
Applications of Mathematics

Jan Eisner; Milan Kučera; Martin Väth
A variational approach to bifurcation points of a reaction-diffusion system with
obstacles and Neumann boundary conditions

Applications of Mathematics, Vol. 61 (2016), No. 1, 1–25

Persistent URL: http://dml.cz/dmlcz/144807

Terms of use:
© Institute of Mathematics AS CR, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/144807
http://dml.cz


61 (2016) APPLICATIONS OF MATHEMATICS No. 1, 1–25

A VARIATIONAL APPROACH TO BIFURCATION POINTS OF

A REACTION-DIFFUSION SYSTEM WITH OBSTACLES AND

NEUMANN BOUNDARY CONDITIONS

Jan Eisner, České Budějovice,

Milan Kučera, Praha, Plzeň,

Martin Väth, Praha

(Received September 23, 2014)

Abstract. Given a reaction-diffusion system which exhibits Turing’s diffusion-driven in-
stability, the influence of unilateral obstacles of opposite sign (source and sink) on bifurca-
tion and critical points is studied. In particular, in some cases it is shown that spatially
nonhomogeneous stationary solutions (spatial patterns) bifurcate from a basic spatially ho-
mogeneous steady state for an arbitrarily small ratio of diffusions of inhibitor and activator,
while a sufficiently large ratio is necessary in the classical case without unilateral obstacles.
The study is based on a variational approach to a non-variational problem which even after
transformation to a variational one has an unusual structure for which usual variational
methods do not apply.
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1. Introduction

Let us consider a system

(1.1)
ut = d1∆u+ f1(u, v)

vt = d2∆v + f2(u, v)
in (0,∞)× Ω,
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of the Czech Republic and by RVO:67985904. The second author has been supported by
the Project 13-00863S of the Grant Agency of the Czech Republic and by RVO:67985840.
The third author acknowledges a support by the SFB 647 of the DFG and RVO:67985840.
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where Ω ⊂ R
d is a bounded domain with a Lipschitzian boundary ∂Ω and fi are

differentiable functions, fi(0, 0) = 0. We are interested in existence and displace-

ment of bifurcation points of nontrivial stationary solutions of the system (1.1) with

Neumann boundary conditions and some unilateral obstacles for v. An example are

boundary conditions

(1.2)





∂u

∂n
= 0 on ∂Ω,

∂v

∂n
= 0 on ∂ΓN ,

±v > 0, ± ∂v

∂n
> 0, v · ∂v

∂n
= 0 on Γ±,

where Γ+, Γ−, ΓN are pairwise disjoint subsets of ∂Ω,

(1.3) mes Γ+,mes Γ− > 0, mes(∂Ω \ (Γ− ∪ Γ+ ∪ ΓN)) = 0

(the (d−1)-dimensional Lebesgue measure). Clearly, (0, 0) is a solution of (1.1) with

pure Neumann boundary conditions

(1.4)
∂u

∂n
=

∂v

∂n
= 0 on ∂Ω

as well as with (1.2), and also with the other unilateral obstacles we will consider.

We will use a certain nondirect variational approach, which will force us to deal in

fact with the particular case

(1.5)
d1∆u + b11u+ b12v = 0

d2∆v + b21u+ b22v + n(v) = 0
in Ω,

where

(1.6) n(0) = n′(0) = 0,

or even with the linearized stationary system

(1.7)
d1∆u+ b11u+ b12v = 0

d2∆v + b21u+ b22v = 0
in Ω.

However, in order to explain the meaning of our results, let us recall some facts con-

cerning the general reaction-diffusion system (1.1) and its relations to (1.7) and (1.5).

We will denote bij = ∂fi/∂uj(0, 0) and assume that

(1.8)
b11 + b22 < 0, detB := b11b22 − b12b21 > 0,

b11 > 0 > b22, b12b21 < 0.
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The first line in (1.8) guarantees that the equilibrium (0, 0) is asymptotically stable as

a solution of the corresponding system of ODEs without any diffusion (d1 = d2 = 0).

If also the second line is fulfilled, then (0, 0) as a solution of the whole system (1.1)

with Neumann conditions (1.4) is linearly stable only for values (d1, d2) from a cer-

tain open domain DS ⊆ R
2
+, but linearly unstable for (d1, d2) from the interior

of the complement DU := R
2
+ \ DS . For (d

0
1, d

0
2) from the boundary CE between

DS and DU it usually happens that there is a bifurcation of spatially nonconstant

stationary solutions, that is, each neighborhood of (d01, d
0
2, 0, 0) in R

2 × (W 1,2(Ω))2

contains stationary solutions (d1, d2, u, v) of (1.1), (1.4) with spatially nonconstant

(u, v), see e.g. [18], [20]. Such solutions can describe Turing’s spatial patterns having

interpretation in biology, see e.g. [4], [19], [13].

Let us note that standard linearization and compactness arguments imply that

such a bifurcation point (d1, d2) = (d01, d
0
2) must necessarily be a critical point

of (1.1), (1.4), that is, the system (1.7), (1.4) has a nontrivial solution (u, v) which

in view of detB 6= 0 is necessarily spatially nonconstant.

If the system under consideration describes a chemical reaction, then the second

line in (1.8) means that our system is of activator-inhibitor type (the case b12 <

0 < b21) or of positive feedback (substrate-depletion) type. See e.g. [4], [19], [13]. In

the first case, u and v are related to the concentration of the activator and inhibitor,

respectively. In fact, in applications u and v typically describe the difference of

the concentration of some chemicals to some spatially constant equilibrium (ū, v)

so, after variable substitution in an original model, it is no loss of generality to

assume (ū, v) = (0, 0), and also negative values of u and v have a natural physical

interpretation (they correspond to concentrations under the equilibrium threshold).

The unilateral condition (1.2) can describe a source on Γ+ which prevents a de-

crease of the value v below zero and a sink on Γ− which prevents an increase of v

above zero. The last line in (1.2) means that the source or the sink is not active in

those points of Γ+ or Γ− where v > 0 or v < 0, respectively.

The set DS contains, in particular, all points (d1, d2) ∈ R
2
+ with d1 > b11/κ1 where

κ1 is the first positive eigenvalue of −∆ with Neumann boundary conditions so that

bifurcations of stationary solutions to (1.1), (1.4) do not occur with d1 > b11/κ1.

The influence of unilateral obstacles to the bifurcation of spatially nonconstant

stationary solutions of system (1.1) was studied already in the past, but usually for

the case when also a Dirichlet condition is imposed in some part of the boundary

(e.g. [2], [21], [15], [6], [9], [23], [24], [10]). It was shown that if a unilateral condition

is prescribed for v, then there are bifurcation points also in DS . However, also in all

these results a bifurcation in fact cannot occur if d1 > b11/κ1.

A surprisingly different situation occurs if no Dirichlet boundary data are pre-

scribed and if unilateral conditions of only one sign are imposed for v, e.g., unilateral
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boundary conditions (1.2) are considered and one of the two sets Γ+ or Γ− is empty.

