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ORDER COMPLEX OF IDEALS IN A COMMUTATIVE

RING WITH IDENTITY

Nela Milošević, Podgorica, Zoran Z. Petrović, Belgrade
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Abstract. Order complex is an important object associated to a partially ordered set.
Following a suggestion from V.A.Vassiliev (1994), we investigate an order complex associ-
ated to the partially ordered set of nontrivial ideals in a commutative ring with identity. We
determine the homotopy type of the geometric realization for the order complex associated
to a general commutative ring with identity. We show that this complex is contractible
except for semilocal rings with trivial Jacobson radical when it is homotopy equivalent to
a sphere.
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1. Introduction

Order complex is an important object associated to a poset. Since posets occur in

many areas, so do order complexes. For some recent and interesting occurrences of

order complexes in algebraic contexts, the reader may consult [1], [3], [5], [6], [8]–[10].

In [11], the author suggested as interesting to investigate the order complex asso-

ciated to nontrivial ideals in a commutative ring. It is the purpose of this paper to

determine the homotopy type for order complexes associated to general commutative

rings with identity.

In the next section we collect some definitions mainly concerning simplicial com-

plexes which are needed for the discussion in Section 3. Section 3 is devoted to the

exposition of our main results.

The second author is partially supported by Ministry of Education, Science and Techno-
logical Development of Republic of Serbia Project #174032.
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2. Background notions and results

For further information concerning simplicial complexes, geometric realization,

simplicial maps, etc. the reader is referred to [4], [7]. For information concerning the

necessary notions and results from homotopy theory the reader is referred to [2]. We

present here only the basic notions, mainly to fix notation and terminology.

Let a0, a1, . . . , an be elements in some R
N . They are said to be geometrically

(or affinely) independent if from
n∑

i=0

λiai = 0, where
n∑

i=0

λi = 0, it follows that

λ0 = λ1 = . . . = λn = 0. If these points are geometrically independent their convex

hull σ forms a geometric n-simplex. Convex hulls of subsets of {a0, a1, . . . , an} form

faces σ and ai are their vertices. The standard geometric n-simplex ∆n is given by:

∆n := {(x0, x1, . . . , xn) ∈ R
n+1
+ : x0 + x1 + . . .+ xn = 1},

where R+ is the set of all nonnegative real numbers. There is an affine bijection

between any geometric n-simplex and the standard geometric n-simplex. In what

follows, we will say simply simplex instead of geometric simplex.

Let us denote by R
⊕J the direct sum of |J | (where J may be infinite; |J | stands

here for the cardinality of J) copies of R (so, it is a subset of RJ consisting of those

x = (xj)j∈J ∈ R
J such that xj = 0 for all but finitely many j ∈ J). A (geometric)

simplicial complex K in R
⊕J is a collection of simplices in R

⊕J which satisfy two

conditions:

(1) Every face of a simplex in K is a simplex in K.

(2) The intersection of two simplices in K is a face of both of them.

By |K| we denote the union of all simplices from K. This set is given topology as

follows. A set F ⊂ |K| is closed if and only if F ∩ σ is closed in σ for every σ ∈ K

(σ itself has the subspace topology induced by the n-dimensional plane determined

by its vertices).

A map f : |K| → |L|, where K and L are simplicial complexes, is a simplicial map

if it satisfies the following two conditions.

(1) If a0, . . . , an are vertices of a simplex in K, then f(a0), . . . , f(an) are vertices

of a simplex in L.

(2) If x ∈ |K| is such that x =
n∑

i=0

λiai, for some a0, a1, . . . , an which are vertices of

a simplex in K, then f(x) =
n∑

i=0

λif(ai).

It is clear than any simplicial map is continuous.

An abstract simplicial complex K is a collection of finite nonempty sets such that

if A ∈ K, and ∅ 6= B ⊆ A, then B ∈ K. The union ∪K is the set of all vertices
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of K. If A ∈ K, and A has n+ 1 elements, we refer to A as n-simplex of K. To any

abstract simplicial complex K one can associate the appropriate geometric simplicial

complex K and we will refer to |K| as to the geometric realization of K. In what

follows we will denote abstract simplicial complexes in the same manner as geometric

ones by K, L, etc.

