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Abstract. Let G be a group. If every nontrivial subgroup of G has a proper supplement,
then G is called an aS-group. We study some properties of aS-groups. For instance, it is
shown that a nilpotent group G is an aS-group if and only if G is a subdirect product of cyclic
groups of prime orders. We prove that if G is an aS-group which satisfies the descending
chain condition on subgroups, then G is finite. Among other results, we characterize all
abelian groups for which every nontrivial quotient group is an aS-group. Finally, it is shown
that if G is an aS-group and |G| 6= pq, p, where p and q are primes, then G has a triple
factorization.
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1. Introduction

A subgroup K of a group G is said to be supplemented in G if there exists a sub-

group L of G such that G = KL. In this case, L is called a supplement of K in G. If

K ∩L = {1}, then K is complemented in G and L is called a complement of K in G.

If every nontrivial subgroup of G has a proper supplement (complement), then G is

called an aS-group (aC-group). Both aS- and aC-groups have been investigated by

Kappe and Kirtland in [8]. Since the study of supplementation (complementation)

in a group can reveal important properties about the structure of the group, this

field has received a good deal of attention from several authors (for example see [3],

[6] and [8]). In this paper, we investigate infinite aS-groups. For instance, we in-

vestigate nilpotent aS-groups. We also characterize abelian groups such that every

nontrivial quotient group is an aS-group.

In this paper, the set of all maximal subgroups of a groupG is denoted byMax(G).

The intersection of all maximal subgroups of a group G, called the Frattini subgroup

of G, is denoted by Φ(G). If G has no maximal subgroups, then Φ(G) = G. If K

1003



is a subgroup of G, then we write K 6 G. By G′ we mean the derived subgroup

of G. A subdirect product is a subgroup G of a direct product
n
∏

i=1

Gi such that every

induced projection is surjective. We say G has a triple factorization if there exist

three proper and nontrivial subgroups H , K and L such that HK = HL = KL = G.

For more information on triple factorizations see [1] and [9].

2. Nilpotent aS-Groups

Kappe and Kirtland in [8] showed that the class of finite aS-groups coincides with

the class of finite aC-groups, which were characterized by Hall [6]. We start with

the following result. It should be noted that it was shown in [8] that every subgroup

and homomorphic image of an aS-group is also an aS-group.

Theorem 1. Let G be a finite group. Then the following statements are equiva-

lent:

(i) G is an aS-group.

(ii) G is an aC-group.

(iii) Every cyclic subgroup of prime order of G is complemented in G.

(iv) G is supersolvable and its Sylow subgroups are all elementary abelian.

(v) G is isomorphic with a subgroup of a direct product of groups of squarefree

order.

P r o o f. The result follows from Corollary 3.7 in [8], Corollary 2 in [3], and

Theorems 1 and 2 in [6]. �

Kappe and Kirtland in [8] have shown that there exists a group such that Φ(G) = 1

but G is not an aS-group. In the next theorem, we show that they are equivalent

for a nilpotent group.

Theorem 2. Let G be a nilpotent group. Then the following statements are

equivalent:

(i) G is an aS-group.

(ii) Φ(G) = 1.

(iii) G is the subdirect product of a family of cyclic groups of prime orders.

P r o o f.

(i) ⇒ (ii) It follows from Proposition 3.4 in [8].

(ii) ⇒ (iii) First, we claim that G is an abelian group. Since G is nilpotent,

we have G′ ⊆ Φ(G) = {1} and so G is abelian. Consider the homeomorphism

ψ : G →
∏

G/mi, where mi ∈ Max(G). For every mi ∈ Max(G) the quotient group
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G/mi is cyclic of prime order and ker(ψ) = Φ(G) = {1}. Thus one can see that

G is isomorphic to a subgroup of a direct product of cyclic groups of prime orders.