It has been shown in [17] that in this case for every sufficiently large d1, in particular

for some d1 > b11/κ1 (in dimension d = 1 even for every d1 > 0, see [11]), there

is some d2 > 0 such that there is a bifurcation of stationary spatially nonconstant

solutions of (1.1) with unilateral obstacles at (d1, d2). In fact, there are bifurcation

points with d1/d2 arbitrarily large. By standard arguments (see e.g. [17]) one obtains

again that each bifurcation point (d1, d2) ∈ R
2
+ of (1.1) with unilateral conditions

(e.g. with (1.2)) is necessarily a critical point, that is, (1.7) with unilateral conditions

has a nontrivial solution.

However, the methods used in the cited papers [17], [11] break down if unilateral

conditions of opposite sign are given on different parts of the boundary or of the

interior, that is, if simultaneously there are unilateral sources and sinks for v, e.g.,

if both of the sets Γ+ and Γ− are nonempty in (1.2). In the current paper, we will

show that in this case there are bifurcation (hence critical) points (d1, d2) ∈ R
2
+

of (1.5), (1.2) with any d1 > b11/κ1, but that for obstacles in the interior of Ω, which

is modeled in (4.4), it might also happen that there are no such critical points, that

is, that (1.7) with unilateral obstacles has only the trivial solution (u, v) = (0, 0) in

W 1,2 for all d2 > 0, d1 > b11/κ1. In fact, using a variational approach, we will be able

to give a necessary and sufficient criterion for the existence of such critical points.

This criterion will relate in a rather implicit manner the geometry and location of the

unilateral obstacles with the values of the Jacobi matrix B := (bij) = (Djfi(0, 0)).

We emphasize that, although (1.7) is linear, unilateral obstacles are of an inher-

ently nonlinear nature so one cannot expect to use any tools from linear theory

or linearization methods. We use variational methods in spite of the fact that the

matrix B is non-symmetric because of (1.8), and thus the original problem has no

potential. We apply a modification of a trick which was used in a primitive form

already in [14], [15], and then for more detailed study of systems with unilateral

conditions in [1]. We will work with a weak formulation written as a system of

an operator equation and a variational inequality in W 1,2(Ω), we fix an arbitrary

d1 = d01 and consider only d2 as a parameter. Expressing u from the equation and

substituting it into the inequality, we get a single variational inequality for v with

a potential operator and a parameter d2. By a variational approach we obtain the

maximal bifurcation point d02 of this variational inequality, which is simultaneously

the maximal eigenvalue of the inequality with the linearized operator, and conse-

quently [d01, d
0
2] is a critical and simultaneously bifurcation point of the system (1.5)

with unilateral conditions. However, in the lack of a Dirichlet condition considered

in [14], [15] and [1], this inequality has a structure for which “standard” variational

methods for inequalities do not apply, and therefore the situation is more compli-

cated.
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Unfortunately, analogously as in [1], the approach mentioned cannot be used for

the proof of bifurcation in the case when a nonlinearity appears also in the first

equation or if n in the second equation of (1.5) depends also on u. In these cases,

even if it were possible to express u from the first equation, the potentiality of

the operator obtained would not be clear. So, in general the question whether the

critical point obtained by our procedure is simultaneously a bifurcation point of the

full system (1.1) with both nonlinear f1 and f2 remains open. However, in some

particular situations it is known that an eigenvalue of a variational inequality is also

a bifurcation point (see [22], [8]) and that a critical point of a unilateral problem

for (1.7) is also a bifurcation point of the unilateral problem for (1.1), see [16].

(Sometimes it is also possible to determine the direction of the bifurcation branch,

see [7].) In concrete examples discussed in all these papers, a Dirichlet boundary

condition on a part of the boundary is considered, which simplifies the situation.

However, it seems that also in our case of purely Neumann conditions, the results

of the current paper give in fact an information about bifurcations for the general

system (1.1), at least for nonlocal (integral) unilateral conditions as in [16] or for the

one-dimensional case d = 1.

The authors want to thank the referee for valuable suggestions which improved the

application enormously. In fact, the result that for unilateral conditions of type (1.2)

one has bifurcation points (d1, d2) even for every d1 6= b11/κk, k = 1, 2, . . ., without

any additional condition, uses the observations of the referee.

2. Abstract formulation

Let us assume that n is a continuous function satisfying (1.6) and that there exists

c ∈ R such that

(2.1) |n(u)| 6 c(1 + |u|)q−1

with some q > 2 or 2 < q < 2d/(d− 2) in the case d = 2 or d > 2, respectively (in

the case d = 1, we do not need the hypothesis (2.1) and put q = ∞ in the following).
We equip the (real) Hilbert space H = W 1,2(Ω) with the usual scalar product

(2.2) 〈u, ϕ〉 =
∫

Ω

(∇u(x) · ∇ϕ(x) + u(x)ϕ(x)) dx ∀u, ϕ ∈ H,

and the corresponding norm ‖ϕ‖2 = 〈ϕ, ϕ〉 and define operators A,N : H → H by

〈Au, ϕ〉 =
∫

Ω

u(x)ϕ(x) dx ∀u, ϕ ∈ H,(2.3)

〈N(u), ϕ〉 =
∫

Ω

n(u(x))ϕ(x) dx ∀u, ϕ ∈ H.(2.4)
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It follows from the compactness of the embedding H →֒→֒ Lq(Ω) and the continuity

of the Nemyckij operator of Lq(Ω) into Lq∗(Ω), 1/q + 1/q∗ = 1 (see e.g. [12]) that

under the assumption (2.1)

A is linear, symmetric, positive and compact(2.5)

with the largest simple eigenvalue 1,

N is nonlinear, continuous and compact.(2.6)

Furthermore, under the conditions (1.6), (2.1)

(2.7) N is Fréchet differentiable at 0, N(0) = 0, N ′(0) = 0,

see e.g. [3]. Moreover, let us introduce the functional GN : H → R by

GN (u) =

∫

Ω

∫ u(x)

0

n(s) ds dx.

Under the assumption (2.1), this functional is well defined, Fréchet differentiable,

and we have

(2.8) G′
N (u) = N(u),

i.e., GN is a potential of the operator N .

It is natural to define (weak) solutions of (1.7), (1.4) or (1.5), (1.4) as pairs (u, v)

satisfying

(2.9)






u, v ∈ H,

d1u− d1Au − b11Au− b12Av = 0,

d2v − d2Av − b21Au− b22Av = 0

or

(2.10)





u, v ∈ H,

d1u− d1Au− b11Au − b12Av = 0,

d2v − d2Av − b21Au− b22Av −N(v) = 0,

respectively. In order to treat the unilateral conditions (1.2), we define the cone

(2.11) K := {v ∈ H : v|Γ+ > 0 and v|Γ− 6 0},
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where the inequalities are understood in the sense of traces. We define correspond-

ingly solutions of the problems (1.7), (1.2) or (1.5), (1.2) as pairs (u, v) satisfying the

variational inequalities

(2.12)





u ∈ H, v ∈ K,

d1u− d1Au − b11Au− b12Av = 0,

〈d2v − d2Av − b21Au− b22Av, ϕ − v〉 > 0 ∀ϕ ∈ K

or

(2.13)





u ∈ H, v ∈ K,

d1u− d1Au − b11Au− b12Av = 0,

〈d2v − d2Av − b21Au − b22Av −N(v), ϕ − v〉 > 0 ∀ϕ ∈ K,

respectively. We will actually obtain bifurcation of (2.13) “with fixed d1” in the

following sense:

Definition 2.1. A parameter d2 is a bifurcation point of (2.13) with fixed d1 if in

any neighborhood of (d2, 0, 0) in R×H×H there is (d̃2, u, v) with (u, v) 6= (0, 0) such

that (d1, d̃2, u, v) satisfies (2.13). We call d2 a critical point of (2.12) (with fixed d1)

if (2.12) has a solution (u, v) 6= (0, 0).

