
Applications of Mathematics

Xiaohui Hu; Pengzhan Huang; Xinlong Feng
A new mixed finite element method based on the Crank-Nicolson scheme for Burgers’
equation

Applications of Mathematics, Vol. 61 (2016), No. 1, 27–45

Persistent URL: http://dml.cz/dmlcz/144810

Terms of use:
© Institute of Mathematics AS CR, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/144810
http://dml.cz


61 (2016) APPLICATIONS OF MATHEMATICS No. 1, 27–45

A NEW MIXED FINITE ELEMENT METHOD BASED ON THE

CRANK-NICOLSON SCHEME FOR BURGERS’ EQUATION

Xiaohui Hu, Pengzhan Huang, Xinlong Feng, Urumqi

(Received April 16, 2015)

Abstract. In this paper, a new mixed finite element method is used to approximate the
solution as well as the flux of the 2D Burgers’ equation. Based on this new formulation,
we give the corresponding stable conforming finite element approximation for the P 20 − P1
pair by using the Crank-Nicolson time-discretization scheme. Optimal error estimates are
obtained. Finally, numerical experiments show the efficiency of the new mixed method and
justify the theoretical results.
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1. Introduction

Burgers’ equation was formulated by Bateman [2] in 1915, and can be regarded

as a qualitative approximation of the Navier-Stokes equations. This equation in-

corporates both convection and diffusion, preserves the hybrid characteristic of the

Navier-Stokes equations, and can be solved using similar numerical methods. As

such, Burgers’ equation is a good model for the numerical solution of the complicated

Navier-Stokes equations. This equation is a hyperbolic-parabolic equation which has

always been used as a mathematical model for many physical phenomena. It retains

the nonlinear aspects of the governing equation in many practical transport prob-

lems such as aggregation interface growth, the formation of large-scale structures in

the adhesion model for cosmology, turbulence transport, shock wave theory, wave
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27



processes in thermoelastic medium, transport and dispersion of pollutants in rivers

and sediment transport. Thus, the numerical method has practical significance, and

has drawn the attention of many researchers. Burgers’ equation is so important that

many numerical methods for its solution were developed in the past decades. These

methods include mainly the spectral method, the finite difference method, and the

finite element method, see [3], [4], [5], [8], [9], [16], [18], [19], [21], and the references

therein.

The mixed finite element method is frequently used to obtain approximate so-

lutions to problems with more than one unknown. Accordingly, we need a finite

element space for each unknown. These spaces must be chosen carefully so that they

satisfy an inf-sup stability condition for the mixed method to be stable. Moreover, we

can find the P 2
0 −P1 finite element pair which satisfies the discrete inf-sup condition

based on a new variational formulation of the two-dimensional Poisson equation [22]

and the parabolic equation [23]. In fact, the issue considered in [23] is the linear

problem, so we extend this new stable finite element method to solving Burgers’

equation, which is a nonlinear PDE.

There exist several time-discretization methods to deal with Burgers’ equation

such as the backward Euler method, Crank-Nicolson method, Runge-Kutta method,

etc. The Crank-Nicolson scheme [7] was first proposed by Crank and Nicolson for the

heat-conduction equation in 1947, and it is unconditionally stable with second-order

accuracy. Because of these properties, the scheme has been widely used in solving

many PDEs [15], [23] and has drawn the attention of many researchers for Navier-

Stokes equations [13], [12], [10], [17]. Hence, we use the Crank-Nicolson scheme and

prove its optimal order of convergence.

This paper focuses on the Crank-Nicolson scheme for time discretization applied

to the spatially discrete stable finite element approximation of Burgers’ equation

based on a lower regularity of the flux, and the nonlinear term is based on the Stokes

iterative method [11]. Compared with the Newton iterative method and the Oseen

iterative method, the Stokes iterative method takes less CPU time than the other

two iterative methods, and has a better stability.

The outline of the paper is as follows. In Section 2, the basic notations and the

new mixed formulation are stated. In Section 3, the stable mixed finite element pair

P 2
0 − P1 for Burgers’ equation is shown. We discretize the given equation by the

Crank-Nicolson mixed finite element method and derive optimal error estimates in

Section 4. Results of the numerical experiments performed are discussed in Section 5,

and the numerical experiments confirm the theoretical rate of convergence obtained.

