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Abstract. We study a quasilinear parabolic-parabolic chemotaxis system with nonlinear
logistic source, under homogeneous Neumann boundary conditions in a smooth bounded
domain. By establishing proper a priori estimates we prove that, with both the diffu-
sion function and the chemotaxis sensitivity function being positive, the corresponding
initial boundary value problem admits a unique global classical solution which is uniformly
bounded. The result of this paper is a generalization of that of Cao (2014).
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1. INTRODUCTION

Chemotaxis is a kind of strictly oriented movement or partially oriented and par-
tially tumbling movement of mobile species. This kind of movement is caused by the
chemical substances in the environment. In 1970, Keller and Segel [7] introduced the
well-known chemotaxis model

uy = V(AVu) — V(BuVv) + f(u), z€Q, t>0,

v = Av— v+ u, e, t>0,
(1.1) ou Ov
5—5—0, xE@Q,t>0,

u(x,O) = ’U,()(l'), U({E,O) = ’Uo(l'), T €1,

where Q@ C R™ (n > 1) is a bounded domain with smooth boundary 99, f(u) = 0,
u(z, t) is the cell density, v(x,t) denotes the concentration of chemoattractant, .4 > 0
represents the diffusion rate of cells and B > 0 stands for the chemotactic sensitivity.
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During the past four decades, (1.1) has already been investigated successfully and
the main issue of the investigation was whether the solutions are bounded or blow
up. With n =1 and f(u) = 0, Osaki and Yagi [9] showed that all solutions of (1.1)
are global in time and bounded. If n = 2 and |Juo||1() < 4, all solutions of (1.1)
exist globally (cf. [8]). Nevertheless, if almost every |luol/z1(q) > 4r, Horstmann and
Wang [5] proved that the corresponding solutions of (1.1) blow up either in finite or
in infinite time. Moreover, for n = 2 and {2 being a ball, radially symmetric solutions
of (1.1) blow up in finite time (cf. [4]). For n > 3, Winkler [13] showed that there
exists an 79 > 0 such that if [|uo| ey < 1o and ||[Vugllrr(@) < mo with ¢ > n/2
and p > n, then the solution of (1.1) is global in time and bounded. If € is a ball
in R™ with n > 3, then the radially symmetric solution of (1.1) blows up in finite
time (cf. [12]). In addition, under the effect of the logistic source f(u) which satisfies
f(u) < a—bu? with a > 0 and b > 0, there exists a constant by > 0 such that (1.1)
possesses a uniquely determined global solution if b > by (cf. [14]).

If we consider filling-volume effect in the chemotaxis model, that is, the movement
of cells is inhibited near points where the cells are densely packed (cf. [10]), then (1.1)
transforms into the system

ur = V(A@u)Vu) = V(B(w)Vv) + f(u), x€Q, t>0,

vy = Av — v+ u, e, t>0,
(1.2) ou Ov

575707 x€ed, t>0,

u(z,0) = ug(x), v(z,0) = vo(x), T €,

where A and B are functions of u. For n > 1, Tao and Winkler [11] proved that
the classical solutions to (1.2) are uniformly-in-time bounded if an appropriate re-
lation between A(-) and B(-) holds. Also, by modifying a well-established iterative
technique, the authors of [11] proved a general boundedness result for quasilinear
non-uniformly parabolic equations, which we use to get the [|-|| =) estimates of
u(+,t) in Section 4. However, for n = 2, the radially symmetric solutions of (1.2)
blow up in finite time if B(u) satisfies some an appropriate non-decay condition
(cf. [2]). For n > 3, there exists an optimal blow-up time for the radially symmet-
ric solutions provided one assumes some an appropriate non-decay of B(u) (cf. [3]).
Furthermore, assuming that the logistic source f(-) € C*°([0, 00)) satisfies

(1.3) f(0)>0 and f(s) <as—vs® s>0,
with @ > 0, v > 0 and A(-), B(-) fulfil

(1.4) A(-),B(-) € C*([0,00)), A(s) >0, 5>0,

1118



(1.5) c187

(1.6) c15?

A(s), s

B(s) < casY, s

Ly

VoV

<
< L
with ¢3 > ¢; > 0,0 > 1 and p,q € R, Cao [1] proved that if ¢ < 1, then the classical
solution of (1.2) is global in time and bounded.

