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Abstract. An S -closed submodule of a module M is a submodule N for which M/N is
nonsingular. A module M is called a generalized CS-module (or briefly, GCS-module) if
any S -closed submodule N of M is a direct summand of M . Any homomorphic image of
a GCS-module is also a GCS-module. Any direct sum of a singular (uniform) module and
a semi-simple module is a GCS-module. All nonsingular right R-modules are projective if
and only if all right R-modules are GCS-modules.
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1. Introduction and preliminaries

In recent years theory of CS-modules and rings has come to play an important

role in the theory of rings and modules. A module M is called a CS-module if

every submodule is essential in a direct summand ofM , or equivalently, every closed

submodule is a direct summand of M . Although this generalization of injectivity

is extremely useful, it does not satisfy some important properties. For example,

direct sums of CS-modules need not be a CS-module; also, homomorphic images of

CS-modules need not be a CS-module; also, submodules of CS-modules need not be

CS-modules. Much work has been done to find necessary and sufficient conditions

to ensure that the extending property is preserved under various extensions.

In this paper, we change the condition of CS-modules: “every closed submodule

is a direct summand”, to the condition that every S -closed submodule is a direct

summand. Thus we generalize CS-modules to GCS-modules.

In Section 2, we give the definition of GCS-modules and show that a direct sum-

mand of a GCS-module and any image of a GCS-module are all GCS-modules.
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In Section 3, we discuss when a direct sum of GCS-modules is a GCS-module.

A direct sum of a singular module and a semi-simple module is a GCS-module.

In Section 4, we investigate rings for which all modules are GCS-modules. All

nonsingular right R-modules are projective if and only if all right R-modules are

GCS-modules. If R is right nonsingular, then all R modules are GCS-modules if and

only if R is (left and right) hereditary Artinian ring.

Throughout this paper, unless otherwise stated, all rings are associative rings with

identity and all modules are unitary right R-modules.

A submodule N of M is called an essential submodule, denoted by N 6e M , if for

any nonzero submodule L ofM , L∩N 6= 0. A closed submodule N ofM , denoted by

N 6c M , is a submodule which has no proper essential extension in M . If L 6c N

and N 6c M , then L 6c M (see [4]).

In [4], a module M is called singular if Z(M) = M , where Z(M) = {m ∈ M ;

mI = 0 or some essential right ideal I of R} and called nonsingular if Z(M) = 0.

A ring R is called right nonsingular if RR is nonsingular, i.e. Zr(R) = 0. It is

well-known that if N is essential in M then M/N is singular. The converse holds if

M is nonsingular.

Let M be an R-module, we use Rad(M) to denote the Jacobson radical of M and

r(m) = {r ∈ R ; mr = 0} the right annihilator of m ∈ M .

2. Generalized CS-modules

Recall from [4] that an S -closed submodule of a module M is a submodule N

for which M/N is nonsingular, and we use L∗(M) to denote the collection of all

S -closed submodules ofM . Note that L∗(M) is closed under arbitrary intersection:

For if {Nα} ⊆ L∗(M), then M/(∩Nα) can be embedded in the nonsingular module

Π(M/Nα). Thus for any N 6 M , there is a smallest S -closed submodule of M

containing N , which is called the S -closure of N in M . Any S -closed submodule is

closed but the converse is not true. For example, 0 is closed in a module M , but 0 is

an S -closed submodule of M if and only if M is nonsingular. It is easy to see that

for any R-module M over a right nonsingular ring R, L∗(M) = {M} if and only if

M is singular.

Now we collect some results for S -closed submodules as follows.

Lemma 2.1 ([4], Proposition 2.3). Assume that Zr(R) = 0. Let N 6 M be

R-modules and K the S -closure of N in M . Then

(1) K/N = Z(M/N);

(2) K is the only S -closed submodule ofM for which N 6 K and K/N is singular;
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(3) if M is nonsingular, then K is the only S -closed submodule of M for which

N 6e K.