3. Order complex

For any poset P , one can define an abstract simplicial complex, called the order

complex of P , by taking as n-simplices chains of n + 1 elements from the poset P

from which we exclude the greatest element and the least element (if they exist). For

a general discussion concerning order complexes we refer the reader to [4], [12].

Let us make this notion more explicit for the case of ideals of a commutative ring.

Definition 3.1. Let R be a commutative ring with identity, and let I∗(R), the

set of all proper nonzero ideals of R, be the vertex set. We define order complex

∆(R) as follows:

{I0, I1, . . . , In} ∈ ∆(R) if and only if I0 ⊂ I1 ⊂ . . . ⊂ In.

For example, Figure 1 illustrates both the poset I∗(Z60) and |∆(Z60)|.

〈4〉 〈6〉 〈10〉 〈15〉

〈2〉 〈3〉 〈5〉

〈12〉 〈20〉 〈30〉 〈5〉 〈3〉

〈12〉〈20〉

〈15〉

〈2〉

〈4〉

〈30〉
〈10〉 〈6〉

Figure 1.

Let us first observe that in the case the ring R is local, the resulting complex ∆(R)

is a cone, therefore |∆(R)| is contractible. Namely, every ideal is contained in the

maximal ideal M , so every chain of ideals I0 ⊂ I1 ⊂ . . . ⊂ Im (if Im 6= M) may be

extended into the chain I0 ⊂ I1 ⊂ . . . ⊂ Im ⊂ M , so the order complex is a cone

with vertex M .

Now let us deal with the case of semilocal rings. First, we look at semilocal rings

in which Jacobson radical is trivial.
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Proposition 3.2. Let R be a semilocal ring. If |max(R)| = n > 1 and J(R) =

{0}, then |∆(R)| ≃ ∆̇n−1.

P r o o f. Since J(R) = 0, Chinese remainder theorem shows that R is isomorphic

to a direct product of finitely many fields, R ∼= F1 × . . . × Fn. So, every nonzero

proper ideal is of the form I1 × . . . × In where Ij is either {0} or Fj and not all of

them are {0} and not all of them are Fj . So, ideals are in one-to-one correspondence

with proper nonempty subsets of {1, . . . , n}. Simplices in the order complex are,

therefore, chains of proper subsets of {1, . . . , n} and it is clear that this is exactly

the barycentric subdivision of ∆̇n−1. �

Note that, in this case, |∆(R)| is connected unless n = 2. Figure 2 illustrates the

poset and the order complex in case of n = 4 (to simplify notation, 1101 stands for

the ideal F1 × F2 × {0}× F4, etc.). Note the identifications which show that |∆(R)|

in this case is the boundary of a tetrahedron.

0011 0101 0110 1001 1010 1100

0111 1011 1101 1110

0001 0010 0100 1000

0001

1011 1101

0111

01010011

1001

11101110

1110

1000

11001010

0100

0110

1100

0010

1010

0110

Figure 2.

The next proposition deals with semilocal rings in which J(R) 6= {0}.

Proposition 3.3. Let R be a semilocal ring. If J(R) 6= {0}, then |∆(R)| is

contractible.

P r o o f. Let us first show that there is a maximal idealM in R such thatM ∩I 6=

{0} for all I 6= {0}. In particular, this will show that |∆(R)| is connected. Let x

be any nonzero element in J(R). The ideal 〈x〉 + Ann(x) is a proper nonzero ideal.

Namely, if 〈x〉+Ann(x) = R, then 1 = rx+a, for some r ∈ R and a ∈ Ann(x). Since

x ∈ J(R), by the well-known property of J(R), a = 1− rx ∈ U(R). Since ax = 0, it

would follow that x = 0, which is not true.

So, let M be a maximal ideal containing 〈x〉 +Ann(x). Let I be a nonzero ideal.

If t is any nonzero element in I, let us look at tx.
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1) If tx = 0, then t ∈ Ann(x), so t ∈ I ∩M , and I ∩M 6= {0}.