Motivated by the above results, with (1.4)—(1.6) and f(-) € C*([0,>)), we mod-
ify (1.3) into

(1.7) f(0)=0 and f(s)<as—wvs’ s>0,

where o > 0, v > 0 and > 1. Moreover, we prove that all the classical solutions
of (1.2) globally exist for any ¢ < 8 — 1. One can see that Cao’s result [1] is the
case 0 = 2 in this paper. The main difficulty of this paper is that we cannot get the
desired a priori estimates of the solutions to (1.2) for all 5 € (1,00) at a time. It
needs to depart 5 € (1,00) into 8 € (1,2) and § € [2,00), and then establish a priori
estimates, respectively, for either of them (for the details, see the proof of Lemma 3.3
and Lemma 4.1). Now, we state the main results of this paper.

Theorem 1.1. Assume that the nonnegative initial data satisfy ug € C*(Q) with
0<p<1anduv € WH(Q) with 6 > n. Let A(-),B(-) satisfy (1.4)—(1.6) with
some ¢ < B —1 and let f(-) € C'(]0,00)) fulfil (1.7). Then there exists a unique
nonnegative classical solution (u,v) € (C°(Q x [0,00)) N C?1(Q x [0,00)))? which is
globally bounded.

The plan of this paper is as follows. In Section 2, we prove local existence and
uniqueness of the classical solution to (1.2). In Section 3, a priori estimates of
the solutions to (1.2) are established. In Section 4, basing on a priori estimates
established in Section 3, we prove the main results of this paper.

2. LOCAL EXISTENCE AND UNIQUENESS OF CLASSICAL SOLUTIONS

In this section, we give the results concerning local existence and uniqueness of
the classical solutions to (1.2).

Lemma 2.1. Assume that A(), B(-) satisty (1.4)—(1.6), f(-) fulfils (1.7) and the
nonnegative functions satisfy ug(z) € C*(Q),vo(z) € WH9(Q) with u € (0,1) and
6 > n. Then there exist a maximal existence time Ty, € (0,00) and a unique pair of
nonnegative functions (u,v) € (C°(Q x [0, Tmax)) N C*(Q x (0, Timax)))? such that
(u,v) is a classical solution of (1.2) in Q x (0, Tyax). Finally, if Tiyax < 00, then

(2.1) lim sup |[u(-, t)|| Lo () = oo.
t " Trmax
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Proof. The detailed proof of local existence and (2.1) can be referred to that
of ([1], Lemma 2.1 and Lemma 2.2). Here we only prove uniqueness. The proof of
uniqueness proceeds precisely along the lines of the arguments of Theorem 3.1 in [6].
Let T € (0, Timax)- Suppose that both (u1,v1) and (ug, v2) solve (1.2) in the classical
sense and fix Ty € (0,7"). From the proof of Lemma 2.1 in [1] and the semigroup
estimates, we know that u; € C%1(Q x (0, Tyay)) for i = 1,2 and

(2:2) IVui( D)llLe@) < Collluill oe @x 0,7, T lviollwro o)

for i = 1,2. Due to u; € C*1(Q x (0, Tmax)) for i = 1,2, there exists a positive
constant denoted by C,, which depends on T such that

(2.3) V(- )| Lo (@) < Cy fort € (0,T) and i =1,2.
Combining this with (1.2), in  x [0, Tp] we have

(u1 —u2)r = V[A(u1)Vur — A(u2)Vuz] — V[B(u1)Vur — B(ug) V)
(2.4) + f(ur) = fluz),

(v1 —v2)e = A(vy — v2) — (v1 —v2) + ug — us.

Multiplying the first equation in (2.4) by u; — ug, we obtain
(25) 2 df, / |U1 — UQ|2 /[ (ul)Vul — A(UQ)VUQ] . V(u1 — UQ)
+ / [B(u1)Vvr — B(u2)Vus] - V(ug — us)
Q

+/Q[f(u1)—f(uQ)](m — uz)-

It follows from (1.4) and the boundedness of u; (i = 1,2) on © x (0,7) that there
exist positive constants c3, ¢4 and c¢; such that |A(u;) — A(uz)| < eslur — usl,
|B(u1) — B(uz2)| < ca|ur — uz| and |B(u;)| < ¢5 (i = 1,2). Therefore, applying (1.5)
and the Young inequality, we have