Lemma 2.2. Let M be an R-module and A 6 B 6 M . Then

(1) everyS -closed submodule ofM is closed inM . IfM is nonsingular, then every

closed submodule of M is S -closed in M ;

(2) if A ∈ L∗(B) and B ∈ L∗(M), then A ∈ L∗(M);

(3) if Aα ∈ L∗(Bα) for each α in some index set, then ⊕Aα ∈ L∗(⊕Bα) and

ΠAα ∈ L∗(ΠBα);

(4) if f : M → N and K ∈ L∗(N), then f−1(K) ∈ L∗(M);

(5) if M is nonsingular, then A 6e B if and only if B is contained in the S -closure

of A in M .

P r o o f. See [4], Proposition 2.4, Exercises 2A.5, 2A.7, 2A.8, 2A.9. �

Now we give the definition of generalized CS-modules, or briefly GCS-modules,

which generalizes CS-modules, as follows:

Definition 2.3. A moduleM is called a generalized CS-module (or briefly, GCS-

module) if for any nonzero submodule N of M , the S -closure of N in M is a direct

summand of M .

Clearly, any CS-module is a GCS-module and any singular module is a GCS-

module.

Also any module M satisfying Z2(M) = M is a GCS-module, where the sub-

module Z2(M) of M is defined by Z2(M)/Z(M) = Z(M/Z(M)). In fact, let N

be any S -closed submodule of M . Consider the exact sequence 0 → Z(M) →

M → M/Z(M) → 0, we have 0 → HomR(M/Z(M),M/N) → HomR(M,M/N) →

HomR(Z(M),M/N). As both Z(M) and M/Z(M) are singular and M/N is non-

singular, we have that HomR(M/Z(M),M/N) = HomR(Z(M),M/N) = 0. Hence

HomR(M,M/N) = 0 and M = N .

By [4], Proposition 2.4, a nonsingular module M is a GCS-module if and only if

M is a CS-module. By the above definition, we have the following proposition:

Proposition 2.4. (i) Let R be any ring andM an R-module. Then the following

assertions are equivalent:

(1) M is a GCS-module.

(2) Any S -closed submodule is a direct summand.

(3) For any homomorphism f : M → M ′ with M ′ nonsingular, ker f is a direct

summand of M .

(4) For any S -closed submodule N of M , the exact sequence: 0 −→ N −→ M −→

M/N −→ 0 splits.
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If R is right nonsingular, then 1–4 are equivalent to:

(5) For any submodule N of M , there is a direct summand K ⊇ N of M such that

K/N is singular and M/K is nonsingular.

(ii) Let R be a ring andM a nonsingular R-module. Then the following assertions

are equivalent:

(1) M is a CS-module.

(2) M is a GCS-module.

P r o o f. We show (i) only, (ii) is obvious.

(1) ⇒ (2). Since the closure of a S -closed submodule N of M is N itself.

(2) ⇒ (3). Obvious.

(3) ⇒ (4). By (3) N is a direct summand of M , (4) follows.

(4) ⇒ (1). Obvious.

Now assume that R is right nonsingular.

(2) ⇒ (5). Let K be the S -closure of N , then M/K is nonsingular and K/N is

singular by Lemma 2.1. (5) follows.

(5)⇒ (3). By (5), there is a direct summandK ofM such thatK/ ker f is singular

andM/K is nonsingular. SinceM/ ker f ∼= M ′ is nonsingular, henceK/ ker f is both

singular and nonsingular, so K = ker f . �

However, in general, a GCS-module need not be extending.

Example 2.5. Let R be any ring and M a singular R-module with unique com-

position series M ⊃ U ⊃ V ⊃ 0. In [6], Corollary 7.4, it is shown that M ⊕ U/V is

not an CS-module, but is a GCS-module.

Also, a GCS-module need not be singular.

Example 2.6. Let Z be the ring of all integers. Then Z is extending and thus it

is a GCS-module as a right Z-module. But Z is not singular.