R em a r k 2.1. Every bifurcation point (with fixed d1) is a critical point, see

e.g. [2].

Notation 2.1. Let us denote by 0 = κ0 < κ1 6 κ2 6 . . . the eigenvalues of −∆

with Neumann boundary conditions, counted according to multiplicity, and let ek
(k = 0, 1, . . .) be a corresponding orthonormal system of eigenvectors in H. With

each κk (k = 1, 2, . . .), we associate the hyperbola segment

Ck :=
{
d = (d1, d2) ∈ R

2
+ : d2 =

b12b21/κ
2
k

d1 − b11/κk
+

b22
κk

}
.

We denote by CE the envelope of Ck (k = 1, 2, . . .) and define the domain of stability

DS := {d ∈ R
2
+ : d lies to the right of CE , i.e., of all Ck, k = 1, 2, . . .}

and the domain of instability

DU := {d ∈ R
2
+ : d lies to the left of CE , i.e., of at least one Ck}

(see Figure 1).

For any k = 1, 2, . . ., we will denote by ak := b11/κk the d1-coordinate of the

vertical asymptote of Ck.
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d1

d2

C3

a3

C2

a2

C1

a1

DS

DU

Figure 1. The system of hyperbolas Ck, their asymptotes ak, domains of stability DS (to
the right of the envelope CE) and instability DU (to the left from CE).

R em a r k 2.2. The above definition of the domains DS and DU of stability and

instability indeed corresponds to the domains for which (0, 0) is a linearly stable

or unstable, respectively, solution of (1.1), (1.4). Actually, for (d1, d2) ∈ DS , the

solution (0, 0) of (1.1), (1.4) is even exponentially asymptotically stable in H × H,

see e.g. [25].

R em a r k 2.3. The hyperbolas Ck have a natural interpretation. They consist

exactly of those points (d1, d2) ∈ R
2
+ for which (2.9) has a nontrivial solution (u, v) 6=

(0, 0). More precisely, if V (d1, d2) denotes the space of all linear combinations of ek

where k is such that (d1, d2) ∈ Ck, then for each v ∈ V (d1, d2) there is some u ∈
V (d1, d2) such that (u, v) is a solution of (2.9), and conversely, all solutions of (2.9)

have such a form, see e.g. [9].

R em a r k 2.4. The eigenvalues of the operator A from (2.3) are of the form λk =

1/(1 + κk) for k = 0, 1, . . ., and the corresponding eigenspaces are the eigenspaces

of −∆ with Neumann boundary conditions to the eigenvalues κk.

3. Main results

In this section we will consider a general Hilbert space H with the scalar product

〈·, ·〉 and a closed convex cone K with its vertex at the origin in H. We will discuss

the variational inequalities (2.12) and (2.13) with general operators A,N : H → H

satisfying (2.5), (2.6), (2.7) with N having a potential GN , i.e., (2.8) holds. The

condition (1.8) will be always assumed.
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Let 1 = λ0 > λ1 > . . . > 0 be the eigenvalues of A, counted according to multi-

plicity, and let e0, e1, . . . be a corresponding orthonormal system of eigenfunctions.

In accordance with Remark 2.4, we use the notation κk := λ−1
k − 1. For d1 from

D1 := {d1 > 0: d1 6= ak = b11/κk ∀ k = 1, 2, . . .}

let us define the auxiliary functions

(3.1) ck(d1) :=
1

1 + κk

( b12b21
κkd1 − b11

+ b22

)
=

b22κkd1 − detB

(1 + κk)(κkd1 − b11)
.

R em a r k 3.1. Clearly, c0(d1) = detB/b11 > 0 is actually independent of d1.

There holds ck(d1) < 0 if d1 > ak, and ck(d1) > 0 if d1 < ak.

Theorem 3.1. Let e0 /∈ K ∪ (−K), and d1 ∈ D1. Then (2.12) has a critical point

d2 > 0 (with fixed d1) if and only if

(3.2) there is v ∈ K with

∞∑

k=0

ck(d1)|〈v, ek〉|2 > 0.

Moreover, in this case 〈(I −A)v, v〉 > 0 for every v ∈ K \ {0}, and

(3.3) dmax
2 := max

v∈K\{0}

∞∑

k=0

ck(d1)|〈v, ek〉|2
/
〈(I −A)v, v〉

= max
v∈K

〈(I−A)v,v〉=1

∞∑

k=0

ck(d1)|〈v, ek〉|2 ∈ (0,∞)

is the maximal critical point of (2.12) and simultaneously the maximal bifurcation

point of (2.13) with fixed d1.

Let us note that dmax
2 is in fact max 〈Sv, v〉 over all v ∈ K with 〈(I −A)v, v〉 = 1,

where S is a symmetric operator which we will use to reduce our problem to a vari-

ational setting (see Lemma 5.1).

We postpone the proof of Theorem 3.1 and of the subsequent Propositions 3.1

and 3.2 to Section 5.

Proposition 3.1. Suppose e0 /∈ K ∪ (−K) and d1 ∈ D1.

If (3.2) holds and v is a corresponding maximizer of d2 = dmax
2 > 0 in (3.3), then

there is a uniquely determined u such that (u, v) is a nontrivial solution of (2.12).

Conversely, if there is a positive value d2 > 0 such that there is a nontrivial solution

(u, v) of (2.12), then dmax
2 is maximal such value. If (u, v) is a nontrivial solution

of (2.12) with d2 = dmax
2 , then v 6= 0 is a maximizer of (3.3) (after appropriate

scaling).
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Proposition 3.2. Let e0 /∈ K ∪ (−K). Then the set D1,0 of all d1 ∈ D1 satisfy-

ing (3.2) is open, and the quantity dmax
2 from (3.3) depends continuously on d1 ∈ D1,0

and tends to 0 if d1 tends to some element from D1 \D1,0.

R em a r k 3.2. Suppose d1 ∈ D1, d1 < a1, and e0 /∈ K ∪ (−K). Let d2 > 0 be

such that (d1, d2) belongs to at least one of the hyperbolas Ck. Let V (d1, d2) denote

the corresponding set from Remark 2.3, and suppose that there are v ∈ V (d1, d2)

and λ ∈ R with v + λe0 ∈ K \ {0}. Then (d1, d
max
2 ) cannot lie below the hyperbola

Ck, more precisely,

(3.4) dmax
2 > d2+sup

{ λ2 detB

b11〈(I −A)v, v〉 : v ∈ V (d1, d2), λ ∈ R, v + λe0 ∈ K \ {0}
}
,

where the fraction is automatically defined and nonnegative for every corresponding

(v, λ).