(26) —‘/Q [A(ul)Vul - A(UQ)VUQ]V(Ul - UQ)
/ A U1 |V(U1 — UQ)| - / [.A(U1) A(UQ)]VUQV(Ul - UQ)
/ A(u)|V (1 — us) 2 + / A(ur) — Alun)| [V |V (w1 — us)]

g—clw/ |V(u1—uQ)|2+03Cu/ s — s [V (1 — up)|
Q
3c1lP 2, 3C / 9
<- V(s — w2,
ol RO RO
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Also,
(znléwmgvm—gmgvmvml—w)
—/[B(ul) B(us)] VoLV (ur — uz) /B w2) V(01 — 19)V (w1 — us)
< [ () = B[99 =)l + [ 1B [V (01 = vV (1 )
< 04/Q lur — us||[Vur]|V (ur — u2)| —|—C5/Q|V(v1 —v2)||V(u1 — u2)l.

It follows from the Holder, the Young, the Gagliardo-Nirenberg inequalities and (2.2)
that

1/2
(2.8) 04/ lur — ue||Vur]|V(u1 — u2)| < ca </ |V (ur — uQ)|2>
Q Q

1/6 (0—2)/(20)

() ()
Q Q
1/24n/(26)
< eiCon ( [ 19 - u2>|2)
Q

1/6 (0—n)/(20)

X </ |Vv1|0> </ |ug —uz|2>

1/24n/(260) (0—n)/(20)
< cxCanC < / ¥ (ur u2>|2> < / s — uzl2>
ClL /|V’U,1—’U,2| +M/|’LL1—U2|

and

c1t
(2.9) C5/|V(v1 )|V (g — ug)] < /|v w - + /|v o — )
Q
where Cgny comes from the Gagliardo-Nirenberg inequality,

M =

0—n (9 + n>(9+n)/(9—n)

)29/(9—n)
20 \cy.P0

csCanCly

and we have used that fQ(ul — ug) = 0 by simple integration of the first equation
of (2.4). By the local Lipschitz continuity of f(-), we have

(2.10) / [F(un) — f(u2)) (w1 — ) < Ly / it — us2,
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where Ly > 0 is the Lipschitz constant. It follows from (2.5)—(2.10) that

(2.11) li/m —ugl? < 2CQ+M+L /|u —u |2+C—§/|V(v —9)?
. 2dt912\c fQ1261LpQ12.

Multiplying the second equation of (2.4) by A(vi — v2) we get that

(2.12) 2dt/|V’U1—’U2| +/|AU1—’U2| —|—/|Vv1—v2
—/(ul—’u,g)A(Ul—Ug)

/|u1—u2| +/|AU1—02 ;
ie.,
1d 1 2
(2.13) - — |V v1 — va)|? + |V v —v)P << [ Jun —up
2d 4 Ja

Adding (2.11) and (2.13), we have

(2.14) 2dt [/ luy — ua? + / IV (v1 — v2) }
s@{/m—wﬁﬁ/wm—wwyte@%x
Q Q

where cg := max{c3C2/c1i’ + M + L +1/4, ¢2/c1:P}. The Gronwall inequality and
(2.14) imply that u; = ug and v1 = ve in Q x (0,T), because Ty € (0,T) is arbitrary.

3. A PRIORI ESTIMATES

First, let us state a lemma which we will use in the establishment of a priori

estimates.

Lemma 3.1. Let r € (1,00), T € (0, Trax) and let (u,v) be the solution of (1.2).

Then for s € (0,T) there exists C, > 0 such that

(3.1) /|mwn

T T
<a/nwwmma+afnmmm@&

+ Crllo(, o)l 5 8)2r(0)-

T T
;@a+/|mmm;@a+/|mwmmmﬂt
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Proof. From (1.2) and Lemma 2.1 we know that v(s) € W?2"(Q) with
(Ov/0n)(s) = 0on 0N for s € (0,T). Therefore, (3.1) directly follows from Lemma 3.1
in [1]. Thus, we complete the proof. O

In addition, by Lemma 2.1 we know that for any s € (0, Thax), (u(, s), v(-,s)) €
(C?(Q))? and dv(-,5)/On = 0 on ON. Therefore, there exists a constant K > 0 such
that

(3.2)  sup |lu(7)||zeo(o) < K, sup [[v(7)|lz=) < K and [[Av(s)||re) < K.

0<7T<s 0<7T<Ls

In the following two lemmas, we establish a priori estimates for the solutions
to (1.2).

