that sptα′

k ⊆ [T − 1/k, T ] we conclude

that the desired convergence holds. �

2. Asymptotic behaviour for the PME/FDE

In this section we assume that Lm+1(Ω) embeds into H
−1(Ω) (cf. Proposition 1.5),

and we assume the validity of the Poincaré inequality (1.5), as before. We define E

as in (1.6) and consider the autonomous PME/FDE gradient system

(2.1)

{
u̇+∇HE (u) = 0,

u(0) = u0

for a given initial value u0 ∈ Lm+1(Ω). Let u : [0,∞) → Lm+1(Ω) be the unique

solution of the above abstract initial value problem according to Theorem 1.8. Our

goal is to show that the solution tends to zero as t goes to infinity, and we will derive

some Lm+1(Ω)-decay estimates. In contrast to other investigations of asymptotics in

the literature we need not distinguish between m < 1, m = 1, and m > 1, a priori.
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Remark 2.1. The function u : [0,∞) → Lm+1(Ω) is weakly continuous by The-

orem 1.1. Thus, by the uniform convexity of Lm+1(Ω), in order to prove continuity

of u : [0,∞) → Lm+1(Ω) at some t0 ∈ [0,∞) it suffices to show that t 7→ ‖u(t)‖m+1

is continuous at t0, or equivalently, that the function g : [0,∞) → [0,∞), defined by

g(t) := E (u(t)) =
1

m+ 1
‖u(t)‖m+1

m+1,

is continuous at t0.

From the energy inequality (1.3) we obtain that g is decreasing, and thus g (and

hence u : [0,∞) → Lm+1(Ω)) is continuous on the complement of a countable subset

of [0,∞), the jump points of the monotone function g. We do not know if these jump

points can occur at all. If the solution has more regularity properties, then it can be

shown that the energy inequality is in fact an equality; cf. [11], Proposition 8.9.

Proposition 2.2. If u is a solution of the gradient system (2.1), then for almost

all t > 0 one has

‖u̇(t)‖H−1 >
√
λ1‖u(t)‖mm+1 =

√
λ1(m+ 1)m/(m+1)

E (u(t))m/(m+1),

where λ1 is such that 1/
√
λ1 is the optimal embedding constant of H

1
0 (Ω) into

L(m+1)/m(Ω).

P r o o f. Since u is a solution we have for almost all t > 0 that

u̇(t) = −∆u(t)[m],

and for these t the Sobolev embedding H1
0 (Ω) →֒ L(m+1)/m(Ω) implies that

‖u̇(t)‖H−1 = ‖ −∆u(t)[m]‖H−1 = ‖u(t)[m]‖H1
0
>

√
λ1‖u(t)[m]‖(m+1)/m

=
√
λ1‖u(t)‖mm+1 =

√
λ1(m+ 1)m/(m+1)

E (u(t))m/(m+1).

�

Inserting the previous estimate into the energy estimate (1.3) we directly derive

the following proposition.
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Proposition 2.3. Let u0 ∈ Lm+1(Ω), and let u : [0,∞) → Lm+1(Ω)∩H−1(Ω) be

the solution of the gradient system (2.1). Then for all 0 6 s 6 t one has the estimate

0 6 E (u(t)) 6 E (u(s))− λ1(m+ 1)2m/(m+1)

∫ t

s

E (u(τ))2m/(m+1) dτ.

In the following we discuss the consequences for the asymptotics of the solutions

of the porous medium gradient system.

First of all we see that t 7→ E (u(t)) is not only decreasing, but also goes to zero

as t tends to infinity, otherwise one would get a contradiction to Proposition 2.3. In

particular, this implies that the Lm+1-norm (and hence also the H
−1-norm) of the

solution tends to zero. Our next goal is to derive a decay rate for the solution.

We need the following proposition.

Proposition 2.4. Let Φ: [0,∞) → [0,∞) be monotone increasing. Let g :

[0,∞) → [0,∞) be a decreasing function satisfying the integral inequality

(2.2) g(t) 6 g(s)−
∫ t

s

Φ(g(τ)) dτ

for all t > s > 0, and let f : [0,∞) → [0,∞) be a solution of the integral equation

f(t) = g(0)−
∫ t

0

Φ(f(τ)) dτ.

Then f(t) > g(t) for all t > 0.

P r o o f. Note that the equality for f implies that f(t) = f(s) −
∫ t

s
Φ(f(τ)) dτ

for all t > s > 0.

Define h := g− f . Then the monotonicity of g and the continuity of f imply that

h(t−) > h(t) > h(t+) for all t > 0 (where h(t−) and h(t+) denote the left-hand and

right-hand limits of h at t, respectively).

Assume that there exists t > 0 such that h(t) = g(t)− f(t) > 0. Let

s0 := sup{τ ∈ [0, t);h(τ) 6 0}.