Indeed, let v + λe0 ∈ K \ {0}. Since e0 /∈ K ∪ (−K), we have v 6= 0. Applying

Theorem 3.1 and the second part of Proposition 3.1 with K replaced by K0 =

V (d1, d2), we find that 〈(I −A)v, v〉 > 0 and that v is a maximizer of (3.3) (with K

replaced by K0), that is

d2 =

∞∑
k=0

ck(d1)|〈v, ek〉|2

〈(I −A)v, v〉 .

If we replace v on the right-hand side by ṽ = v + λe0, we have in view of Ae0 = e0

that 〈(I −A)ṽ, ṽ〉 = 〈(I −A)v, v〉, and in view of c0(d1) = detB/b11 > 0 the sum

increases by c0(d1)λ
2, which shows (3.4).

R em a r k 3.3. In the case d1 > a1, the points (d1, d
max
2 ) obtained from Theo-

rem 3.1 automatically belong to the set DS, in which the corresponding classical lin-

ear problem (2.9) cannot have a nontrivial solution and the nonlinear problem (2.10)

cannot have a bifurcation.

In contrast, if d1 ∈ D1 satisfies d1 < a1, in view of (3.4), it happens for many

cones from applications (cf. Section 4, depending on the location of the obstacles)

that the point (d1, d
max
2 ) which one obtains from Theorem 3.1 satisfies dmax

2 > d2

or even dmax
2 > d2 with some (d1, d2) ∈ Ck, and so (d1, d

max
2 ) /∈ DS . This does not

mean that there cannot be any bifurcation point in DS with d1 < a1. It just means

that Theorem 3.1 typically cannot be used to find these points, because by its very

nature Theorem 3.1 only gives the point with the largest d2-coordinate.

For this reason, we are mainly interested in the case d1 > a1 in the subsequent

discussion and examples.

R em a r k 3.4. It is remarkable that for the case when we assume a Dirichlet

condition (instead of a Neumann condition) on some parts of the boundary, one has
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an opposite situation compared to Remark 3.3 and (3.4): In this case, the maximal

bifurcation point (d1, d
max
2 ) of the problem with unilateral condition satisfies always

dmax
2 6 d2 where d2 is the maximal value satisfying (d1, d2) ∈ Ck with some k, inde-

pendently of the cone K, see [1]. Moreover, in this case, and if V (d1, d2) ∩K = {0},
the inequality is even strict [1]. The explanation for this difference is that in our case

a special role is played by e0 for which there is no analogue in the Dirichlet case.

For d1 ∈ D1, we denote by m(d1) the largest integer k > 1 such that d1 < ak =

b11/κk. If no such integer exists, that is, if d1 > a1, we put m(d1) := 0.

Proposition 3.3. Let d1 ∈ D1. If there is u ∈ (K+e0)∪(K−e0) with 〈u, e0〉 = 0

such that

(3.5)
∞∑

k=m(d1)+1

|ck(d1)||〈u, ek〉|2 < c0(d1) =
detB

b11
,

then the condition (3.2) is satisfied. In the case d1 > a1, the existence of such u is

also necessary for (3.2).

P r o o f. Recall that by Remark 3.1, we have ck(d1) < 0 < cj(d1) for all k >

m(d1) > j. Hence, putting v := u + e0 or v := u − e0 (choosing the sign such that

v ∈ K), we obtain

(3.6)
∞∑

k=0

ck(d1)|〈v, ek〉|2 > c0(d1)−
∞∑

k=m(d1)+1

|ck(d1)||〈u, ek〉|2,

and the latter is positive if and only if (3.5) holds. In particular, (3.5) implies (3.2).

In the case m(d1) = 0, we have equality in (3.6), and the only positive summand

in (3.2) can be the first. Hence, if (3.2) holds and m(d1) = 0, we have necessarily

〈v, e0〉 6= 0, by scaling without loss of generality |〈v, e0〉| = 1, and so v has the form

v = u + e0 or v = u − e0 with 〈u, e0〉 = 0. Now the above calculation shows that u

satisfies (3.5). �

Due to Theorem 3.1, we are only interested in the case e0 /∈ K ∪ (−K). In this

case, we cannot choose u = 0 in Proposition 3.3, and it is a question of the interplay

of the geometry of K and of the matrix B = (bij) (which determines the values

cj(d1)) whether a fixed parameter d1 ∈ D1 satisfies (3.2). We will see in Sections 4.1

and 4.2 that there are indeed examples in which (3.2) can hold or be violated for

some or all d1 > a1, respectively. The case d1 > a1 is here of a particular interest to

us for the reasons described in Remark 3.3.
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Corollary 3.1. Suppose that e0 /∈ K ∪ (−K). Then the set of all d1 > a1 for

which (3.2) holds is either empty or an interval of the form (d1,0,∞) with d1,0 ∈
[a1,∞). The value dmax

2 from (3.3) is a strictly increasing continuous function of

d1 ∈ (d1,0,∞), and

(3.7) dmax
2 6 c0(d1) sup

v∈K\{0}

|〈v, e0〉|2
〈(I −A)v, v〉 =

detB

b11
sup
v∈K

〈(I−A)v,v〉=1

|〈v, e0〉|2 < ∞

for every d1 > d1,0. In the case d1,0 > a1, we have d
max
2 → 0 as d1 → d1,0.

P r o o f. The functions ck(d1) < 0 for k > 1 are strictly increasing with respect

to d1 on (a1,∞), and c0(d1) > 0 is independent of d1. Hence, if (3.5) holds with

d1 > a1, it holds for all larger values of d1 as well. Moreover, if v denotes a fixed

corresponding maximizer of (3.3), then, since en form a complete orthonormal system

of H and v is not a multiple of e0, we must have 〈v, ek〉 6= 0 for some k > 1. With

this fixed v, it follows that the maximum in (3.3) must be strictly greater if d1 is

replaced by d̃1 ∈ (a1, d1).

In view of Proposition 3.3, we conclude that if (3.2) holds with d1 > a1, then it

holds for all larger values of d1 as well, and dmax
2 is strictly increasing as a function

of d1. The estimate (3.7) follows from ck(d1) < 0 for k > 1. The finiteness of (3.7)

will be shown in Lemma 5.3.

The remaining assertions follow in view of Proposition 3.2. �

The following result gives an exhaustive answer to the question whether the inter-

val from Corollary 3.1 is empty.

Proposition 3.4. There is d1 > a1 satisfying (3.2) if and only if

(3.8) inf
u∈(K+e0)∪(K−e0)

〈u,e0〉=0

〈Au, u〉 < b12b21
b11b22

− 1
(
=

∣∣∣
detB

b11b22

∣∣∣
)
.

P r o o f. Since (ek) forms a complete orthonormal basis, we can write every

u ∈ H as a series u =
∞∑
k=0

µkek with µk = 〈u, ek〉; using the fact that Aek = λkek, we

obtain

(3.9) 〈Au, u〉 =
∞∑

k=0

λk|〈u, ek〉|2 = |〈u, e0〉|2 +
∞∑

k=1

1

1 + κk
|〈u, ek〉|2.

Hence, (3.8) holds if and only if there is u ∈ (K+ e0)∪ (K − e0) with 〈u, e0〉 = 0 and

(3.10)
∞∑

k=1

1

1 + κk
|〈u, ek〉|2 <

b12b21
b11b22

− 1.
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Let d1 > a1 satisfy (3.2), and let u be the function from Proposition 3.3. It follows

from (3.1) and the assumption (1.8) that |ck(d1)| > −b22/(1 + κk) for k = 1, 2, . . .,

inserting into (3.5) and dividing by (−b22), we obtain (3.10). Thus (3.8) holds.