Lemma 3.2. Assume s € (0,Tmax), (u,v) is the solution of (1.2) and f satis-
fies (1.7) with 8 € (1,00). Then for any T € ($,Tmax) there exists C > 0 such
that

T
(3.3) /ugc, te(s,T), //uﬁ<C(T+1).
Q s JQ
Moreover, if 8 € (1,2), then
(3.4) / ut<C
Q

also holds for all t € (s,T) and some C > 0.

Proof. With help of the Holder inequality, we integrate the first equation in
(1.2) and then get

(3.5) i/u<a/u—u/uﬁ<a/u—L</u>ﬁ te(s,T)
. at Jo o~ Ja o Ja QP \Jg /)’ T

It follows from (3.5) that

(3.6) / u < max {K|Q|, (%)1/(ﬁ71)|9|}, te(sT).
Q

Integrating (3.5) over (s,T) with respect to ¢ and using (3.2), we have

T T T
(3.7) //uﬂ<9//u+1/u(s)<9//u+5|9|, te(s,T).
5 JQ Vs Ja vVJa VJsJa v
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Combining (3.6) with (3.7), we obtain

(3.8) /ST/Q w? < max{@(a +1), [(%)ﬂ/(ﬁfl) + %} b +1).

v

It follows from (3.6) and the Holder inequality that if 5 € (1,2), then

p-1 N
(3.9) /uﬂfl < </ u) 1028 < maX{Kﬂ*Hm, —|Q|}.
Q Q v

Therefore, combining (3.6), (3.8) with (3.9), we can choose

(310) € =max{xjel, (2" i, Ko 0 (47 K

Bl &
K770l 219,19/},

which together with (3.6), (3.8) and (3.9) implies (3.3) and (3.4). O

In order to improve the regularity of » in a higher LP space, we give the following
lemma with help of Lemma 3.1 and Lemma 3.2.

Lemma 3.3. (i) Let s € (0,Tmax), T € (5,Tmax), 6 = 8 —1, f € (1,2) and
1=B-qd+B-1-qIf

T
(3.11) / uw’ <O (T +1) foranyte (s,T) and / / u’T < CH(T +1)
Q s JQ

hold for some constant C; > 0, then there exist Ca(v,v,q,a, K,|Q]) > 0 and
Qv,q,a, K, |Q|) > 0 such that

T
(3.12) /u7 < C2Q"Ci(T +1) for any t € (s,T) and / /u7+1 < CoQVCL(T +1).
Q s JQ

(ii) Let s € (0, Tmax), T € (5, Tmax), 6 2 1, B € [2,00) andy = (8 —¢q)0 +B—1—q.
If

T
(3.13) / uw < C|(T+1) foranyte(s,T) and / / WAL < ONT + 1)
Q s JQ

hold for some constant C; > 0, then there exist C)(v,v,q,a, K,|Q]) > 0 and
Q'(v,q,a, K, |Q|) > 0 such that

(3.14) / u?’ < CLQCI(T +1) for any t € (s,T) and
Q
T
//u“/“ < CHQCU(T +1).
s JQ
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Proof. First, we prove part (i). Combining (1.5) with (1.6) and multiplying the
first equation in (1.2) by (y— 8+ 2)u?~#*+1, we integrate it by parts over {2 and then
get that

(3.15) —/u7 B2 (v — B4+ 2)(y—B+1) /A Yu B Vul?
+(y=B+2)(y -8+ 1)/ B(uw)u " PVuVu
Q

+a<w—ﬁ+2>/u”’ﬂ“—vw—m?)/“”“

Q Q

< (7—B+2)(7—ﬁ+1)/QVF(u)W

aw—ﬂ+m/

u%mﬂ—w7—5+m/uﬂﬁ te (sT),
Q

Q

where F(u fo 0)o?’"Pdo. Tt follows from the second equation in (1.2) and
from (1.6) that

(&M)W—6+%w—6+ULVfWW%

—W—ﬁ+wW—ﬁ+nKjwmm+v—w

N

4v—ﬁ+nm—ﬁ+4{éfwwruv—6+@@—ﬁ+&{4fww

ealy=F+2)(y=-F+1) ( y—B+g+1 vﬁ+q+2)
Y—=B+q+1 /Qu |vt|+/nu

N

<elr= g+ [armiul s [0, ve o),
Q Q
where c¢7 := sup  c(y—=B8+1)/(y =B+ q+1) > 0. By the Young inequality,
v=2p2—qB-1

we obtain
(3.17) / '~ 6+q+1|v | < _/ (y=B+a+Dl 4 o (Iy,v / v |l1/(l1 1)