The direct product of cyclic groups of prime orders as a Z-module is semisimple.
Therefore, G is isomorphic to a subgroup of direct product of cyclic groups, as every

submodule of semisimple module is semisimple. Thus G is a subgroup of the direct

product of cyclic groups of prime orders. It is not hard to see that G is a subdirect

product of cyclic groups of prime orders.

(iii) ⇒ (i) Suppose that G is a subdirect product of cyclic groups of prime orders.

Thus G is a subgroup of the direct product of cyclic groups of prime orders and G

is semisimple as a Z-module. Hence G is an aS-group. �

The classification of aPNS-groups (groups in which every nontrivial subgroup

has a proper normal supplement) was done by Kappe and Kirtland in [8]. Now, by

Theorem 2, we have the following theorem.

Theorem 3. Let G be a nilpotent group. Then the following statements are

equivalent:

(i) G is an aS-group.

(ii) G is an aPNS-group.

(iii) G is the subdirect product of a family of cyclic groups of prime orders.

(iv) G is abelian with
⋂

p∈π
Gp = {1}, where π is the set of all primes.

(iv) Φ(G) = 1.

3. Characterization of aS-groups

First we show that every aS-group has a maximal subgroup of finite index.

Theorem 4. Let G be an aS-group. Then every subgroup has a supplement

which is a maximal subgroup of finite index.

P r o o f. Let g ∈ G. It is enough to show that the subgroup 〈g〉 has a supplement

which is a maximal subgroup of finite index. Since G is an aS-group, there exists

a nontrivial subgroup H such that 〈g〉H = G. Set
∑

= {K < G : H 6 K, g /∈ K}.

By Zorn’s Lemma,
∑

has a maximal element, say m. First, we prove that m is

a maximal subgroup of G. Assume that there exists a subgroup n such that m $ n.

The equality 〈g〉H = G implies that n = G and hence m is a maximal subgroup.

We now show that m is of finite index. With no loss of generality, we can assume

that 〈g〉 is a torsion-free group. Now, consider 〈g2〉. Thus, there is a maximal

subgroup m such that 〈g2〉m = G. Since 〈g2〉 ⊆ 〈g〉, we have 〈g〉m = 〈g2〉m = G.
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Hence, there are n ∈ Z and m ∈ m such that g = g2nm and so g1−2n ∈ m. Since

g1−2n ∈ m, we deduce that m is a maximal subgroup of finite index. �

The following result shows that no aS-group which is not Zp, where p is prime, is

simple.

Corollary 5. Let G be an aS-group and G ≇ Zp, where p is prime. Then G is

not a simple group.

P r o o f. If G is finite, then by Theorem 1, G is a supersolvable group. So G is

not simple. Now, let G be infinite. It follows from Theorem 4 that G has a maximal

subgroup of finite index. So G has a normal subgroup and G is not simple, as desired.

�

It was shown in [8] that if G is an aS-group which satisfies the descending chain

condition on subgroups, then G is an aC-group. Here, we show that G is indeed

a finite group.

Theorem 6. If G is an aS-group which satisfies the descending chain condition

on subgroups, then G is finite.

P r o o f. It follows from Theorem 4 that G has a (maximal) subgroup H of finite

index whose supplement is a maximal subgroup, say m1, such that [G : m1] <∞. If

H is finite, then there is nothing to prove. Hence we may assume that H is infinite.

Since Hm1 = G and [G : m1] < ∞, we conclude that H ∩ m1 is not trivial. If

H ∩ m1 is a finite subgroup, then the Poincaré inequality (see [10], 1.7.10) implies

that [G : H ∩ m1] < ∞ and so G is finite. Thus, we can assume that H ∩ m1 is

infinite. By Theorem 4, H ∩ m1 has a supplement m2 of finite index. Again, we

should have |H ∩ m1 ∩ m2| > 1. Now, if H ∩ m1 ∩ m2 is finite, then the Poincaré

inequality implies that [G : H ∩ m1 ∩ m2] < ∞ and so G is finite. By repeating

this procedure, if H ∩
i=k
⋂

i=1

mi is not a finite subgroup, for every k ∈ N, we have

a non-stopping descending chain of subgroups
{

H ∩
⋂

i∈N
mi

}

. Since G satisfies the

descending chain condition on subgroups, we get a contradiction. Hence, there is

k ∈ N such that H ∩
i=k
⋂

i=1

mi is finite. By the Poincaré inequality, one can see that

[

G : H ∩
i=k
⋂

i=1

mi

]