Conversely, if (3.8) holds then there is u ∈ (K + e0)∪ (K − e0) with 〈u, e0〉 = 0 such

that (3.10) holds. Since the difference

∣∣∣|ck(d1)| −
−b22
1 + κk

∣∣∣ <
1

1 + κ1
· |b12b21|
|κ1d1 − b11|

tends to zero as d1 → ∞ uniformly in k = 1, 2, . . ., then also (3.5) holds for all large

d1 and the first part of Proposition 3.3 implies (3.2). �

If we are interested in the existence of a bifurcation point for every d1 ∈ D1, we

can use the following sufficient condition which was pointed out to us by the referee.

Proposition 3.5. If d1 ∈ D1 is such that

(3.11) inf
u∈(K+e0)∪(K−e0)

〈u,e0〉=0

〈Au, u〉 <
(
|b22|+

∣∣∣
b12b21

κm(d1)+1d1 − b11

∣∣∣
)−1 detB

b11

(
=

(
|b11b22|+

∣∣∣
b12b21

a−1
m(d1)+1d1 − 1

∣∣∣
)−1

detB
)
,

then condition (3.2) is fulfilled. In particular, if

(3.12) inf
u∈(K+e0)∪(K−e0)

〈u,e0〉=0

〈Au, u〉 = 0,

then the condition (3.2) is satisfied for every d1 ∈ D1.

P r o o f. Denote the term in the first brace on the right-hand side of (3.11) by C

and note that C > 0. Then we have for every k > m(d1) that |ck(d1)| 6 C/(1 + κk).

For any u ∈ H we obtain by using (3.9) that

C〈Au, u〉 > C
∞∑

k=m(d1)+1

1

1 + κk
|〈u, ek〉|2 >

∞∑

k=m(d1)+1

|ck(d1)||〈u, ek〉|2,

and so (3.11) implies (3.5). Hence the assertion follows from Proposition 3.3. �
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4. Examples

4.1. Unilateral conditions on the boundary. We consider the problem (1.5),

(1.2) of Section 1. Assume the sign condition (1.8) and let the nonlinearity n sat-

isfy (1.6) and the growth condition (2.1). In fact we have in mind the weak formula-

tion, that is, the variational inequality (2.13) with the operators (2.3), (2.4) and with

the cone (2.11). Note that e0 is the eigenfunction of −∆ to the eigenvalue κ0 = 0,

that is, a constant. Without loss of generality, we can assume that it is positive,

that is,

(4.1) e0(x) =
1√

mesΩ
.

Hence, the hypothesis e0 /∈ K ∪ (−K) of Theorem 3.1 holds in view of (1.3).

Our theory implies that for every d1 > 0, d1 6= ak (k = 1, 2, . . .) there is a bifurca-

tion point d2 > 0 for fixed d1, the maximal such bifurcation point is d2 = dmax
2 > 0

from Theorem 3.1, and this is simultaneously the maximal criticial point. This fol-

lows from Theorem 3.1 by using Lemma 4.1 proved below and Proposition 3.5. The

values dmax
2 are for d1 ∈ (a1,∞) continuous and strictly increasing with respect to d1

by Corollary 3.1, and bounded from above by (3.7).

Let us emphasize that for d1 > a1 we have automatically (d1, d2) ∈ DS for all

d2 > 0. Hence we get a bifurcation point of the unilateral problem in the domain

where bifurcation and critical points of the classical problem (1.5), (1.4) are excluded.

In the case d1 < a1, if there are d2 > 0 with (d1, d2) ∈ Ck, v ∈ V (d1, d2) (the set

from Remark 2.3), v 6= 0, and λ ∈ R satisfying v|Γ+ > λ > v|Γ− , then (d1, dmax
2 ) /∈ DS .

This is a consequence of Remark 3.2. Moreover, if one can choose λ 6= 0, then

dmax
2 > d2 by (3.4). In particular, if d2 > 0 is the maximal value with (d1, d2) ∈ Ck

for some k, then we can conclude that (d1, d
max
2 ) /∈

∞⋃
k=1

Ck, and so in this case

we obtain a bifurcation point of (1.5), (1.2) which is no bifurcation point of the

classical problem (1.5), (1.4). Due to Proposition 3.2, the value dmax
2 again depends

continuously on d1, d1 6= ak (k = 1, 2, . . .).

When one is interested in calculating or estimating dmax
2 explicitly, it might be

worth to note that

(4.2) 〈(I −A)v, v〉 =
∫

Ω

|∇v|2 dx.

Lemma 4.1. If K denotes the cone (2.11) and A the operator (2.3), then (3.12)

holds.
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P r o o f. We note that our choice of A implies

(4.3) inf
u∈(K+e0)∪(K−e0)

〈u,e0〉=0

〈Au, u〉 = inf
u∈(K+e0)∪(K−e0)∫

Ω
u(x) dx=0

∫

Ω

u(x)2 dx.

Fix some v ∈ H with supp v ⊆ Ω and
∫
Ω
v(x) dx = 1. For any ε > 0, there are an

open set Ωε ⊆ R
d with Γ+ ⊆ Ωε, Ωε ∩ supp v = ∅, mesΩε < ε and a function uε ∈ H

such that

uε = e0 on Γ+, uε = 0 on Ω \ Ωε, 0 6 uε 6 e0 on Ω.

For instance, for sufficiently small δ > 0, one can let uε be a suitable standard

mollification of a multiple of the characteristic function χδ of the set {x ∈ R
d :

dist(x,Γ+) < δ}. More precisely, we choose a smooth function ϕδ : R
d → [0,∞) with

integral 1 and support in {x : ‖x‖ < δ} (a mollifier), and put

vδ(x) :=
1√

mesΩ

∫

Rd

ϕδ(x)χδ(x− y) dy ∀x ∈ R
d.

Then we can take uε ∈ H as the restriction of vδ and Ωε as a sufficiently small

neighborhood of the support of vδ.

Put c :=
∫
Ω uε(x) dx. Then u = uε − cv ∈ K + e0 satisfies

∫
Ω u(x) dx = 0 and

∫

Ω

u(x)2 dx 6

∫

Ω∩Ωε

e0(x)
2 dx+ c2

∫

supp v

v(x)2 dx 6
ε

mesΩ
+

ε2

mesΩ

∫

Ω

v(x)2 dx.

Since v ∈ H was fixed and ε > 0 arbitrary, (3.12) follows. �

4.2. Unilateral conditions in the interior. Let us consider now unilateral ob-

stacles describing sources and sinks in the interior of Ω. Let Ω± ⊆ Ω be nonempty

open subsets such that Ω+ ∩ Ω− = ∅ and (for simplicity) Ω± ∩ ∂Ω = ∅ and
mes(∂Ω±) = 0 (the d-dimensional Lebesgue measure). We consider now the problem

d1∆u+ b11u+ b12v = 0 in Ω,(4.4)

d2∆v + b21u+ b22v + n(v) = 0 in Ω \ (Ω+ ∪ Ω−),

± (d2∆v + b21u+ b22v + n(v)) 6 0, ± v > 0 in Ω±,

(d2∆v + b21u+ b22v + n(v))v = 0 in Ω±

with Neumann boundary conditions (1.4). It describes a situation when there is

a source on Ω+ which prevents a decrease of the value v below zero and a sink on Ω−

which prevents an increase of v above zero. The last line in (4.4) means that the
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source or the sink is not active in the points of Ω+ or Ω− where v > 0 or v < 0,

respectively.