Q der Jo
where

=+t

Y=B+q+1’
_ — —(v+1)/(B=q)
o192 (1St )
Y=B+q+1 y=F+q+1

( v )—v/(B—Q)—(q—ﬁH)/(B—Q)
467 '
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Since § > 8 — 1 implies v > (8 —¢)(8 — 1) + 8 — 1 — g, it can be deduced that

B-a _B-9@B-D+B-1-q¢_B-9@B-1D+1-¢
Y—B4q+1 " (B—1)y S B-1)(y-8+2)

(3.19)

Therefore, we can choose

0, > max{(%)l/(ﬁ_@, 1}’
B-a)B-1)+1-q

3.20 cg > sup
(3.20) y>B2—qf-1 pg-1
(1 . B—q )*(er)/(ﬁ*q)( v )*(q*ﬂJrl)/(ﬁ*q)
X — = — )
vy—=B+q+1 4cq

Then (3.17) can be rewritten as

_ 14 Cg S+1
3.21 /UV Bta+1y, <_/uv+1+7Q’7/ v +,
CENI o < o= [t =20 [ 1w

where § +1 =13 /(l; — 1). Similarly, we can also get that

(3.22) /uv—ﬁ+q+2 < L/u(7—6+q+2)l2+c(1271/)|9|
Q 467 Q
with
=+t
y=B+q+2’
(3.23) C(ly,v) = F—q-1 (1 f—q—1 )*(7+1)/(ﬁ7q71)
. Ty T B q+2V Ty Btgr2
v \~/(B—q=1)—(a—B+2)/(B—q—1)
X A .
(4(}7)
Since

B—q—1 o B—q

3.24 S .
(3.24) Yy=B+q+2 y—=F+qg+1

thus applying (3.19) we choose

0y > max { (%)1/(5711*1)7 1}7

B-q)(B-1)+1-¢q
3.25 cg > sup
( ) v>B2—qB-1 p—1

—q— —(v+1)/(B—q-1) —(g—B+2)/(B—q-1)
x(1+7ﬂq1)7 ! (L)q q.
y—0B+q+2 4cy
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Therefore, we rewrite (3.22) as

.
3.26 Y~ Btat2 < L/ Wt 4 & Ql.
(3.26) /Q der Jo v-B+ 2' |
Analogously,
(3.27) / WA g L / uO Al L O(l3,v,0)|Q,
Q da Jq

where

oot

3 N — ,8 + 2;

8—1

(328) C(l?,,l/, Oé) = m

x(1+ p—1 )7<v+1>/</3*1>( v )*v/(ﬁfl)*(%ﬁ)/(ﬂfl).

y—pB+2 4o
Choosing

0 me{(12)"1)

(3.29) y 5114 L1 ~(H+D/(B-1) 1y \—(2=B)/(B-1)
s g B0y O e
v>B2—gB—1 Y-6+2 da
we have
5
(330) /u’7—5+2 < L/u’7+1+%|9|
Q da Jq y-B+2

Let Q4 := max{Q1,Q2,Q3} and c1; := max{cs,cg,c10}. It follows from (3.15),
(3.16), (3.21), (3.26) and (3.30) that

d _ —B+2
(3.31) &/u’y B+2< —%/u'ﬁ'l—l—cquZ/ |’Ut|5+1
Q Q Q

+ e7enQ11Q] + acni Q419

vi(y—p+2
< - (Py 46 )/u'y+1+cl2QZ/ |,Ut|6+1
Q Q
+612QZ|Q|7 te (57T)7

where ¢12 1= c7c11 + ac11. We integrate (3.31) over (s,T') and (s,t) for any ¢ € (s,T)
and get, respectively, that

. T T
(3.32) W / / W < / W (8)+e1Q1 / / 0P+ + ¢12Q71QU(T +1)
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and

T
33) [0 < [0 o) [l Qi + )
Q Q s JQ

Now, with help of the Young inequality, we multiply the second equation of (1.2) by
(6 + 1)v? and integrate by parts to get that

(3.34) i/fu‘”l (5(6—}—1)/ v Vol - (5—1—1)/1)‘”1—1—(54—1)/uv‘S
dt Jq Q Q

/5+1 / ¢ (7).