Then s0 < t because h(t−) > h(t) > 0, and for all s ∈ (s0, t] one has h(s) > 0, i.e.,

g(s) > f(s). From 0 > h(s0−) > h(s0) > h(s0+) > 0 one obtains that h(s0) = 0.

(This also holds if s0 = 0.)

Applying the integral inequality (2.2) with s = s0 and using the monotonicity of

Φ we get the contradiction

f(t) < g(t) 6 g(s0)−
∫ t

s0

Φ(g(τ)) dτ 6 f(s0)−
∫ t

s0

Φ(f(τ)) dτ = f(t).

�
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For given u0 ∈ Lm+1(Ω) we define the functions Gm : [0,∞) → [0,∞) (m ∈
(0,∞)),

Gm(t) :=





((E (u0)
(1−m)/(1+m)

−λ1(1 −m)(m+ 1)−(1−m)/(1+m)t)+)(1+m)/(1−m) if m < 1,

E (u0)e
−2λ1t if m = 1,

(λ1(m− 1)(m+ 1)(m−1)/(m+1)t

+E (u0)
−(m−1)/(m+1))−(m+1)/(m−1) if m > 1.

The plus in the case m < 1 indicates that we take the positive part, and therefore

Gm(t) = 0 for all

t > tmax :=
(m+ 1)(1−m)/(1+m)

λ1(1−m)
E (u0)

(1−m)/(1+m).

Theorem 2.5 (Asymptotic behaviour). Assume that the Poincaré inequality

(1.5) holds for Ω and let m > 0 be such that the embedding Lm+1(Ω) →֒ H−1(Ω)

holds, let u0 ∈ Lm+1(Ω) and let u : [0,∞) → Lm+1(Ω) be the unique solution of (2.1).

Then E (u(t)) is dominated by the function Gm defined above, i.e., E (u(t)) 6 Gm(t)

for all t > 0.

P r o o f. Recall the function g : [0,∞) → [0,∞), g(t) := E (u(t)), from Re-

mark 2.1.

Let Φ: [0,∞) → [0,∞) be defined by

Φ(r) := λ1(m+ 1)2m/(m+1) r2m/(m+1).

It is straightforward to check that Gm is a solution of the integral equality

Gm(t) = E (u0)− λ1(m+ 1)2m/(m+1)

∫ t

0

Gm(τ)2m/(m+1) dτ

= E (u0)−
∫ t

0

Φ(Gm(τ)) dτ.

Moreover, the function g is monotone decreasing as the energy of a gradient system,

and Proposition 2.3 implies that the integral inequality (2.2) holds for all 0 6 s 6 t.

Thus the assertion is a consequence of Proposition 2.4. �

Remark 2.6. Theorem 2.5 shows that the energy E of solutions of the PME/

FDE with f = 0 tends to zero as t goes to infinity as follows:

(1) polynomially with decay rate −(m+ 1)/(m− 1) provided m > 1,
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(2) exponentially with decay rate −2λ1 provided m = 1,

(3) in finite time for m < 1.

Many types of these results are known. We refer to [9], [7], [11] for general information

and to [1], Proposition 5.13, for a version of (3).

Concerning the case m = 1 we note that in this (linear!) case the number λ1

is the infimum of the spectrum of the negative Laplace operator, and our estimate

reproduces the known asymptotic decay of the norm with rate −λ1.

Remark 2.7. Apart from the decay due to the energy inequality (1.3), the

central estimate of our derivation of the asymptotic behaviour is the elementary

identity

‖E ′(v)‖m/(m+1) = (m+ 1)m/(m+1)
E (v)m/(m+1)

holding for all arguments v ∈ Lm+1(Ω) of our C
1-functional E . Note that this

formula implies that for all 0 < θ 6 m/(m+ 1) there exists C > 0 and a neighbour-

hood U of zero such that the  Lojasiewicz-Simon inequality

|E (v)− E (0)|1−θ
6 C‖E ′(v)‖m/(m+1)

holds for all v ∈ U . Even though [5], Theorem 12.2, does not directly apply, we

derive similar (and slightly better) decay rates in our approach.

3. Order and positivity preservation

The goal of this section is to present a proof of the following result; the hypothesis

that Lm+1(Ω) embeds into H
−1(Ω) will no longer be needed in the present section.

Theorem 3.1 (Comparison principle). Let Ω ⊆ R
n be open and such that the

Poincaré inequality (1.5) holds, m > 0. Let u1,0, u2,0 ∈ Lm+1∩H−1(Ω)), u1,0 6 u2,0,

and let u1, u2 ∈ W 1
2,loc([0,∞);H−1(Ω)) ∩ L∞([0,∞);Lm+1 ∩ H−1(Ω)) denote the

unique gradient system solutions (Theorem 1.8) of the PME/FDE

(3.1) u̇−∆u[m] = 0

with initial values u1,0, u2,0, respectively. Then u1(t) 6 u2(t) for all t > 0.