A closed submodule of an CS-module is a direct summand. But for a GCS-module,

a closed submodule need not be a direct summand. For example, letM = Zp⊕Zp3 be

a Z-module, for a prime p. Obviously,M is a GCS-module, butN = Z(1+Zp, p+Zp3)

is closed and is not a direct summand of M .

A submodule of a GCS-module need not be a GCS-module, see:

Example 2.7. Let R =
(

Z Z
0 Z

)

, where Z is the ring of all integers. By [1],

Example 1.3, R is not right extending hence not a GCS-module, since R is right

nonsingular. But R is a submodule of its injective hull S, while S is a CS-module

and hence a GCS-module.
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Recall that a submodule N of M is called a fully invariant submodule if for every

f ∈ S we have f(N) ⊆ N , where S = EndR(M). If M = K ⊕ L and N is

a fully invariant submodule of M , then we have N = (N ∩ K) ⊕ (N ∩ L) and

M/N = K/(N ∩K)⊕L/(N ∩L). For example, let p ∈ N be any prime and consider

the Prüfer group Zp∞ =
∑

n∈N
Z{1/pn+Z} =

⋃

n∈Z
Z{1/pn+Z} ⊂ Q/Z, where Q is the

ring of all rational numbers. Then every submodule of Zp∞ is fully invariant (see [7],

page 144, 17.13).

Proposition 2.8. Let R be a right nonsingular ring andM a GCS-module. Then

any fully invariant submodule is a GCS-module.

P r o o f. Let N be a fully invariant submodule of M and L a submodule of N .

Then, since M is a GCS-module, there are direct summands K, K ′ of M such that

M = K⊕K ′, L 6 K and that K is theS -closure of L inM , i.e., K/L is singular and

M/K is nonsingular. Since N is fully invariant, we have N = (N ∩K)⊕ (N ∩K ′).

Obviously, L 6 N ∩ K and (N ∩ K)/L 6 K/L is singular. Since N/(N ∩ K) ∼=

(N +K)/K 6 M/K is nonsingular, N ∩K is an S -closed submodule of N . So N

is a GCS-module. �

From [5] a decompositionM = ⊕Mα over some collection of submodules of a mod-

ule M is deep if for every submodule N of M we have N = ⊕(N ∩Mα). It is known

that for a commutative ring R any decomposition of a cyclic R-module is deep.

Corollary 2.9. We have the following:

(1) Let R be a right nonsingular ring andM a distributive GCS-module. Then any

submodule is a GCS-module.

(2) Any submodule of Zp∞ is a GCS-module, as a Z-module. (Note that every

non-zero proper submodule of Zp∞ is self-injective but not Z-injective.)

Suppose that Zr(R) = 0 and any decomposition of module M is deep. If M is

a GCS-module then any submodule of M is a GCS-module.

(3) If R is a commutative nonsingular ring, then any submodule of a cyclic GCS-

module is a GCS-module.

A ring R is called a right GCS-ring if RR is a GCS-module. The following propo-

sition shows equivalent conditions for a cyclic submodule of a module to be a GCS-

module over a right GCS-ring.
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Proposition 2.10. Let R be a right GCS-ring and M a right R-module. Then

the following are equivalent:

(1) M is nonsingular.

(2) Every cyclic submodule of M is projective and a GCS-module.

(3) Every cyclic submodule of M is projective.

P r o o f. (1)⇒ (2). Suppose that M is nonsingular and N is a cyclic submodule

ofM . Then there is a right ideal I of R such that N ∼= R/I. Since R is a right GCS-

ring and N is nonsingular, I is an S -closed submodule of RR; hence I is a direct

summand of RR. Thus N is isomorphic to a direct summand of R; hence N is

projective and a GCS-module.

(2) ⇒ (3). Obvious.