2) If tx 6= 0, then tx is a nonzero element in I ∩M .

Let us denote by K(M) the subcomplex of ∆(R) whose vertices are nonzero ide-

als contained in M . This subcomplex is obviously a cone over M , so |K(M)| is

contractible.

Suppose that I0 ⊂ I1 ⊂ . . . ⊂ In, so {I0, I1, . . . , In} forms a simplex in ∆(R).

Then 0 6= I0 ∩ M ⊆ I1 ∩ M ⊆ . . . ⊆ In ∩ M , so {I0 ∩ M, I1 ∩ M, . . . , In ∩ M} is

a simplex of K(M) whose dimension certainly may be smaller that the dimension of

the original simplex. This shows that the map I 7→ I ∩M defines a simplicial map

f : |∆(R)| → |K(M)|. As an example, the reader may wish to check Figure 1, where

M = 〈2〉. We claim that this map is a strong deformation retraction. Namely, every

simplex {I0, . . . , In} in ∆(R) is a face of a simplex {I0 ∩M, . . . , In ∩M, I0, . . . , In}

and our simplicial map is nothing but the projection of that larger simplex onto its

face {I0 ∩ M, . . . , In ∩ M}. This is clearly a (strong) deformation retraction since

every point in |∆(R)| is mapped onto its image along a line inside the appropriate

simplex.

So, |∆(R)| ≃ |K(M)| and the last space is contractible since it is a cone. �

Let us now proceed to the case of a ring R with infinitely many maximal ideals.

First we prove the following lemma.

Lemma 3.4. Suppose that R is such that max(R) is infinite. If K0 is a finite

subcomplex of ∆(R), then there is a subcomplex K1 such that K0 is a subcomplex

of K1 and |K1| is contractible.

P r o o f. Suppose that {I1, . . . , Im} is the set of all vertices in K0. Let us first

prove that there exists a maximal ideal M in R such that Ik ∩ M 6= {0} for all

k = 1,m. This will, as before, show that |∆(R)| is connected.

LetMk be a maximal ideal containing Ann(Ik) and letM be a maximal ideal such

that M 6= Mk for all k. We claim that M ∩ Ik 6= {0}.

Since M 6⊆ M1 ∪ . . . ∪ Mm, by the Prime Avoidance Theorem we can choose an

element x ∈ M \ (M1 ∪ . . . ∪Mm). Let k ∈ {1, . . . ,m}. Since x 6∈ Ann(Ik), there is

an element tk ∈ Ik such that xtk 6= 0. So, the element xtk is a nonzero element in

M ∩ Ik and M ∩ Ik 6= {0}.

We now proceed as in the proof of the previous proposition. Let K1 be a subcom-

plex K0 ∪K(M), where K(M) is a subcomplex of ∆(R) formed by the ideals of R

contained in M . We construct a simplicial map f : |K1| → |K(M)| given on vertices

by I 7→ I ∩ M . As before, this map shows that |K(M)| is a strong deformation

retract of |K1|. Since |K(M)| is contractible, this shows that |K0| is contractible as

well. �
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Let us now characterize the homotopy type of |∆(R)| for a ring R with infinitely

many maximal ideals.

Proposition 3.5. If max(R) is infinite, then |∆(R)| is contractible.

P r o o f. Since |∆(R)| has the homotopy type of a CW complex, we may use the

Whitehead theorem. We only need to show that all homotopy groups of |∆(R)| are

trivial. Suppose that n > 1 and that g : Sn → |∆(R)| is a continuous map. Since the

image g[Sn] is compact, by Lemma 2.5 in [7], there is a finite subcomplex K0 such

that g[Sn] ⊆ |K0|. By Lemma 3.4, there is a subcomplex K1 such that K0 ⊂ K1 and

|K1| is contractible. So, the map g may be factored through the contractible space

|K1| and it is homotopically trivial. We conclude that πn(|∆(R)|, ∗) is trivial. Since

this holds for all n, by Whitehead’s theorem we get that |∆(R)| is contractible. �
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