The conclusions are given in Section 6.
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2. A new mixed variational formulation

In this paper, we consider the 2D Burgers’ equation with homogeneous boundary

condition:

ut − ν(uxx + uyy) + u(ux + uy) = f in Ω× (0, T ],(2.1)

u(x, y, 0) = u0(x, y) in Ω× {0},(2.2)

u = 0 on ∂Ω× (0, T ],(2.3)

where Ω is a bounded convex domain in the plane and ∂Ω is Lipschitz continuous

boundary of Ω. The term u0(x, y) is the initial value, T > 0 represents the given

final time, f = f(x, y, t) is the prescribed force. The positive number ν = 1/Re is

the coefficient of viscosity, and Re denotes the Reynolds number.

Suppose that f ∈ L2(Ω). By introducing the flux p = −∇u, the mixed formulation

of (2.1)–(2.3) is to find (p, u) ∈ V ×W such that

(p, q) + (q,∇u) = 0 ∀ q ∈ V,(2.4)

(ut, v)− ν(p,∇v)− ([u, u]p, v) = (f, v) ∀ v ∈W.(2.5)

Here we denote

(2.6) V = L2(Ω)2, W = H1

0 (Ω).

The Sobolev spaces used in this context are standard (see [1]). For example, for

a bounded domain Ω, we denote by Hm(Ω) (m > 0) and L2(Ω) = H0(Ω) the usual

Sobolev spaces equipped with the seminorm and the norm, respectively,

|v|m,Ω =

{

∑

|α|=m

∫

Ω

|Dαv|2 dxdy

}1/2

and ‖v‖m,Ω =

{ m
∑

i=0

|v|2i,Ω

}1/2

∀ v ∈ Hm(Ω),

where α = (α1, α2), α1 and α2 are two nonnegative integers, and |α| = α1 + α2.

Especially, the subspace H1
0 (Ω) of H

1(Ω) is denoted by H1
0 (Ω) = {v ∈ H1(Ω);

v|∂Ω = 0}. Note that ‖·‖1 is equivalent to |·|1 in H
1
0 (Ω).

For any t ∈ [0, T ], we define the following bilinear forms:

a(p, q) = (p, q) ∀ p, q ∈ V,(2.7)

b(p, v) = −(p,∇v) ∀ p ∈ V, ∀ v ∈W.(2.8)
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From (2.4)–(2.5), for any t ∈ [0, T ], a new variational formulation to Burgers’ equa-

tion (2.1)–(2.3) is to find (p, u) ∈ V ×W such that

a(p, q)− b(q, u) = 0 ∀ q ∈ V,(2.9)

(ut, v) + νb(p, v)− ([u, u]p, v) = (f, v) ∀ v ∈W.(2.10)

Obviously, (2.9)–(2.10) is a saddle point system. Concerning this system, we give

some properties in the following two lemmas.

Lemma 2.1 ([22]). The bilinear form b(·, ·) given by (2.8) satisfies the so-called

inf-sup condition, i.e., there exists a constant β1 > 0 such that

(2.11) inf
v∈W

sup
q∈V

−(q,∇v)

‖q‖V ‖v‖W
> β1.

Throughout the paper, C indicates a positive constant which is possibly different

at different occurrences, being independent of the spatial and time mesh sizes, but

may depend on Ω, the Reynolds number, and other parameters introduced in this

paper.

Lemma 2.2 ([6]). Let g(t) be integrable on [0, T ] and almost everywhere positive

function. If ψ(t) ∈ C0([0, T ]) satisfies the inequality

0 6 ψ(t) 6 C +

∫ t

0

g(s)ψ(s) ds ∀ t ∈ [0, T ],

then ψ(t) also satisfies

0 6 ψ(t) 6 C exp

(
∫ t

0

g(s) ds

)

∀ t ∈ [0, T ].

Furthermore, if C = 0 then ψ(t) ≡ 0.

Theorem 2.3. Suppose that u0(x, y) ∈ L2(Ω). Then there exists a unique solu-

tion (p, u) ∈ V ×W to variational formulation (2.9)–(2.10). Moreover, there exists

a constant M0 > 0 such that ‖u‖0,∞ 6M0.

P r o o f. From [20], we know that there exists a unique solution u to (2.1)–(2.3).

Hence, (p, u) = (−∇u, u) is a solution of variational formulation (2.9)–(2.10). From

the sum of (2.9) with q = ∇u and (2.10) with v = u, applying ([u, u]p, u) = 0, we

obtain
1

2

d

dt
‖u‖20 + ν‖∇u‖20 = (f, u).
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Integrating the above equation from 0 to t and applying the initial condition, we get

(2.12) ‖u‖20 + 2ν

∫ t

0

‖∇u‖20 ds = ‖u0‖
2

0 + 2

∫ t

0

(f, u) ds.