<∞ and so G is finite, as desired. �

Let G be an aS-group which satisfies the descending chain condition on subgroups.

Then by Theorem 6, G is finite. Now, it follows from Theorem 1 that G is a su-

persolvable group. It would be interesting if one could prove the converse of this

result.
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Theorem 7. If G is an aS-group and G′ satisfies the descending chain condition

on its subgroups, then G is solvable.

P r o o f. If G′ is a finite subgroup, then by Proposition 3.5 of [8] and Theorem 1,

G′ is supersolvable. Since every finite supersolvable group is solvable, G′ is solvable

and so G is solvable. Thus, we can suppose that G′ is an infinite subgroup. By

Theorem 4, G′ has a supplement of finite index, say m1. Since [G : m1] < ∞

and G′ is infinite, the subgroup G′ ∩ m1 is nontrivial. If |G
′ ∩ m1| < ∞, then

[G′ : G′ ∩m1] = [G : m1] <∞. This implies that G′ is finite. Hence, we can assume

that G′∩m1 is an infinite subgroup. There is a supplement of finite index for G
′∩m1.

By a similar argument to that of Theorem 6, one concludes that G is solvable. �

Next, we find a class of aS-groups such that every element of this class contains

a normal maximal subgroup.

Theorem 8. Let G be a torsion aS-group. Then G contains a normal maximal

subgroup.

P r o o f. Let p be the smallest prime integer such that ap = 1, where a runs

over all elements of G. Fix the element a and consider the subgroup 〈a〉. There

exists a subgroup m such that 〈a〉m = G. We will show that m is a normal maximal

subgroup of G. First we prove that [G : m] = p. Clearly, [G : m] 6 p. If aim = ajm,

then ai−j ∈ 〈a〉 ∩ m, a contradiction. Thus [G : m] = p and so m is maximal. We

claim that if x /∈ m, then xi /∈ m for i = 1, . . . , p− 1. Assume that o(x) = l and let t

be the smallest integer such that xt ∈ m. Let l = tq + r for integers t and q with

0 6 r < t. If r 6= 0, then the equality 1 = xtqxr implies that xr ∈ m which contradicts

the minimality of t. Hence r = 0 and l = tq. Thus (xl/t)t = 1, a contradiction and

so the claim is proved.

If m is not normal in G, then y = x−1bx /∈ m for some x ∈ G and b ∈ m. Since

xi /∈ m and yi /∈ m for i = 1, . . . , p − 1, we conclude that mx = myj for some j,

1 6 j 6 p − 1. Thus x = mx−1bjx for some m ∈ m, and hence x ∈ m, which is

a contradiction. Therefore, m is normal maximal, as desired. �

Factorizable groups have been intensively studied. Both finite and infinite groups

have been the subject of many investigations. An important class of factorizable

groups are groups which have a triple factorization. For more information on factor-

izable groups and triple factorization we refer the reader to [1], [2], [4], [7] and [9].

The next theorem states that every aS-group G for which |G| 6= pq or |G| 6= p,

where p, q are prime numbers, has a triple factorization.
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Theorem 9. Let G be an aS-group such that |G| 6= pq or |G| 6= p where p, q are

prime numbers. Then G has a triple factorization.

P r o o f. First, assume that G is finite. We continue the proof in the following

two cases:

Case (i). There exist three distinct prime numbers p, q, r such that p, q, r | |G|.