(3) ⇒ (1). For any m ∈ Z(M), the module mR is projective and isomorphic to

R/r(m), where r(m) is the right annihilator of m. Then r(m) is a direct summand

of R. But m ∈ Z(M) implies that there is an essential right ideal I of R such that

mI = 0, hence I 6 r(m) and r(m) 6e R. Thus r(m) = R and m = 0, hence

Z(M) = 0. �

Example 2.11 ([2], Example 2.3). Let S be the ring of all 3× 3 upper triangular

matrices over the field of complex numbers and R the sub-ring of S consisting of all

elements of S with a real number in the (2, 2)-position. Then R is a CS-ring. Let e

be the element of R with 1 in the (3, 3)-position and 0 elsewhere, and set I = Re.

Then I is an ideal of R. But R/I is not a right CS-ring.

This example shows that a homomorphic image of a CS-ring need not be a CS-

ring. But any factor module of a singular module is singular; now we will show that

any image of a GCS-module is a GCS-module.

A direct summand of an CS-module is also extending (see [6]). For GCS-modules,

we first show the following proposition and then show that any direct summand of

a GCS-module is a GCS-module.

Proposition 2.12. Let M be a GCS-module. Then any homomorphic image of

M is a GCS-module. In particular, any direct summand of M is a GCS-module.

P r o o f. Let f : M → N be an epimorphism and L an S -closed submodule

of N . By Lemma 2.2 (4), f−1(L) is an S -closed submodule of M . Since M is

a GCS-module, M = f−1(L)⊕K for some submodule K ofM . It is easy to see that

N = L⊕ f(K) and so N is a GCS-module. �
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Corollary 2.13. Let R be any ring and M an R-module.

(1) Any S -closed submodule of an injective (quasi-injective, extending) module is

injective (quasi-injective, extending).

(2) If M is an extending module, then any nonsingular homomorphic image is

extending.

P r o o f. Since any injective module is a GCS-module and any S -closed sub-

module is closed. �

Since any module is a homomorphic image of some projective module, we have:

Corollary 2.14. (i) Let R be a ring. Then the following are equivalent:

(1) Every R-module is a GCS-module.

(2) Every projective R-module is a GCS-module.

(ii) Let R be a commutative ring. Then the following are equivalent:

(1) R is a GCS ring.

(2) Every cyclic R-module is a GCS-module.

It is well known that a ring R is right hereditary if and only if every factor module

of an injective right R-module is injective.

Corollary 2.15. Let R be a ring such that every GCS-module is injective. Then

R is right hereditary.

Proposition 2.16. Let R be a right nonsingular ring and f : M → M ′ an epi-

morphism. Suppose that M ′ is a GCS-module and Ker f is singular injective. Then

M is a GCS-module.

P r o o f. Let N 6 M . First, we assume that Ker f ⊆ N 6 M , then f(N) 6 M ′.

Since M ′ is a GCS-module, there is a decomposition of M ′, M ′ = K ⊕H such that

K/f(N) is singular and M ′/K is nonsingular. So M = f−1(K) + f−1(H). Since

Ker f 6 f−1(H) and Ker f is injective, f−1(H) = T ⊕Ker f for some submodule T

of f−1(H). Thus M = f−1(K) + T . Since f−1(K)∩ T ⊆ f−1(K)∩ f−1(H) = Ker f

and f−1(K)∩ T = f−1(K)∩ T ∩ T ⊆ Ker f ∩ T = 0, we have M = f−1(K)⊕ T and

N 6 f−1(K).

If x ∈ f−1(K), then f(x) ∈ K and there is an essential right ideal I of R such

that f(x)I ⊆ f(N). It is easy to see that xI ⊆ N and that f−1(K)/N is singular.

Also, since K ∈ L∗(M ′), we have f−1(K) ∈ L∗(M) by Lemma 2.2 (4).

Now we assume that N + Ker f . Set L = N + Ker f , then f(L) = f(N). As the

case above, there is a decomposition ofM = f−1(K)⊕T such that f−1(K)/L is sin-

gular and f−1(K) ∈ L∗(M). Since Ker f is singular, we have that (N +Ker f)/N ∼=
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Ker f/(N ∩Ker f) is singular. Since R is right nonsingular, we have that f−1(K)/N

is singular.