Assume that the sign condition (1.8) is fulfilled and that the nonlinearity n sat-

isfies (1.6) and the growth condition (2.1). The weak formulation of (4.4), (1.4) is

again (2.13) with the same operators as in Section 4.1, but with the cone

(4.5) K := {v ∈ H : v|Ω+
> 0 and v|Ω−

6 0}.

Lemma 4.2. Let K denote the cone (4.5), and A the operator (2.3). Then

(4.6) inf
u∈(K+e0)∪(K−e0)

〈u,e0〉=0

〈Au, u〉 = min
{ mesΩ+

mes(Ω \ Ω+)
,

mesΩ−

mes(Ω \ Ω−)

}
.

The proof of Lemma 4.2 will be given later. First, we will summarize what our

theory implies for the problem (4.4), (1.4).

It follows from Theorem 3.1 that the set D1,0 from Proposition 3.2 coincides with

the set of all d1 > 0, d1 6= ak (k = 1, 2, . . .) for which there is a critical point

d2 > 0 (with fixed d1) of (4.4), (1.4). For d1 ∈ D1,0, the maximal critical point is

simultaneously the maximal bifurcation point and equals to dmax
2 from Theorem 3.1.

It follows from Proposition 3.2 that the set D1,0 is open, and the function dmax
2

depends continuously on d1 ∈ D1,0. The quantity dmax
2 can be written in a more

concrete form by using the formula (4.2).

Furthermore, let us show that if

(4.7)
min {mesΩ+,mesΩ−}

mesΩ
<

(
1 +

∣∣∣
b11b22
detB

∣∣∣
)−1

,

then D1,0 ∩ (a1,∞) 6= ∅, and conversely, if (4.7) is violated, then D1,0 ∩ (a1,∞) = ∅.
Indeed, the formula (4.6) of Lemma 4.2 shows after some calculation that (4.7) is

equivalent to (3.8), so Proposition 3.4 implies that (4.7) is equivalent to D1,0 ∩
(a1,∞) 6= ∅.
Let us emphasize that in the case (4.7), the corresponding bifurcation/critical

points (d1, d2) with d1 > a1 necessarily belong to the set DS , in which the trivial

solution of the evolution problem (1.1) with Neumann conditions (1.4) is linearly

stable.

It is remarkable that for any fixed Ω and Ω± both of the cases (D1,0 ∩ (a1,∞)

being nonempty or empty, that is, (4.7) being satisfied or violated) actually do occur

for many matrices B = (bij).

If (4.7) is satisfied, i.e., D1,0 ∩ (a1,∞) 6= ∅, we obtain from Corollary 3.1 that
D1,0 ∩ (a1,∞) = (d1,0,∞) with some d1,0 ∈ [a1,∞). In this case the function dmax

2
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is continuous and strictly monotone with respect to d1 ∈ (d1,0,∞) and is bounded

by (3.7), and in the case d1,0 > a1 we have d
max
2 → 0 as d1 → d1,0.

If d1 > 0 satisfies d1 6= ak (k = 1, 2, . . .) and

(4.8)
min {mesΩ+,mesΩ−}

mesΩ
<

(
1 +

1

detB

(
|b11b22|+

∣∣∣
b12b21

a−1
m(d1)+1d1 − 1

∣∣∣
))−1

,

then d1 ∈ D1,0 by Proposition 3.5 and Theorem 3.1. Indeed, the formula (4.6) of

Lemma 4.2 shows after some calculation that (4.8) is equivalent to (3.11).

Whenever d1 ∈ D1,0 satisfies d1 < a1, Remark 3.2 implies the following assertion:

If d2 > 0 is such that (d1, d2) belongs to at least one of the hyperbolas Ck (k =

1, 2, . . .) and if the set V (d1, d2) from Remark 2.3 contains a function v 6= 0 satisfying

v|Ω+
> λ > v|Ω−

with some number λ ∈ R, then the largest bifurcation/critical point

dmax
2 of (4.4), (1.4) satisfies dmax

2 > d2, and even dmax
2 > d2 if one can choose λ 6= 0.

P r o o f of Lemma 4.2. Note that (4.3) holds by our choice of A. If u ∈ K + e0,

then we have by (4.1) that

∫

Ω+

u(x)2 dx >

∫

Ω+

e0(x)
2 dx >

mesΩ+

mesΩ
.

If additionally
∫
Ω u(x) dx = 0, then we have with Ω0 := Ω \ Ω+ that

mesΩ+

(mesΩ)1/2
6

∫

Ω+

u(x) dx = −
∫

Ω0

u(x) · 1 dx 6

(∫

Ω0

u(x)2 dx

)1/2

(mesΩ0)
1/2

by Hölder’s inequality, and so

〈Au, u〉 =
∫

Ω+

u(x)2 dx+

∫

Ω0

u(x)2 dx >
mesΩ+

mesΩ
+

(mesΩ+)
2

mesΩmesΩ0
=

mesΩ+

mesΩ0
.

For u ∈ K − e0, one obtains an analogous estimate with exchanged roles of Ω+

and Ω−. This proves “>” in (4.6). To prove the converse inequality, we assume first

that the minimum in (4.6) is given by the first expression. Given ε > 0, we fix some

v ∈ H, v > 0 such that supp v ⊆ Ω0 := Ω \ Ω+, mes(Ω0 \ supp v) sufficiently small,
v a positive constant in Ω̃0 ⊆ Ω0, mes(Ω0 \ Ω̃0) small, and

∫

Ω

v(x) dx = 1 and

∫

Ω

v(x)2 dx 6
1 + ε

mesΩ0
.

There is an open set Ωε ⊆ Ω containing Ω+ with mesΩε < mesΩ+ + ε and Ωε ∩
(Ω− ∪ supp v) = ∅ and uε ∈ H with

uε = e0 on Ω+, uε = 0 outside Ωε, and 0 6 uε 6 e0 on Ω.
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Hence, uε ∈ K + e0, suppuε ⊆ Ωε, and |uε| 6 e0. Putting c :=
∫
Ω
uε(x) dx and

u := uε − cv, we have then u ∈ K + e0,
∫
Ω u(x) dx = 0, and

∫

Ω

u(x)2 dx 6

∫

Ωε

e0(x)
2 dx+ c2

∫

supp v

v(x)2 dx

6
mesΩ+ + ε

mesΩ
+

(mesΩ+ + ε)2

mesΩ
· 1 + ε

mesΩ0
.

Letting ε → 0, we obtain “6” in (4.6). For the case when the minimum in (4.6) is

given by the second expression, the proof is analogous by exchanging the roles of Ω+

and Ω−, and by putting u := uε + cv. �

R em a r k 4.1. Our proof shows that if we drop the hypothesis mes(∂Ω±) = 0,

then the infimum in (4.6) remains bounded from below by the right-hand side, but

it is bounded from above only by

min
{mesΩ+

mesΩ

(
1 +

mesΩ+

mes(Ω \ Ω+)

)
,
mesΩ−

mesΩ

(
1 +

mesΩ−

mes(Ω \ Ω−)

)}
.