Since (3.10) implies C; > ||, it follows from (3.11) and (3.34) that

(3.35) /T/Q v?* < /v‘”l //

< K6+1|Q| + Cl T + 1) 613Q501(T + 1)

where Q5 := max{K,1} and ¢;3 := K + 1. Lemma 3.1 ensures that

(3.36) //|v|‘S+1
C&// 5+1+C// 6+1+C&/|Av |6+1+C/ 5+1

< C1C5(T 4 1) 4+ c13Q3C1Cs(T + 1) + 2K5HQ|C5(T + 1)
< 614Q501 (T+1)

with Cs being a constant derived from Lemma 3.1 and c¢14 := Cs(1 + c13 + 2Q5).
Combining (3.36) with (3.32)—(3.33), we obtain

(3.37) / uTP? QUK TPIQ) + €12Q]c14QCH (T + 1) + ¢12Q] |QY(T + 1)
Q
SasQCUT+1), te(sT)

and

4e15Q7 4c15Q7
(3.38) //wﬂ <o sar ey < o r ),

where ¢15 := cfg_ﬁ + c12¢14 + C12, @ = Q4Q5. It follows from the Holder inequality
and (3.37) that

v/ (v—B+2)
(3.39) / u” < (/ u”ﬁ“) |Q|(2,5)/(7,5+2)
Q Q

< [esQ CU(T + )P/ O7ER|QIEmR/OZE, e (5,T).
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By (3.10), we know that C; > |Q|. Combining it with ¢15 > 1 and @ > 1, we have
|| < 15Q7C1(T + 1). Therefore, (3.39) implies that

(3.40) / u <esQ7CL(T+1), te(s,T).
)

Thus, by virtue of (3.38), if we choose Cy := max{ci5,4c15/v}, we obtain (3.12).

Now, we prove part (ii). Since the case § = 2 has been studied in [1], we only
consider the case 8 € (2,00). Multiplying the first equation of (1.2) by yu?~1, we
get that

(3.41) i/u7 gfy('y—l)/V}'*(U)Vv—f—a'y/zﬂ—V'y/uwrﬁ*l, te(s,T),
dt Jo Q Q Q

where F*(u) = [, B(0)o” =% do. Similarly to (3.16), it follows from the second equa-
tion of (1.2) and from (1.6) that

(342) (1) /Q VF W)Yo <~y — 1) /Q Fu)or +(y — 1) /Q F* (u)u

< dy (/ YT oy —|—/ uqu), te(s,T)
Q Q

with ¢7:=  sup  co(y—1)/(y+ ¢ — 1), thus by the Young inequality, we have
v22B8-2q-1
(3.43) / Wy, | < 4L/ / el 4 C(lll,l/)/ |,Ut|l'1/(l'171)7
Q ¢r Ja Q
where
P B—1
1= )
Y+qg—1
(3.44) civ) B—q (1 B8—q )—(’Y+/3—1)/(ﬁ—(1)< v )—(’H-q—l)/(ﬁ—(I)
V) = — .
' YHa—1\  y+g-1 Ac;

Considering that
26-2¢-1_  F-qa  B-gq

3.45 > > :
(349) g Yy=B4+q+1~ y+q-—1
we choose
4N/ (B—q)
Q'1>max{<ﬁ) ,1}’
v
cg> sup (268—2¢—1
(3.46) s> s )
(1+ B—a )—<v+ﬁ—1>/<ﬁ—q>< v )—<q—1>/<5—q>
X . 1 - 7 .
Yt+qg-—1 4ct,
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It follows from (3.43)—(3.46) that

I
(3.47) /u7+q*1|vt| < L/uwfﬂ*l_k%/ v |V HA=D/(B=0)
0 dez Jo v Ja

By a simple computation, we can obtain that

ik SR e e Bk VA )
B—q B—q

(3.48)

Thus, the Young inequality entails that

(3.49) / |vt|(v+ﬁ71)/(ﬁfq)
Q

7+6 /|’U |6+[3 1 q_l)(ﬁ_2)|9|
Tyl (B-q)(B-2) 7+1+w—ﬂﬂﬂ—%

< / |vt|6+6-1+|9|-
Q

With help of (3.47) and (3.49), we have

@30 [wrrtinl g [ S [y S0,
7

Also, from the Young inequality, we obtain

(3.51) /uw <V /u7+ﬁ_1+C(l/2,V)|Q|
Q 407 Q
with
l/ _ Y + 6 -1
2 — ’
Y +q
B-1-¢q
3.52 cih,v) = ———
( ) (13,v) T+4q
(1 n B—1-— q)*(WJrﬂfl)/(ﬂ*lfq)( v )*(’YJFQ)/(ﬁ*l*Q)
X _— — .
Y+4q 4ct,