Remark 3.2 (Positivity preservation). Setting u1,0 = 0 in Theorem 3.1 we ob-

tain that for initial values u0 > 0 the unique solution u of (3.1) remains positive:

u(t) > 0 for all t > 0.
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We note that (at least for bounded Ω with sufficiently smooth boundary) these

results are known for the PME/FDE (cf. [11], Proposition 6.1 (page 127)). How-

ever, we will show that general properties of gradient systems, instead of arguments

involving classical constructions, can be applied to obtain the assertions.

Before we turn to the proof let us recall standard concepts to prove order and

positivity preservation of gradient systems. We consider (1.1) in the setting as in-

troduced at the beginning of Section 1 and assume additionally that E is convex

and coercive. It is well-known that gradient systems of that kind are subgradient

systems, i.e., for f : I → H given, u is a solution of the gradient system (1) if and

only if u is a solution of the subgradient system

(3.2) u̇(t) + ∂Ẽ (u(t)) ∋ f(t),

where

Ẽ (u) :=

{
E (u) if u ∈ V,

∞ if u ∈ H \ V,
and ∂Ẽ : H → 2H denotes the subdifferential of convex analysis. A solution of the

subgradient system (3.2) is a function

u ∈ W 1
2,loc(I;H), with u(t) ∈ D(∂Ẽ ) := {u ∈ H ; ∂Ẽ (u) 6= ∅} for almost all t ∈ I,

and equation (3.2) holds for almost all t ∈ I.

For an exposition of the theory of subgradient systems we refer to [5], Lectures 13

and 14. The correspondence of solutions of gradient systems and subgradient sys-

tems relies on the existence and uniqueness results for subgradient systems (cf. [5],

Theorem 14.1) and the fact that in the above setting we have

(3.3) D(∂Ẽ ) = D(∇HE ),

∂Ẽ (u) = {∇HE (u)} for all u ∈ D(∂Ẽ ).

After this short general discussion we return to the case of autonomous systems

(i.e., the case that the forcing term f in (1.1) and (3.2) is equal to zero). Let

u0 ∈ {u ∈ H ; Ẽ (u) < ∞} be given and let u be the unique solution of the subgradient
system (3.2). Then we have the exponential formula

(3.4) u(t) = lim
k→∞

(Jt/k)
ku0,

with local uniform convergence on [0,∞), where Jh : H → H (h > 0) is the operator

defined by

(3.5) Jhg = argmin
v∈H

(
E (v) +

‖v − g‖2H
2h

)
.

We refer to [5], Corollary 14.8, for this statement.
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A set C ⊆ H is called invariant under a (sub)gradient system if u0 ∈ C implies

that u(t) ∈ C for all t > 0 (where u is the solution with the initial value u0). The

following remark illustrates how in the general context conditions can be formulated

for a set to be invariant.

Remark 3.3. Let Ẽ : H → R∪{∞} be a lower semicontinuous, convex, coercive
function. Let C be a closed convex set contained in the closure of the effective domain

Deff(Ẽ ) := {u ∈ H ; Ẽ (u) < ∞} in H . Then C is invariant under the subgradient

system

u̇+ ∂Ẽ (u) ∋ 0

if and only if

Ẽ (PCu) 6 Ẽ (u)

for all u ∈ H , where PC : H → C denotes the best approximation projection onto C.

For the proof we refer to [4], Proposition 4.5, and [5], Theorem 15.3 and Re-

mark 15.4.

We mention that in many classical situations (p-Laplace evolution, weighted p-

Laplace evolution) the Hilbert space H is an L2-space, and the set C is often taken

to be the standard positive cone L2,+. Then the best approximation projection onto

C is given by u 7→ u+, and the necessary and sufficient condition for positivity

preservation reduces to the statement that Ẽ (u+) 6 Ẽ (u) for all u ∈ L2. In order

to apply the above criterion in the context of our treatment of the PME/FDE, one

would have to calculate the best approximation projection from H−1(Ω) onto certain

convex sets. We have not been able to apply this procedure in our context.

Our method of proof to obtain order preservation is a combination of classical

techniques and subgradient system arguments.

P r o o f of Theorem 3.1. Let H := H−1(Ω) × H−1(Ω), and define E : H →
R ∪ {∞} by

E(u1, u2) := Ẽ (u1) + Ẽ (u2),

with

Ẽ (u) :=

{
E (u) if u ∈ Lm+1 ∩H−1(Ω),

∞ if u ∈ H−1(Ω) \ Lm+1(Ω).