In either case, M is a GCS-module. �

Proposition 2.17. Let R be a right nonsingular ring and M a GCS-module.

Then M = Z(M) ⊕ T for some CS-submodule T of M . In this case T is Z(M)-

injective.

P r o o f. If Z(M) = 0 or Z(M) = M , it is trivial.

Suppose that 0 < Z(M) < M . Since M is a GCS-module, there are direct

summandsK, T ofM such thatM = K⊕T , Z(M) 6 K and thatK/Z(M) is singular

andM/K is nonsingular. So K is singular. Since Z(M) = Z(K)⊕Z(T ) = K⊕Z(T ),

we have Z(M) = K and T is nonsingular. By Proposition 2.4 (ii), T is extending.

Since for any submodule N of Z(M), HomR(N, T ) = 0, the module T is Z(M)-

injective, as required. �

Corollary 2.18. Let R be a right nonsingular ring and M an R-module. Then:

(1) Any GCS-module is a direct sum of a GCS-submodule and an extending sub-

module.

(2) If every S -closed submodule of M is fully invariant, then M is a GCS-module

if and only if M = Z(M) ⊕ K for some nonsingular extending submodule K

of M .

(3) LetM = Z(M)⊕K with K a nonsingular extending submodule ofM . ThenM

is a GCS-module if and only if everyS -closed submodule N with N∩Z(M) = 0

is a direct summand of M .

(4) Let M be a GCS-module, then any epimorphism f : M → N with N nonsin-

gular splits.

P r o o f. We only show (2) and (3). We first prove (2). The necessity is Propo-

sition 2.17.

Now suppose that M = Z(M)⊕K for some nonsingular extending submodule K

of M . Let N be any S -closed submodule of M , then N = (N ∩ Z(M))⊕ (N ∩K).

Since M/N ∼= Z(M)/(N ∩ Z(M)) ⊕K/(K ∩N) and M/N is nonsingular, we have

Z(M) = N ∩ Z(M), which implies that Z(M) ⊆ N . Since K is a nonsingular

extending module and K∩N is a S -closed submodule of K, we have K = N∩K⊕L

for some submodule L of K. Thus M = Z(M)⊕K = Z(M)⊕ (N ∩K)⊕L = N ⊕L

and M is a GCS-module.

Now we prove (3). The necessity is obvious.

Conversely, let N be an S -closed submodule of M with N ∩ Z(M) 6= 0. Then

Z(M)/(Z(M) ∩ N) ∼= (Z(M) + N)/N 6 M/N is both singular and nonsingular;
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hence we have Z(M) + N = N and thus Z(M) ⊆ N . Now N = Z(M) ⊕ (K ∩ N)

and K ∩N is an S -closed submodule of K. As K is extending, K ∩ N is a direct

summand ofK. Therefore N is a direct summand ofM andM is a GCS-module. �

With Proposition 2.17, we get the following well-known result about injective

modules:

Corollary 2.19. Let R be a right nonsingular ring and M an injective module.

Then Z(M) is injective.

Corollary 2.20. Let R be a right nonsingular ring and M an indecomposable

GCS-module. Then M is either a singular module or a nonsingular uniform module.

Recall that a proper submodule N of M is called small in M if N + K = M

implies that K = M . So we have:

Corollary 2.21. Let R be a right nonsingular ring and M a GCS-module. Sup-

pose that Z(M) is small in M . Then M is nonsingular and extending.

Lemma 2.22. Let M be a GCS-module and N a nonsingular module. Then for

any f ∈ HomR(M,N), we have Ker f ∈ L∗(M) and M ∼= Ker f ⊕ Im f .