By the boundedness of the integration and using (2.12), there exists a constant C0

such that

(2.13) ‖∇u‖0 6 C0.

And by the embedding theorem of Sobolev space (see [1], [6]), there exists a constant

C1 such that

(2.14) ‖u‖0,∞ 6 C1‖∇u‖0 6 C1C0 ≡M0.

Let (p∗, u∗) be another solution to (2.9)–(2.10). Then ‖u∗‖0,∞ 6 M0. And com-

bining (2.9) with (2.10), we derive

(p− p∗, q) + (q,∇(u− u∗)) = 0 ∀ q ∈ V,(2.15)

(ut − u∗t , v)− ν(p− p∗,∇v)− ([u, u]p− [u∗, u∗]p∗, v) = 0 ∀ v ∈W.(2.16)

From the sum of (2.15) with q = p − p∗ and (2.16) with v = u − u∗, applying the

Cauchy-Schwarz and Young inequalities, we have

(2.17)
1

2

d

dt
‖u− u∗‖20 + ν‖p− p∗‖20 = ([u, u]p− [u∗, u∗]p∗, u− u∗)

6M0‖p− p∗‖0‖u− u∗‖0 +M0‖u− u∗‖20

6
M2

0

2
‖p− p∗‖20 +

1

2
‖u− u∗‖20 +M0‖u− u∗‖20

=
M2

0

2
‖p− p∗‖20 +

(1

2
+M0

)

‖u− u∗‖20.

By a simple computation, we have

(2.18)
1

2ν −M2
0

d

dt
‖u− u∗‖20 + ‖p− p∗‖20 6

1 + 2M0

2ν −M2
0

‖u− u∗‖20.

Integrating (2.18) from 0 to t and noting that (u− u∗)(0) = 0, we get

(2.19) ‖u− u∗‖20 6 (1 + 2M0)

∫ t

0

‖u− u∗‖20 ds ∀ t ∈ [0, T ].

By Lemma 2.2, ‖u− u∗‖0 = 0, i.e., u = u∗. Consequently, by (2.18), ‖p− p∗‖0 = 0,

i.e., p = p∗. The proof is completed. �

31



3. Finite element approximation

In this section, based on the new variational formulation (2.9)–(2.10), we address

the stable conforming finite element approximation for the P 2
0 − P1 pair. Let Kh

be a uniformly regular family of triangulations of Ω. Now, choose (Vh,Wh) as the

P 2
0 − P1 finite element pair as follows:

Vh = {qh = (q1, q2) ∈ V : qi ∈ P0(T ) ∀T ∈ Kh, i = 1, 2},(3.1)

Wh = {v ∈ C0(Ω) ∩W : v ∈ P1(T ) ∀T ∈ Kh}.(3.2)

Lemma 3.1. ([22]). The P 2
0 − P1 finite element pair defined by the spaces (3.1)

and (3.2) satisfies the discrete inf-sup condition as follows:

(3.3) inf
vh∈Wh

sup
qh∈Vh

−(qh,∇vh)

‖qh‖V ‖vh‖W
> β2 > 0.

Lemma 3.2 ([23]). There exists a standard L2-projection operator Π: L2(Ω) →

Vh which satisfies the following properties:

(p−Πp, q) = 0 ∀ q ∈ Vh,(3.4)

‖Πp‖0 6 C‖p‖0 ∀ p ∈ V,(3.5)

‖p−Πp‖0 6 Ch‖p‖1 ∀ p ∈ H1(Ω) ∩ V.(3.6)

Lemma 3.3 ([23]). There exists a projection Λ: W → Wh such that

‖Λu‖0 6 C‖u‖1 ∀u ∈W,(3.7)

‖u− Λu‖0 + h‖u− Λu‖1 6 Ch2‖u‖2 ∀u ∈ H2(Ω) ∩W,(3.8)

and if u ∈ H1
0 (Ω), then we have

(3.9) (∇(u− Λu), q) = 0 ∀ q ∈ Vh.