Given u0 = (u1,0, u2,0) ∈ (Lm+1 ∩H−1(Ω))2, it is easy to see that u = (u1, u2) ∈
W 1

2,loc([0,∞);H) is a solution of the subgradient system

(3.6) u̇+ ∂E(u) ∋ 0
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with an initial value u0 if and only if u1 and u2 are solutions of the subgradient

system

(3.7) u̇+ ∂Ẽ (u) ∋ 0

with initial values u1,0 and u2,0, respectively, and this holds if and only if u1 and u2

are solutions of the gradient system (3.1) with initial values u1,0 and u2,0, respec-

tively.

For α > 0 we define the convex set

Cα := {u = (u1, u2) ∈ (Lm+1 ∩H−1(Ω))2;

‖u1‖m+1 6 α, ‖u2‖m+1 6 α, u1 6 u2}.

Then in order to show the comparison principle it is sufficient to show that for

all α > 0 the set Cα is invariant under the subgradient system (3.6). In order to

achieve this we will apply an argument involving the operator Jh from the exponential

formula (3.4).

Let α > 0. First we note that Cα is a closed subset of H. Indeed, let (u
k) be

a sequence in Cα, u
k → u in H. Then (uk) is bounded in H and (Lm+1(Ω))

2; thus

the reflexivity of (Lm+1 ∩H−1(Ω))2 implies that there exist ũ = (ũ1, ũ2) ∈ Lm+1 ∩
H−1(Ω) and a subsequence (ukj ) such that ukj → ũ weakly in (Lm+1 ∩H−1(Ω))2.

Then also ukj → ũ weakly in H, and therefore u = ũ. Moreover, we also obtain that

u
kj

i → ũi = ui weakly in Lm+1(Ω) (i = 1, 2), and therefore u = ũ ∈ Cα.

Let Jh be the operator associated with (3.7). Let u, g ∈ H−1(Ω). By standard

minimization arguments from convex analysis we know that

(3.8) u = Jhg = argmin
v∈H−1

(
Ẽ (v) +

‖v − g‖2H−1

2h

)

if and only if v 7→ Ẽ (v) + 1
2‖v − g‖2H−1/h is subdifferentiable at u and

0 ∈ ∂
(
v 7→ Ẽ (v) +

‖v − g‖2H−1

2h

)
(u)

(cf. [5], Lemma 13.10), and this is equivalent to

g − u ∈ h∂Ẽ (u) = {−h∆u[m]},

by (3.3).

If g ∈ Lm+1 ∩H−1(Ω), then (3.8) shows that u ∈ Lm+1 ∩H−1(Ω) and ‖u‖m+1 6

‖g‖m+1.
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Now, let g = (g1, g2) ∈ Cα, uj := Jhgj for j = 1, 2. Then

(3.9) gj − uj = −h∆u
[m]
j (j = 1, 2).

Moreover, u
[m]
1 , u

[m]
2 ∈ H1

0 (Ω) ∩ L(m+1)/m(Ω) (cf. (1.7)), and thus

w := (u
[m]
1 − u

[m]
2 )+ = (u

[m]
1 − u

[m]
2 )1[u1>u2] ∈ H1

0 (Ω) ∩ L(m+1)/m(Ω)

and

∇w = (∇u
[m]
1 −∇u

[m]
2 )1[u1>u2]

(see e.g. [12], page 47). Using w as an (admissible!) test function in (3.9) we obtain

that

∫

Ω

(u1 − u2)w dx = −h

∫

Ω

(∇u
[m]
1 −∇u

[m]
2 ) · ∇w dx+

∫

Ω

(g1 − g2)w dx

= −h

∫

[u1>u2]

|∇u
[m]
1 −∇u

[m]
2 |2 dx−

∫

Ω

(g2 − g1)w dx

6 0,

since the integrands in the integrals are > 0. On the other hand, we have

∫

Ω

(u1 − u2)w dx =

∫

[u1>u2]

(u1 − u2)(u
[m]
1 − u

[m]
2 ) dx

and since the integrand is strictly positive we conclude that [u1 > u2] is a set of

measure zero, i.e. u1 6 u2.

Thus we have shown that (u1, u2) ∈ Cα, and this shows that Jh × Jh leaves the

set Cα invariant.

Let now u0 = (u1,0, u2,0) ∈ Cα and t > 0, and let u1(t), u2(t) be the solutions of

the PME/FDE (3.1) with initial values u1,0, u2,0 at time t. Applying the exponential

formula (3.4) we obtain that

(u1(t), u2(t)) = lim
k→∞

((Jt/k)
ku1,0, (Jt/k)

ku2,0) in H.

Recalling that Cα is invariant under Jh × Jh and that Cα is closed we conlude that

(u1(t), u2(t)) ∈ Cα. �

Acknowledgement. The authors are grateful to the referee for the suggestion
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