From (3.45) we know that

243 — 291 B—q >B—1—q
v 7+q—1 v +q

(3.53)
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Therefore, choosing

4ctN\1/(B—1—q)
Q'2>max{(ﬁ) ,1},
v
co> sup (28—2q¢—1)

(3.54) A
B—1—q\~(+B8-1)/(B-1-q) , p \—a/(B-1-q)
x (1 + Y+q ) (4_0’7) ’
we can rewrite (3.51) as
.
(3'55) / wyte < L/ YA 4 %Kﬂ
Q der Jo v
Similarly, we have
(3.56) / W < = / WAL L O, v, ) |9,
Q da Jo
where
/ y+p-1
ly = ——i,
(3.57) ! 1 1\~ (r+B-1)/(B-1) /(B=1)
— — — (v — — —y —
C(ly,v,a) = 5 (1 + b ) (L> .
¥ ¥ 4o
Choosing
4a\1/(B-1)
Qg>max{(—a> ,1}
v
(3.58)

— 1\ —(v+B-1)/(8-1)
o> sup (B- 1)(1 + /8—)
¥>28—-2q—1 v

and combining it with (3.56) and (3.57), we get that

oY
(3'59) / u¥ < 41 U’H-B—l + MK”
Q @ Ja Y

It follows from (3.41), (3.42), (3.50), (3.55) and (3.59) that

d
(3.60) &/UV < —%/u”+ﬁ71+c§cg /17/|vt|5+ﬁ*1
Q O Q
+ches Q19 + ey @y 9] + acho Q519

1% _ _
<0 / W Q) / e 4 L Q10 t e (5,T),
Q Q

4
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where Q) := max{Q7}, Q%, Q4} and ¢}, := dhcg + chey + achy. After integrating (3.60)
over (s,T) and (s,t) for any ¢ € (s,T) we obtain, respectively,

T
son [ [wr s [we @ [ [ 1 @il +

and

(3.62) / (1) < / Y(s) + ¢ Q) / / o 4 QL IQUT + 1),

Now, multiplying the second equation of (1.2) by (6 + 3 — 1)v?*#~2 and integrating
by parts, we obtain

(3.63) %/ﬂv‘”ﬁfl = —(5+5—1)(5+5—2)/Qv5+/3*3|vu|2
— _ o+p-1 _ 5+8-2
G+5 1)/Qv G+ 1)/90 "

< _/Ué+ﬁ—1+/u5+ﬁ—1’
Q Q

where the second inequality sign of (3.63) comes from the Young inequality. Then
we integrate (3.63) over (s,T) with respect to ¢ and get

T
(3.64) / v6+571</ o+8— // §+B8—1
s JQ

< KO- 1|Q|+c1 T+1)
< ¢hoQ5 Cl(T+1)a

where ¢}, ;== K%71 + 1 and Qf := max{1, K'}. Thus, from Lemma 3.1, we have

T T
(3.65) //|v oAt Cg/Au5+5—1+cg/Av5+ﬁ—l
G [ 1M 4 G [ )
Q
CICH(T +1) + 1oQF CLCH(T + 1) + 2K HQICH(T + 1)

<
< 3Q5 Joi (T +1),

where Cj is the constant derived from Lemma 3.1 and ¢}5 := C§(1 + ¢}4 +2Q% A= h.
It follows from (3.61), (3.62) and (3.65) that

(3.66) /Q w < QLI + ¢ QL s QL CLT + 1) + ¢, QL IQUT + 1)
<R CH T +1), te(s,T)
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and
T 46,

(3.67) //uwﬂfl < 714Q'”01(T+ 1),
s JQ

where ¢}, := 14} ci3+ 11, @ = Q4Q5. With the choice of C) := max{c],, 4c),/v},
(3.14) follows from (3.66) and (3.67).
The proof of Lemma 3.3 is complete. O

4. PROOF OF THE MAIN RESULTS

In this section, we first invoke Lemma A.1 in [11] to give the ||-|| o (q) estimate of
u(-,t) for all ¢ € (0,T), where T € (0, Tinax), and then prove Theorem 1.1.