R em a r k 4.2. The assertion of Remark 4.1 holds also in the case Ω− = ∅ or
Ω+ = ∅. This can be used to strengthen the assertion of [17], Example 2.3, slightly
if one assumes that the set Ω0 (which takes there the role of one of our sets Ω±)

is open. In this case, our proof shows that the hypothesis (2.10) from [17] can be

relaxed to

0 <
mesΩ0

mesΩ

(
1 +

mesΩ0

mes(Ω \ Ω0)

)
<

(b12b21
b11b22

− 1
)2

,

which in the case mes(∂Ω0) = 0 simplifies after some calculation to

0 <
mesΩ0

mesΩ
<

(
1 +

(b11b22)
2

(detB)2

)−1

.

5. Proof of the main results

Let σ(A) denote the spectrum of A. Since A is compact, σ(A) consists of all

eigenvalues of A and of the value 0. For fixed d1 ∈ D1, we define the auxiliary

function f : σ(A) → R by

f(λ) :=
b12b21λ

2

d1 − (b11 + d1)λ
+ b22λ.

Note that we have

(5.1) f(0) = 0 and f(λk) = ck(d1) for k = 0, 1, . . .
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Since A is a symmetric operator in H, we can define a selfadjoint operator S := f(A)

in the usual way by means of spectral calculus of symmetric operators.

Lemma 5.1. For d1 ∈ D1 and

(5.2) S = f(A) = b12b21A(d1(I +A)− b11A)
−1A+ b22A

the variational inequality (2.13) is equivalent to

v ∈ K, 〈d2(I − A)v − Sv −N(v), ϕ− v〉 > 0 ∀ϕ ∈ K,(5.3)

u = (d1(I −A)− b11A)
−1b12Av.(5.4)

Similarly, (2.12) is equivalent to (5.4) and

(5.5) v ∈ K, 〈d2(I −A)v − Sv, ϕ− v〉 > 0 ∀ϕ ∈ K.

P r o o f. The condition d1 ∈ D1 means that the operator d1(I − A) − b11A is

invertible, and so for every v ∈ H the first equation of (2.13) has a unique solution

given by (5.4). Inserting this formula into the inequality in (2.13), we obtain the

assertion. �

For the rest of this section, we keep d1 ∈ D1 fixed and put S = f(A) as above.

Lemma 5.2. For every v ∈ H we have

〈Sv, v〉 =
∞∑

k=0

ck(d1)|〈v, ek〉|2.

P r o o f. Since ek form a complete orthonormal system, we can write the Fourier

expansion v =
∞∑
k=0

µkek with µk := 〈v, ek〉. The spectral calculus implies

〈Sv, v〉 =
∞∑

k=0

〈f(λk)µkek, v〉 =
∞∑

k=0

f(λk)|µk|2,

so the assertion follows from (5.1). �
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Lemma 5.3. If e0 /∈ K ∪ (−K), then there is some c > 0 with

(5.6) c‖v‖2 6 〈(I −A)v, v〉 6 ‖v‖2 ∀ v ∈ K,

and

(5.7) sup
v∈K\{0}

〈Sv, v〉
〈(I −A)v, v〉 = sup

v∈K\{0}

∞∑
k=0

ck(d1)|〈v, ek〉|2

〈(I −A)v, v〉 < ∞.

P r o o f. Since σ(A) ⊆ [0, 1], we have for all v ∈ H with ‖v‖ = 1 that 〈Av, v〉 ∈
[0, 1], and so 〈(I −A)v, v〉 ∈ [0, 1]. Hence, if (5.6) fails there is a sequence vn ∈ K

with ‖vn‖ = 1 and 1− 〈Avn, vn〉 = 〈(I −A)vn, vn〉 → 0. Passing to a subsequence if

necessary, we can assume vn ⇀v. Then Avn → Av and thus 〈Avn, vn〉 → 〈Av, v〉. In
particular, 〈Av, v〉 = 1, which implies ‖v‖ > 1. From vn ⇀v and ‖vn‖ = 1 6 ‖v‖, we
thus obtain by a standard Hilbert space argument that vn → v. Since 〈Av, v〉 = 1

and ‖v‖ = 1, and since 1 is the largest eigenvalue of A with a simple eigenvector e0,

we obtain vn → v ∈ {±e0}, which is a contradiction, because K is closed, vn ∈ K,

and e0 /∈ K ∪ (−K). Hence, (5.6) is established. The equality (5.7) follows from

Lemma 5.2, and the finiteness of (5.7) follows from the boundedness of S and (5.6).

�

In the following, we identify H with its dual by means of the scalar product. In

this sense, the derivative of a functional Φ: H → R becomes a function Φ′ : H → H.

The following proof uses some ideas from [27], Section 64.5. However, we can-

not use the corresponding [27], Theorem 64.4, since the bilinear form a(u, v) :=

〈(I −A)u, v〉 fails to be positive definite on H in our situation.

Replacing GN by GN −GN (0) if necessary, we assume from now on without loss

of generality that GN (0) = 0.

Lemma 5.4. Let e0 /∈ K ∪ (−K), and suppose that the quantity from (5.7) is

positive. Then the two suprema in (5.7) are maxima, hence, they are equal to dmax
2

from Theorem 3.1. Moreover:

(i) For each sufficiently small r > 0 the maximum

(5.8) d2,r :=
1

r2
max
v∈K

〈(I−A)v,v〉=r2

(〈Sv, v〉+GN (v))

exists, and d2,r → dmax
2 > 0 as r → 0+.
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(ii) If vr is a maximizer of (5.8), then there is a unique d2,r,vr such that

(5.9) vr ∈ K, d2,r,vr 〈(I −A)vr , ϕ− vr〉 > 〈Svr +N(vr), ϕ− vr〉 ∀ϕ ∈ K,

and d2,r,vr → dmax
2 as r → 0+ (independent of the choice of vr).

P r o o f. The set Kr := {v ∈ K : 〈(I −A)v, v〉 6 r2} is convex, closed, and
bounded in view of (5.6). The functionals Φ1(v) = 〈Sv, v〉 and Φ2(v) = Φ1(v) +

GN (v) have compact Fréchet derivatives and thus are weakly sequentially continu-

ous by e.g. [26], Corollary 41.9. Hence, the two maxima

mi,r = max
v∈Kr

Φi(v)

exist, see e.g. [26], Corollary 38.8 and 38.9. Let vi,r be a corresponding maximizer.

Since (5.7) is positive, it follows that Φ1(v1,r) = 〈Sv1,r, v1,r〉 > 0, and thus by

homogeneity of Φ1, we have

v1,r ∈ Br := {v ∈ K : 〈(I −A)v, v〉 = r2}.

Hence, the maximum of the first term in (5.7) is attained at v1,r/r, and m1,r =

r2dmax
2 .

Let us prove that

(5.10) d2,r =
m2,r

r2
→ dmax

2 as r → 0.

We note first that N(0) = 0 and N ′(0) = 0 imply

lim
r→0

sup
‖v‖6r

‖N(v)‖
r

= 0,

hence, it follows by using (5.6) that

(5.11) lim
r→0

sup
v∈Kr

|〈N(v), v〉|
r2

= 0.