P r o o f. If 0 = f ∈ HomR(M,N), it is obvious. For any 0 6= f ∈ HomR(M,N),

since Im f ∼= M/Ker f is a submodule of the nonsingular module N , so Ker f ∈

L∗(M). Since M is a GCS-module, we have M = Ker f ⊕ T for some submodule T

of M ; obviously, T ∼= Im f . �

Proposition 2.23. Let M be a GCS-module and N a nonsingular module such

that M ⊕ N is a GCS-module. Suppose that any GCS-submodule of N is a direct

summand of N . Then for any K ∈ L∗(M ⊕ N), there are decompositions M =

M1 ⊕M2 and N = N1 ⊕N2 such that M ⊕N = K ⊕ (M2 ⊕N2) and K ∼= M1 ⊕N1,

M2 ⊕N2
∼= (M ⊕N)/K.

P r o o f. Let p1 : M⊕N → M and p2 : M⊕N → N be the canonical projections

and set M1 = K ∩M , N1 = p2(K), where K ∈ L∗(M ⊕N). Note that K is a direct

summand of M ⊕ N and M1 is the kernel of the restrict projection p2 : K → N ,

hence we have K ∼= M1 ⊕N1 by Lemma 2.22. Thus M1 and N1 are GCS-modules.

Since M/M1 = M/(K ∩ M) ∼= (M + K)/K 6 (M ⊕ N)/K, M/M1 is nonsingular

and M1 is a direct summand of M . By the hypothesis, we have M = M1 ⊕M2 and

N = N1 ⊕N2 for some M2 6 M and N2 6 N .
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Note that N2 = (1−p1)(K) 6 K+M , thus N 6 K+M +N2 and K+M +N1 =

M ⊕N . We also have M = M1 ⊕M2 6 K +M2 and K +M = K +M2. Therefore,

M ⊕N = K +M2 +N2.

Set L = K ∩ (M2 + N2). Since p2(K) = N1 and p2(M2 + N2) = N2, we have

p2(L) 6 N1 ∩N2 = 0 and L 6 M .

Since L 6 K ∩M = M1 and p1(L) = L, we have p1(L) 6 p1(M2 +N2) = M2 and

therefore L 6 M1 ∩M2 = 0.

Hence, M ⊕N = K ⊕ (M2 ⊕N2). �

The following corollary generalizes [4], Lemma 6.12.

Corollary 2.24. Let M be a GCS-module and N a nonsingular GCS-module

such that M ⊕ N is a GCS-module. Then for any K ∈ L∗(M ⊕ N), there are

decompositionsM = M1⊕M2 and N = N1⊕N2 such thatM ⊕N = K⊕ (M2⊕N2)

and K ∼= M1 ⊕N1, M2 ⊕N2
∼= (M ⊕N)/K.

P r o o f. As in the proof of Proposition 2.23, if N is a GCS-module, then N1 is

a direct summand of N , since N/N1 is nonsingular. The rest of the proof is similar

to that of [4], Lemma 6.12, and is omitted. �

3. The direct sum of GCS-modules

A direct sum of singular modules is also singular. But a direct sum of CS-modules

need not be extending. For example, if p is a prime, then Zp ⊕ Zp3 is not extending

even though Zp and Zp3 are extending. A direct sum of GCS-modules need not be

a GCS-module, i.e., the class of GCS-modules is not closed under direct sum.

Example 3.1 ([2], Example 2.4). Let R = Z[x], where x is an indeterminate and

Z is the ring of integers. The ring R has no proper closed ideals and is extending,

hence is a GCS-module. Let F = R ⊕ R and set C = {(xr, 2r) ; r ∈ R}. Then

C is a closed submodule of F and is not a direct summand of F . Therefore F

is not extending. Since Z is nonsingular, R is nonsingular as an R-module by [4],

Exercise 1.D.13, and hence F is nonsingular. So F is not a GCS-module.

This example also shows that the class of GCS-modules is not closed under module

extensions. So it is natural to ask when the direct sum of GCS-modules is a GCS-

module.

900



Proposition 3.2. Let M = M1 ⊕M2 with each Mi, (i = 1, 2) a GCS-module. If

M is distributive, then M is a GCS-module.

P r o o f. Let N be any S -closed submodule of M , then M/N is nonsingular.