Lemma 4.1. Let 5 € (1,00) and ¢ < 8 — 1. Then there exists a constant C > 0
independent of T' such that with any choice of T' € (0, Tiax), |[u(:,t)||L(q) < C for
allt € (0,7).

Proof. We will get the desired results with help of Lemma A.1 in [11]. From
(1.2), (1.4)—(1.7) and Lemma 2.1, we can see that (A.1)—(A.6) in [11] are satisfied.
Therefore, for the sake of applying Lemma A.1 in [11], we only need to prove that
(A.7) in [11] holds, that is, for some sufficiently large v* > 1 which satisfies (A.8)—
(A.10) in [11],

(4.1) lu(-, )|y <oo, v=v" and te(0,T).

If T € (0, s], where s € (0, Tiax), (3.2) ensures that |lu(-, )| (q) is bounded for
any t € (0,T). So in the following, we mainly study the boundedness of |[u(-, )| L ()
for any t € (0,T"), where T € (s, Tmax)-

First, we investigate the case § € (1,2). Let vo = f—1, v = (B—q¢)vk—1+5—1—¢
with &k > 1. Then after a simple computation, we obtain

(4.2) w=B6-a" -1,

which implies that

(4.3) (B-1)(8—q)* <y <BPB-*.

Moreover, it follows from Lemma 3.2 and Lemma 3.3 that
(4.4) / u(t) < C§RZ?:1 O (T +1)
Q
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for all t € (s,T) and k € N*. Thus, applying (4.3), we have

, k/(B=1)(B—a)*) ~1/((B-1)(B—a)*)
(4.5) u(, D)l L) < Cy C
x (T + 1)/ B=DE-0* pBE]_, (B=0)’/(B-1)(B=0)*

Since ¢ < 8 — 1 implies that there exists ko € N* such that ~, > v*, therefore, by
virtue of (4.5), we obtain

(4.6) (-, )| L) < oo, k=koandte (s,T).
Also, it follows from (3.2) and the boundedness of 2 that

(4.7) lu(-, )| L) < o0, k=koandtel0,s].
From (4.6) and (4.7) we obtain

(4.8) llu(-,t)|| e ) < oo, k=koandte (0,T),

which, together with the boundedness of 2 and the Holder inequality, implies (4.1)
holds. Thus, by Lemma A.1 in [11], there exists C* > 0 such that

(4.9) [u(, )L < C*, t€(0,T).

Now, we deal with the case 8 € [2,00). In this case, we let 79 = 1, v, = (8 — q) X
Yg—1 + B —1—q with k > 1. By a computation similar to the first case, we have

(4.10) B—a)" < <2B-q)f

and

(4.11) / W) < CEREISICNT +1)
Q

for all t € (s,T) and k € NT. Consequently,
(4.12) ||U(',t)||L’Yk(Q) < Cék/(ﬁ*Q)kcil/(ﬁ*Q)k(T_’_ 1)1/(/3—(1)le2 Z?:l(ﬂle)j/(ﬁ*Q)k.

It follows from ¢ < 3 — 1 that we can find kj € N* such that v, > v*. Also, (4.12)
implies that

(4.13) lu(-, ) L) <oo, k=kjandte (s,T).
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In addition, using (3.2) and the boundedness of €2, we obtain
(4.14) u(-, ) L) < oo, k=kjandtel0,s].
It follows from (4.13) and (4.14) that

(4.15) lu(-,t)|| L) < oo, k=kjandte (0,T).

Combining (4.15), the Holder inequality and the boundedness of €2, we get (4.1).
Therefore, by Lemma A.1 in [11], we can find C** > 0 such that

(4.16) (- t)]| Loy < C**, t € (0,T).

As a result, with the choice of C' := max{C*,C**}, we complete the proof of
Lemma 4.1. O

Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Combining Lemma 4.1 with semigroup estimates, we
know that there exists a constant C), > 0 such that

(4.17) lo(.t)llwro@) < Cp £ € [0, Tinax)-

Suppose on the contrary that Ti,x < co. Then the results of Lemma 4.1 contradict
the blow up criterion (2.1), which implies Ty ax = 00. Therefore, the desired results
follow from (4.17), the embedding theorem and Lemma 2.1. The proof of Theorem 1.1
is complete. O
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