Applying the classical mean value theorem to the function t 7→ GN (tu) on [0, 1], we

obtain in view of GN (0) = 0, G′
N = N , and since Kr is convex with 0 ∈ Kr, that

(5.12) lim
r→0

sup
v∈Kr

|GN (v)|
r2

= 0.
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The definition of vi,r implies

〈Sv1,r, v1,r〉 = Φ1(v1,r) = m1,r > Φ1(v2,r) = 〈Sv2,r, v2,r〉,

and

〈Sv2,r, v2,r〉+GN (v2,r) = Φ2(v2,r) = m2,r > Φ2(v1,r) = 〈Sv1,r, v1,r〉+GN (v1,r).

Adding the term GN (v2,r) to the first inequality and using the second one, we get

〈Sv1,r, v1,r〉+GN (v2,r) > 〈Sv2,r, v2,r〉+GN (v2,r) > 〈Sv1,r, v1,r〉+GN (v1,r).

Since m1,r = r2dmax
2 , we obtain in view of (5.12) that

lim
r→0

d2,r = lim
r→0

m2,r

r2
= lim

r→0

〈Sv2,r, v2,r〉
r2

= lim
r→0

〈Sv1,r, v1,r〉
r2

= lim
r→0

m1,r

r2
= dmax

2 .

Hence, (5.10) is proved.

Let us show now that v2,r ∈ Br if r is small enough. By using 〈Φ′
2(v), v〉 =

〈Sv, v〉+ 〈N(v), v〉, we obtain in view of (5.11) also

(5.13) lim
r→0

〈Φ′
2(v2,r), v2,r〉

r2
= dmax

2 > 0.

Assuming by contradiction that v2,r /∈ Br holds for infinitely many r = rn → 0, we

find for each r = rn that (1+t)v2,r ∈ Kr for all small t > 0 and thus Φ2((1+t)v2,r) 6

m2,r = Φ2(v2,r). Letting t → 0+, we obtain 〈Φ′
2(v2,r), v2,r〉 6 0 for every r = rn,

which in view of rn → 0 contradicts (5.13).

The first assertion of (ii) follows from the Lagrange multiplier rule on cones (see

e.g. [27], Proposition 64.3 with F (v) := 〈(I −A)v, v〉 and G(v) := 〈Sv, v〉 + GN (v)

and the cone C := K). Setting ϕ = 0 and ϕ = 2vr in (5.9), we find

d2,r,vr =
〈Svr, vr〉+ 〈N(vr), vr〉

〈(I −A)vr , vr〉
= d2,r +

〈N(vr), vr〉 −GN (vr)

r2
.

Using (5.11), (5.12) and (5.10), we get indeed d2,r,vr → dmax
2 as r → 0. �

P r o o f of Theorem 3.1. Let us note that the equality (5.7) in Lemma 5.3 to-

gether with Lemma 5.4 imply that (3.2) is equivalent to the assertion that the quan-

tities in (5.7) are positive.

Assume first that (2.12) has a critical point d2 > 0. By Lemma 5.1, we find

some v 6= 0 satisfying (5.5). Setting ϕ = 0 in (5.5), we obtain dmax
2 > d2 > 0, in

particular, (3.2) is satisfied.
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Conversely, if the quantities from (5.7) are positive, then Lemma 5.4 implies that

they are equal to dmax
2 , and by the above argument dmax

2 > d2 for any critical point d2.

It remains to show that dmax
2 is a bifurcation point with fixed d1 (and thus a crit-

ical point). Due to Lemma 5.4, for any r > 0 small enough there are vr, d2,r,vr
satisfying (5.9) with 〈(I −A)vr , vr〉 = r2, d2,r,vr → dmax

2 , and (5.6) in Lemma 5.3

gives ‖vr‖ → 0 as r → 0. Lemma 5.1 implies that (d1, d2,r,vr , ur, vr) with ur defined

by (5.4) (with v = vr) satisfies (2.13). Hence, d
max
2 is a bifurcation point of (2.13)

with fixed d1. �

P r o o f of Proposition 3.1. We will apply the previous results always with N = 0,

hence GN = 0. Thus, if v is a maximizer of (3.3), i.e., of (5.8), then v = vr

and d2,r = d2,r,vr = dmax
2 in Lemma 5.4, and so v satisfies (5.5) with d2 = dmax

2 .

According to Lemma 5.1, the variational inequality (2.12) holds with this v if and

only if u satisfies (5.4).

Conversely, let (u, v) 6= (0, 0) satisfy (2.12) with some d2 > 0. According to

Lemma 5.1 we have then v 6= 0 in view of (5.4), and v satisfies (5.5). As in the above

proof of Theorem 3.1, we obtain by the choice ϕ = 0 that d2 6 dmax
2 and that (3.2)

is satisfied. If d2 = dmax
2 , the choice ϕ = 0 in (5.5) shows that v is a maximizer. �

P r o o f of Proposition 3.2. For clarity, we denote the operator of Lemma 5.1 by

S(d1). By Lemma 5.2, we thus have for every d1 ∈ D1

(5.14) 〈S(d1)v, v〉 =
∞∑

k=0

ck(d1)|〈v, ek〉|2.

Note that (5.2) shows that S(d1) is a compact operator which depends on d1 ∈ D1

continuously in operator norm.

Let d1 ∈ D1,0 and v ∈ K be a maximizer of (3.3). Then dmax
2 is (5.14), and for

every ε > 0, we have 〈S(d̃1)v, v〉 > dmax
2 − ε > 0 if d̃1 is sufficiently close to d1.

Hence, D1,0 is open, and (3.3) is lower semicontinuous.

Conversely, let d1,n ∈ D1,0 converge to d1 ∈ D1. Let vn ∈ K satisfying

〈(I −A)vn, vn〉 = 1 be corresponding maximizers of (3.3) with d1,n, and set

dmax
2,n := 〈S(d1,n)vn, vn〉. Let l := lim sup dmax

2,n . It follows from (5.6) that the se-

quence vn is bounded. Hence, passing to a subsequence, we can assume that vn ⇀v

and l = 〈S(d1)v, v〉. Since closed convex sets are weakly closed, it follows that v ∈ K

and 〈(I −A)v, v〉 6 1. Using (5.6) once more, we find 〈(I −A)v, v〉 ∈ (0, 1] or v = 0.

In the case d1 ∈ D1,0, we show now that

lim sup
n→∞

dmax
2,n = l = 〈S(d1)v, v〉 6 max

ṽ∈K
〈(I−A)ṽ,ṽ〉=1

〈S(d1)ṽ, ṽ〉 = dmax
2 .
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Indeed, if v 6= 0, we can choose ṽ := 〈(I −A)v, v〉−1
v, and if v = 0, then l = 0, and

we can choose ṽ as any vector satisfying (3.2) (here we use the fact that d1 ∈ D1,0).

This proves the upper semicontinuity of (3.3) at d1. In the case d1 /∈ D1,0, we have

〈S(d1)v, v〉 6 0 and thus again lim sup dmax
2,n = l = 0. �

A c k n ow l e d g em e n t. The authors want to thank the referee for valuable

suggestions which improved the application enormously.
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