Since M is distributive, we have N = (N ∩ M1) ⊕ (N ∩M2). As Mi/(Mi ∩ N) ∼=

(Mi + N)/N 6 M/N is nonsingular for each i, we obtain that N ∩ Mi is an S -

closed submodule of Mi for each i. Since each Mi is a GCS-module, there are direct

summands H1 and H2 of M1, M2, respectively, such that Mi = Hi ⊕ (Mi ∩N) for

i = 1, 2. Hence M = (H1 ⊕H2)⊕ ((M1 ∩N)⊕ (M2 ∩N)) = ((H1 ⊕H2))⊕N . Thus

M is a GCS-module. �

Corollary 3.3. Let M be a distributive module and M =
n
⊕

i=1

Mi. Then M is

a GCS-module if and only if Mi is a GCS-module for every i.

In Example 2.5, we have shown that M ⊕ U/V is a GCS-module, where M is

singular and U/V is simple. In fact, we can generalize this result to the following

case:

Theorem 3.4. Let M = M1 ⊕M2 with M1 singular (or uniform) and M2 semi-

simple. Then M is a GCS-module.

P r o o f. Let N be any S -closed submodule of M . Then N +M1 = M1 ⊕ [(N +

M1) ∩ M2]. Since M2 is semi-simple, (N + M1) ∩ M2 is a direct summand of M2

and therefore N + M1 is a direct summand of M . Note that if M1 is singular (or

uniform), then (N +M1)/N ∼= M1/(N ∩M1) is both singular and nonsingular. So

N +M1 = N and M is a GCS-module. �

4. Rings in which all modules are GCS-modules

In this section we investigate rings over which all modules are GCS-modules.

Theorem 4.1. Let R be a right nonsingular ring. Then the following assertion

are equivalent:

(1) Every nonsingular module is projective.

(2) Every projective module is a GCS-module.

(3) Every module is a GCS-module.

(4) Every nonsingular module is extending.

P r o o f. (1)⇒ (2). Let P be a projective module and N an S -closed submodule

of P . Then P/N is nonsingular and projective by (1). Thus N is a direct summand

and P is a GCS-module.
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(2) ⇒ (1). Let M be a nonsingular module. There is a projective module P such

that M ∼= P/N for some S -closed submodule N of P . Since P is a GCS-module, N

is a direct summand of P . Also M is projective if and only if N is a direct summand

of P . Hence M is projective.

(3) ⇔ (2) is Corollary 2.14.

(3) ⇒ (4) is Proposition 2.4 (ii).

(4) ⇒ (2). Since all projective modules are nonsingular, by (4), all projective

modules are extending and GCS-modules. �

A ring R is quasi-Frobenius if and only if every projective right module is injective

if and only if every injective module is projective [3], Theorem 24.12. Thus any

nonsingular quasi-Frobenius ring satisfies the equivalent conditions of Theorem 4.1.

Certainly if R is semi-simple then all nonsingular right R-modules are projective.

For the non-semi-simple case, we have the following example:

Example 4.2 ([4], Proposition 5.22). Let T be a semi-simple ring and n > 1

a positive integer. If R is the ring of all lower triangular n × n matrices over T ,

then R is not semisimple, it is a right and left nonsingular ring and all nonsingular

right and left R-modules are projective. Hence all left and right R-modules are

GCS-modules.

Consider the following condition for a module M :

(C2): Every submodule which is isomorphic to a direct summand ofM is also a direct

summand of M ;

and the following condition for a ring R:

(P): For every closed right ideal I, there is a ∈ R such that R/I ∼= aR.

The following theorem shows the relation between a GCS-ring and a regular ring.

A ring R is regular if and only if every principal right ideal R is generated by an

idempotent if and only if every right R-module is flat.

Theorem 4.3. Let R be a right nonsingular ring satisfying conditions (C2)

and (P). Then the following assertions are equivalent:

(1) R is a right GCS-ring.

(2) R is a right extending ring.

(3) Every cyclic right R-module is a GCS-module.

(4) Every cyclic projective R-module is a GCS-module.

(5) Every nonsingular cyclic right R-module is projective.