By using a similar argument as in [18], we have the following result.
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Theorem 3.4. If u0(x, y) ∈ L2(Ω), then there exists a unique finite element

solution (ph, uh) ∈ Vh ×Wh to the following equations for P
2
0 − P1 finite element

pair:

a(ph, q)− b(q, uh) = 0 ∀ q ∈ Vh,(3.10)

(uht, v) + νb(ph, v)− ([uh, uh]ph, v) = (f, v) ∀ v ∈Wh.(3.11)

Moreover, there exists a constant M1 independent of h such that

(3.12) ‖uh‖0 6M1.

4. Mixed finite element approximation based on the

Crank-Nicolson scheme

Let τ = T/N be the time step and unh be the approximation of u(t) at t = tn = nτ

(n = 1, 2, . . . , N) in Wh. Applying the Crank-Nicolson scheme to the time derivative

∂u/∂t around the point tn−1/2 = (n − 1/2)τ , we obtain the following fully discrete

formulation:

(unh − un−1

h

τ
, v
)

− ν
(pnh + pn−1

h

2
,∇v

)

−
(ψn

h + ψn−1

h

2
, v
)

=
(fn + fn−1

2
, v
)

,(4.1)

(pnh + pn−1

h

2
, q
)

+
(

q,∇
unh + un−1

h

2

)

= 0,(4.2)

(u0h, v) = (Λu0, v),(4.3)

(p0h, q) + (∇Λu0, q) = 0,(4.4)

where ψn
h = [unh, u

n
h]p

n
h, v ∈ Wh, q ∈ Vh.

Set εn = un − unh and η
n = pn − pnh. Using (4.1) and (4.2) for any q ∈ Vh and

v ∈ Wh, we obtain the error equations as follows:

(εn − εn−1

τ
, v
)

− ν
(ηn + ηn−1

2
,∇v

)

−
(ϕn

h

2
, v
)

−
(ϕn−1

h

2
, v
)

(4.5)

=
(un − un−1

τ
− u

n−1/2
t , v

)

−
(unt + un−1

t

2
− u

n−1/2
t , v

)

,

(ηn + ηn−1

2
, q
)

+
(

q,∇
εn + εn−1

2

)

= 0.(4.6)

Here, ϕn
h = [un, un]pn − [unh, u

n
h]p

n
h, (u

n − un−1)/τ − u
n−1/2
t is the truncation error

associated with the Crank-Nicolson method to the time derivative.

In order to obtain the error estimate, we introduce some useful lemmas as follows:
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Lemma 4.1 ([6]). Let C and ak, ck, dk for integer k > 0 be nonnegative numbers

such that

an 6 τ
n−1
∑

k=0

dkak + τ
n−1
∑

k=0

ck + C ∀n > 1.

Then

an 6 exp

(

τ

n−1
∑

k=0

dk

)(

τ

n−1
∑

k=0

ck + C

)

∀n > 1.

Lemma 4.2 ([23]). For each n > 1, if utt, uttt ∈ L2(0, T ;L2(Ω)), then we have

∥

∥

∥

un + un−1

2
− un−1/2

∥

∥

∥

2

6 Cτ3
∫ tn

tn−1

‖utt‖
2 dt,

∥

∥

∥

un − un−1

τ
− u

n−1/2
t

∥

∥

∥

2

6 Cτ3
∫ tn

tn−1

‖uttt‖
2 dt.

Theorem 4.3. For the P 2
0 − P1 finite element pair there exists a positive con-

stant C such that

(4.7)

‖un − unh‖1 + ‖pn − pnh‖0 6 Ch

(

‖u0‖2 + ‖p0‖1 +

∫ tn

0

‖ut‖2 dt+

∫ tn

0

‖pt‖1 dt

)

+ Cτ2
(
∫ tn

0

‖uttt‖
2

0 dt

)1/2

.

Furthermore, we have

(4.8) ‖un − unh‖0 6 Ch2
(

‖u0‖2 +

∫ tn

0

‖ut‖2 dt

)

+ Cτ2
(
∫ tn

0

‖uttt‖
2

0 dt

)1/2

.

P r o o f. Let

un − unh = un − Λun + Λun − unh = ϕn + θn = εn,

pn − pnh = pn −Πpn +Πpn − pnh = ̺n + ξn = ηn.