Since G is an aS-group, there exist subgroups m1, m2 and m3 of indices p, q, r,

respectively. It follows from Theorem 1.3.13 in [11] that G = m1m2 = m2m3 = m3m1.

Case (ii). |G| = pnqm, where p and q are prime numbers and n,m ∈ N ∪ {0}.

Let p be the smallest prime number which divides |G|, and o(g) = p for some g ∈ G.

Since G is an aS-group, there exists a maximal subgroupm such that 〈g〉m = G. Note

that m is a normal subgroup. If there exists mi ∈ Max(G) such that m∩mi 6= 1, then

we are done, as there exists a subgroup L such that L(m∩mi) = G. Since m∩mi ⊆ mi,

we have Lmi = G and so we find the factorization mim = miL = mL = G. Thus,

we can suppose that m ∩ mi = 1 for each mi ∈ Max(G). Let m1 be a subgroup of

index q. By Theorem 1.3.13 in [11], we have m1m = G and so |G| = pq.

Now, suppose that G is an infinite group. If g ∈ G is a torsion free element,

then by Theorem 4 there exists a subgroup L of finite index such that 〈g〉L = G.

Therefore, we have 〈g〉 ∩ L 6= 1, as g is torsion free and [G : L] < ∞. Again, there

exists a subgroup K such that K(〈g〉∩L) = G and we can consider the factorization

〈g〉K = 〈g〉L = LK = G. So we can assume that G is a torsion group. It follows

from Corollary 3.4 in [8] that G has a maximal subgroup m. By Theorem 4, m has

a supplement K of finite index. Since m is infinite, m∩K 6= 1. By a similar argument

we can show that G has a triple factorization. �

We close this paper with the following result which shows that if G is an abelian

group with G/H an aS-group for every nontrivial subgroup H of G, then G itself is

an aS-group.

Theorem 10. For every nontrivial subgroup H of an abelian group G, G/H is

an aS-group if and only if G is isomorphic to a direct sum of cyclic groups of prime

orders.

P r o o f. First suppose that for every nontrivial subgroup H of a group G the

group G/H is an aS-group. We claim that G is a torsion group. If G ∼= Z, we get
a contradiction since Z12 is not an aS-group. Thus G ≇ Z. If Z 6 G, then by the

assumption, G/12Z is an aS-group. Thus Proposition 3.5 in [8] implies that Z/12Z
is an aS-group, a contradiction and so the claim is proved. Now, by the primary

decomposition (see Theorem 8.4 in [5]), G ∼=
⊕

Ap, where Ap is a p-group. Suppose

that G is a p-group. Let K = 〈k〉 be a subgroup of G of order pi, i > 4 and H

a subgroup of K of order p. Since G/H is an aS-group, by Proposition 3.5 in [8]
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we deduce that K/H is an aS-group, a contradiction. So, the order of each element

of G is at most p3. By the Baer-Prüfer Theorem (see Theorem 17.2 in [5]), G is

a direct sum of cyclic groups. If Zp3 is a direct summand of G, then there exists

a subgroup 〈g〉 such that G/L ∼= Zp3 , a contradiction. Hence G is a direct sum of

cyclic groups of order at most p2 and so G is isomorphic to one of the following

groups: Zp2 ⊕ Zp2 , Zp ⊕ Zp2 , Zp2 , Zp, or G has at least three summands. If G has

at least three summands, then either G ∼=
⊕

Zp or there exists a subgroup 〈g〉 such

that either G/L ∼= Zp ⊕ Zp2 or G/L ∼= Zp2 ⊕ Zp2 . If G ∼=
⊕

Zp, then we are done.

If not, then we get a contradiction. Now, suppose that G ∼=
⊕

Ap, with at least two

summands. By a similar argument, one can show that G is a direct sum of cyclic

groups of prime orders. The converse is clear. �
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