(6) Every principal right ideal of R is generated by an idempotent.

(7) R is (von Neumann) regular.

(8) Every right R-module is flat.
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P r o o f. (1)⇔ (2) and (6)⇔ (7)⇔ (8) are obvious. (1)⇒ (3) is Proposition 2.12

and (3) ⇒ (4) is obvious. It is sufficient to show that (4) ⇒ (5) ⇒ (6) ⇒ (1).

(4) ⇒ (5). Let aR be a nonsingular right R-module. Then there is an S -closed

right ideal I of R such that aR ∼= R/I. By (4), RR is a GCS-module and I is

a direct summand of RR. Thus aR is isomorphic to a direct summand of RR and is

projective.

(5) ⇒ (6). Let aR be any principal right ideal of R. Then aR is nonsingular and

aR ∼= R/r(a), where r(a) is the right annihilator of a. Thus aR is projective by (5)

and aR is isomorphic to a direct summand of R. Hence aR is a direct summand

of R, i,e., aR is generated by an idempotent of R, since R satisfies condition (C2).

(6) ⇒ (1). Let 0 6= I be any S -closed right ideal of R, then R/I ∼= aR for some

a ∈ R by hypothesis. By (6), aR is a direct summand of RR, aR is projective and

so R/I is projective. Therefore I is a direct summand of RR, and thus R is a GCS-

ring. �

Remark 4.4. The condition (C2) of the theorem above cannot be cancelled.

For example, the ring Z of all integers which does not satisfy (C2) is a nonsingular

GCS-ring, but not a regular ring.

We will now consider the weaker case, namely, rings in which all finitely generated

modules are GCS-modules. In fact there is a ring R such that all finitely gener-

ated modules are GCS-modules but not all modules are GCS-modules. First we

have the following theorem which is similar to Theorem 4.1

Theorem 4.5. Let R be any right nonsingular ring. Then the following assertions

are equivalent:

(1) Every finitely generated nonsingular right R-module is projective.

(2) Every finitely generated projective right R-module is a GCS-module.

(3) Every finitely generated right R-module is a GCS-module.

(4) Every finitely generated nonsingular right R-module is extending.

P r o o f. Similar to the proof of Theorem 4.1. �

Example 4.6. Let V be an infinite-dimensional vector space over a division

ring D and set R = EndD(V ). The ring R is von Neumann regular self-injective

by [4], Proposition 2.23. It is shown in [4], Theorem 3.12 that all finitely generated

nonsingular right R-modules are projective and hence all finitely generated modules

are GCS-modules by Theorem 4.5. However, R is not right artinian and thus [4],

Theorem 5.21, shows that not all nonsingular right modules are projective. Thus

not all modules are GCS-modules.
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If R is a semi-hereditary commutative domain, then all finitely generated non-

singular R-modules are projective (see [4], Exercise 5.C.10). But the conditions of

Theorem 4.5 are not right-left symmetric. There is a ring R which is both right non-

singular and left nonsingular and all finitely generated nonsingular right R-modules

are projective, while not all finitely generated nonsingular left R-modules are pro-

jective. For example, let F be a field and V an infinite-dimensional vector space

over F . Set R = EndF (V ), then R is as required, see [4], 5.C, Exercise 15.

But if R is right nonsingular and the identity of R is a sum of orthogonal primitive

idempotents, then the conditions of Theorem 4.5 are left-right symmetric. Combin-

ing [2], Theorem 4.1, with Theorem 4.5, we have:

Theorem 4.7. Let R be a right nonsingular ring such that the identity of R

is a sum of orthogonal primitive idempotents. Then the following assertions are

equivalent:

(1) Every finitely generated nonsingular right R-module is projective.

(2) Every finitely generated projective right R-module is a GCS-module.

(3) Every finitely generated right R-module is a GCS-module.

(4) Every finitely generated nonsingular right R-module is extending.

(5) R is a left and right semi-hereditary left and right extending ring.

(6) The left-version of (1) through (4).
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