From (3.6) and (3.8), we have

‖ϕn‖1 = ‖un − Λun‖1 6 Ch

(

‖u0‖2 +

∫ tn

0

‖ut‖2 dt

)

,(4.9)

‖ϕn‖0 = ‖un − Λun‖0 6 Ch2
(

‖u0‖2 +

∫ tn

0

‖ut‖2 dt

)

,(4.10)

‖̺n‖0 = ‖pn − Πpn‖0 6 Ch

(

‖p0‖1 +

∫ tn

0

‖pt‖1 dt

)

.(4.11)
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And for any v ∈ Wh and q ∈ Vh, from (3.4) and (3.9), we get

(θn − θn−1

τ
, v
)

− ν
(ξn + ξn−1

2
,∇v

)

−
(ϕn

h

2
, v
)

−
(ϕn−1

h

2
, v
)

(4.12)

=
(un − un−1

τ
− u

n−1/2
t , v

)

−
(unt + un−1

t

2
− u

n−1/2
t , v

)

,

(ξn + ξn−1

2
, q
)

+
(

q,∇
θn + θn−1

2

)

= 0.(4.13)

We consider

(4.14)
(ξn − ξn−1

τ
, q
)

+
(

q,∇
θn − θn−1

τ

)

= 0 ∀ q ∈ Vh, n = 1, 2, . . . , N,

instead of (4.13). From (4.13) and taking q = ∇(θn − θn−1)/2, applying the Cauchy-

Schwarz and Young inequalities, we obtain

‖∇θn‖20 − ‖∇θn−1‖20 6 ‖ξn + ξn−1‖0‖∇θ
n +∇θn−1‖0

6
‖ξn + ξn−1‖20

2δ
+
δ‖∇θn +∇θn−1‖20

2
.

Choosing δ > 0 such that 1− δ > 0 and due to Poincaré inequality, we have

‖θn‖21 6 C(‖θn−1‖21 + ‖ξn‖20).

Considering u0h = Λu0 and adding all equations for each n with 1 6 n 6 N from

Lemma 4.1, we get

(4.15) ‖θn‖1 6 C1‖ξ
n‖0.

From the sum of (4.12) with v = (θn − θn−1)/τ and (4.14) with q = (ξn + ξn−1)/2,

applying the Cauchy-Schwarz and Young inequalities and Lemma 4.2, we obtain

(4.16) ν(‖ξn‖20 − ‖ξn−1‖20) 6 (ϕn−1

h , θn − θn−1) + (ϕn
h , θ

n − θn−1)

+ Cτ4
∫ tn

tn−1

‖uttt‖
2

0 dt.
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From Theorem 2.3 and Theorem 3.4, using (4.10), (4.11), (4.15), and applying the

Cauchy-Schwarz and Young inequalities again, we obtain

(4.17) (ϕn−1

h , θn−θn−1)

= ([un−1, un−1](̺n−1+ξn−1)+pn−1

h [ϕn−1+θn−1, ϕn−1+θn−1], θn−θn−1)

6
δ1M

2
0

2
‖̺n−1+ξn−1‖2+

δ2M
2
1

2
‖ϕn−1+θn−1‖2+

( 1

2δ1
+

1

2δ2

)

‖θn−θn−1‖2

6 Ch2
[(

‖p0‖1+

∫ tn−1

0

‖pt‖1 dt

)2

+

(

‖u0‖2+

∫ tn−1

0

‖ut‖2 dt

)2]

+C‖ξn−1‖2

+
( 1

2δ1
+

1

2δ2

)(

1+
1

δ3

)

C1‖ξ
n‖2.

The second term of the right-hand side of (4.16) is similar to (4.17). Here the

constants of the Young inequality are chosen appropriately such that the coefficient

of ‖ξn‖2 in the right-hand side of (4.16) is less than ν. Combining (4.16) with (4.17),

adding all equations for each n with 1 6 n 6 N , from Lemma 4.1, we have

(4.18) ‖ξn‖0 6 Ch

(

‖u0‖2 + ‖p0‖1 +

∫ tn

0

‖ut‖2 dt+

∫ tn

0

‖pt‖1 dt

)

+ Cτ2
(
∫ tn

0

‖uttt‖
2

0 dt

)1/2

.

Consequently, using (4.9), (4.11), (4.15), (4.18) and the triangle inequality, we com-

plete the proof of (4.7).

Moreover, we need to prove (4.8). Taking v = (θn − θn−1)/τ , q = ∇(θn − θn−1)/τ ,

applying the Cauchy-Schwarz and Young inequalities, we obtain from the sum of

(4.12) and (4.13) that

(4.19) ν(‖∇θn‖20 − ‖∇θn−1‖20) 6 (ϕn−1

h , θn − θn−1) + (ϕn
h , θ

n − θn−1)

+ Cτ4
∫ tn

tn−1

‖uttt‖
2

0 dt.

From Theorem 2.3 and Theorem 3.4, using Green’s formula, applying the Cauchy-

Schwarz and Young inequalities, we obtain

(4.20) (ϕn−1

h , θn − θn−1)

= ([un−1

h , un−1

h ]∇un−1

h , θn − θn−1)− ([un−1, un−1]∇un−1, θn − θn−1)

= ([(un−1)2 − (un−1

h )2, (un−1)2 − (un−1

h )2],∇(θn − θn−1))

6 C‖ϕn−1‖20 + C‖∇θn−1‖20 +
1

2ε1

(

1 +
1

ε2

)

‖∇θn‖20.
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Similarly,

(4.21) (ϕn
h, θ

n − θn−1) = ([unh, u
n
h]∇u

n
h, θ

n − θn−1)− ([un, un]∇un, θn − θn−1)

6

[ε3
4
(M0 +M1)

2(1 + ε4) +
1

2ε3
(1 + ε5)

]

‖∇θn‖20

+ C‖ϕn‖20 + C‖∇θn−1‖20.

Here εi (i = 1, 2, . . . , 5) are chosen appropriately such that the coefficient of ‖∇θn‖20
in the right-hand side of (4.19) is less than ν. Combining (4.19)–(4.21), using (4.10),

adding all equations for each n with 1 6 n 6 N , from Lemma 4.1, we have

(4.22) ‖θn‖0 6 Ch2
(

‖u0‖2 +

∫ tn

0

‖ut‖2 dt

)

+ Cτ2
(
∫ tn

0

‖uttt‖
2

0 dt

)1/2

.

Consequently, using (4.10), (4.22), and the triangle inequality, we complete the proof

of (4.8). �

5. Numerical experiments

In this section, we report three numerical examples for Burgers’ equation with

the new mixed finite element method based on the Crank-Nicolson scheme. In the

first example, the accuracy and the convergence rate of our method are checked,

and the results are obtained and compared by using the Stokes, Newton, and Oseen

iteration method [11] to nonlinear term, respectively. In the second example, we

take numerical solutions computed on a very fine mesh as the “exact” solutions,

and compare the numerical solutions with them. In the third example, for Burgers’

equation with mixed initial boundary value problems, we simulate the numerical

solutions for the velocity and flux. Our algorithms are implemented using the public

domain finite element software [14].

E x am p l e 1. The exact solution u is given as follows:

u = (t+ 1)x2(x− 1)y(y − 1).

The initial condition in (2.2) is set according to the exact solution and the right-hand

side f(x, y, t) determined by (2.1). Here, the final time T = 1. In this experiment,

Ω is the unit square [0, 1] × [0, 1] in R
2. The mesh is obtained by dividing Ω into

squares and then drawing a diagonal in each square.
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In Tables 1–3, we show the convergence of the three methods when we take τ = h

for the P 2
0 − P1 finite element pair based on the Crank-Nicolson scheme in time.

We obtain the optimal error estimates in Theorem 4.3. Obviously, we get the same

performance in convergence aspect in these tables for the three schemes. And the

three schemes keep the convergence rates just like the theoretical analysis. We also

give the CPU time of these three schemes in Tables 1–3. From the three tables, we

know that computing Burgers’ equation by using the Stokes scheme takes less CPU

time than the other two schemes, and the Newton scheme takes the most time. In

the experiment, for ν = 1, τ = h = 1/64, the computing time of the Stokes scheme,

Oseen scheme, and Newton scheme are 90.89 s, 93.547 s, 102.906 s, respectively.

1/h
‖u− uh‖0

‖u‖0
uL2-rate

‖u− uh‖1
‖u‖1

uH1 -rate
‖p− ph‖0

‖p‖0
pL2-rate CPU time

4 0.207764 — 0.465188 — 0.368905 — 0.031 s

8 0.057550 1.8521 0.241289 0.9470 0.190730 0.9517 0.187 s

16 0.014733 1.9658 0.121768 0.9866 0.096134 0.9884 1.406 s

32 0.003705 1.9914 0.061026 0.9966 0.048163 0.9971 11.437 s

64 0.000928 1.9975 0.030531 0.9992 0.024093 0.9993 90.890 s

Table 1. Relative error and convergence rate of the Stokes scheme for the velocity and flux
with τ = h.

1/h
‖u− uh‖0

‖u‖0
uL2-rate

‖u− uh‖1
‖u‖1

uH1 -rate
‖p− ph‖0

‖p‖0
pL2-rate CPU time

4 0.208259 — 0.465212 — 0.368928 — 0.031 s

8 0.057627 1.8536 0.241287 0.9471 0.190722 0.9519 0.203 s

16 0.014742 1.9668 0.121767 0.9866 0.096132 0.9884 1.609 s

32 0.003706 1.9920 0.061026 0.9966 0.048162 0.9971 12.969 s

64 0.000928 1.9978 0.030531 0.9992 0.024093 0.9993 102.906 s

Table 2. Relative error and convergence rate of the Newton scheme for the velocity and
flux with τ = h.

1/h
‖u− uh‖0

‖u‖0
uL2-rate

‖u− uh‖1
‖u‖1

uH1 -rate
‖p− ph‖0

‖p‖0
pL2-rate CPU time

4 0.208387 — 0.465217 — 0.368944 — 0.031 s

8 0.057632 1.8543 0.241288 0.9471 0.190726 0.9519 0.187 s

16 0.014742 1.9669 0.121767 0.9866 0.096133 0.9884 1.453 s

32 0.003706 1.9920 0.061026 0.9966 0.048163 0.9971 11.703 s

64 0.000928 1.9981 0.030531 0.9992 0.024093 0.9993 93.547 s

Table 3. Relative error and convergence rate of the Oseen scheme for the velocity and flux
with τ = h.
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Moreover, according to the numerical results given in Tables 1–3, the velocity for

the L2-norm error convergence order, the H1-norm error convergence order, and the

flux for the L2-norm error convergence order are shown in Fig. 1. From the three

plots, we can see that the convergence orders of the three schemes are substantially

coincident, and this shows that the results are reasonable.
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−9

−8

−7

−6

−5

−4

−3

−2

−1
Stokes Method
Newton Method
Oseen Method
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Figure 1. Three schemes on the velocity and flux of the error convergence order for ν = 1:
(a) the velocity for the L2-error convergence order, (b) the velocity for the
H1-error convergence order, (c) the flux for the L2-error convergence order.

E x am p l e 2. In this example, we consider Burgers’ equation (2.1) in (x, y) ∈

[0, 1]× [0, 1] with f = 0, which satisfies periodic boundary condition, and the corre-

sponding initial value is

u(x, y, 0) = sin(2πx) cos(2πy).

As can be seen from the above example, the Stokes iteration method takes the

least time, so we compute the solutions using the Stokes scheme at t = 1/8, where
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the viscosity ν = 0.01. The exact solution of this problem is unknown. Thus,

we take the numerical solution by the standard Galerkin method (the Taylor-Hood

element) computed on a very fine mesh (4225 grid points) as the “exact” solution

for the purpose of comparison. The x− y solution contours are plotted in Fig. 2 for

numerical solution with grid points N = 1089, and the “exact” solution. We can see

that the numerical solution agrees well with the “exact” solution.

(a) (b)

Figure 2. x−y solution contours for ν = 0.01: (a) numerical solution, (b) “exact” solution.

E x am p l e 3. Here we consider Burgers’ equation (2.1) in L-shape with f=0,

which satisfies the following mixed boundary conditions

u =
1

1 + exp((x + y − t)/2ν)
on ΓD,

∂u

∂n
= 0 on ΓN ,

and the initial condition

u(x, y, 0) =
1

1 + exp((x+ y)/2ν)
,

where ΓN = {(x, y) ; 0 6 x 6 1, y = 0} ∪ {(x, y) ; x = 0, 0 6 y 6 1}, ΓD = ∂Ω \ΓN .

As can be seen from the above two examples, the Stokes iteration scheme has better

stability, so we compute the solutions using the Stokes scheme. Setting ν = 0.1,

τ = h = 1/64, we simulate the numerical solutions for the velocity and flux at t = 1 s,

3 s, 5 s, 10 s, as shown in Figs. 3–6. Moreover, we compare the results obtained by

the Stokes scheme with those obtained by the Newton and Oseen schemes at t = 10 s

in Figs. 6–8. From these figures, we find that the numerical results of the Stokes

scheme are presented with least oscillations. Hence, this also shows that the Stokes
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IsoValue

0.0864617

0.107669

0.128876

0.150083

0.17129

0.192497

0.213704

0.234911

0.256118

0.277326

0.298533

0.31974

0.340947

0.362154

0.383361

0.404568

0.425775

0.446982

0.468189

0.489396

Vec Value

0

0.406902

0.813804

1.22071

1.62761

2.03451

2.44141

2.84832

3.25522

3.66212

4.06902

4.47592

4.88283

5.28973

5.69663

6.10353

6.51044

6.91734

7.32424

7.73114

(a) (b)

Figure 3. Stokes scheme for ν = 0.1 and t = 1: (a) numerical solution of the velocity,
(b) numerical solution of the flux.

IsoValue

0.298769

0.334727

0.370686

0.406644

0.442602

0.47856

0.514519

0.550477

0.586435

0.622393

0.658351

0.69431

0.730268

0.766226

0.802184

0.838143

0.874101

0.910059

0.946017

0.981975

Vec Value

0

0.594829

1.18966

1.78449

2.37931

2.97414

3.56897

4.1638

4.75863

5.35346

5.94829

6.54312

7.13794

7.73277

8.3276

8.92243

9.51726

10.1121

10.7069

11.3017

(a) (b)

Figure 4. Stokes scheme for ν = 0.1 and t = 3: (a) numerical solution of the velocity,
(b) numerical solution of the flux.

scheme has better stability than the other two schemes. In fact, the time of the true

solution tends to be large, the velocity and flux tend to the constants, i.e., due to

lim
t→∞

exp
(x+ y − t

2ν

)

= 0,

we have

lim
t→∞

u(x, y, t) = 1, lim
t→∞

p(x, y, t) = (0, 0).
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IsoValue

0.425514

0.454975

0.484436

0.513896

0.543357

0.572818

0.602279

0.63174

0.661201

0.690661

0.720122

0.749583

0.779044

0.808505

0.837965

0.867426

0.896887

0.926348

0.955809

0.98527

Vec Value

0

0.521907

1.04381

1.56572

2.08763

2.60953

3.13144

3.65335

4.17525

4.69716

5.21907

5.74097

6.26288

6.78479

7.30669

7.8286

8.35051

8.87241

9.39432

9.91623

(a) (b)

Figure 5. Stokes scheme for ν = 0.1 and t = 5: (a) numerical solution of the velocity,
(b) numerical solution of the flux.

IsoValue

0.560981

0.583495

0.606009

0.628523

0.651036

0.67355

0.696064

0.718578

0.741092

0.763605

0.786119

0.808633

0.831147

0.85366

0.876174

0.898688

0.921202

0.943716

0.966229

0.988743

Vec Value

0

0.42931

0.85862

1.28793

1.71724

2.14655

2.57586

3.00517

3.43448

3.86379

4.2931

4.72241

5.15172

5.58103

6.01034

6.43965

6.86896

7.29827

7.72758

8.15689

(a) (b)

Figure 6. Stokes scheme for ν = 0.1 and t = 10: (a) numerical solution of the velocity,
(b) numerical solution of the flux.

So when the time tends to a certain value, the velocity and flux tends to the steady

state. In fact, the velocity and flux of the final state are similar to Figs. 6–8.

6. Conclusions

In this paper, a new fully discrete mixed finite element method approximating the

velocity and flux of Burgers’ equation has been described. The spatial discretization

is based on the lowest-order interpolations for the velocity and the flux; the time
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IsoValue

0.560758

0.583283
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0.628334

0.650859

0.673384
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0.921162
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0
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0.858687

1.28803

1.71737

2.14672

2.57606

3.0054

3.43475

3.86409
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4.72278

5.15212

5.58146

6.01081
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6.86949

7.29884

7.72818

8.15752

(a) (b)

Figure 7. Newton scheme for ν = 0.1 and t = 10: (a) numerical solution of the velocity,
(b) numerical solution of the flux.

IsoValue
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0.651447

0.673934
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0.741396

0.763884
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0.831345
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0.943782

0.966269

0.988756

Vec Value

0

0.428721

0.857443

1.28616

1.71489

2.14361

2.57233

3.00105

3.42977

3.85849

4.28721

4.71594

5.14466

5.57338
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6.43082

6.85954

7.28826

7.71698
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(a) (b)

Figure 8. Oseen scheme for ν = 0.1 and t = 10: (a) numerical solution of the velocity,
(b) numerical solution of the flux.

discretization is based on the Crank-Nicolson scheme; and the nonlinear term is based

on the Stokes scheme. A priori error estimate has been derived and the numerical

experiment shows the efficiency of the given method. This method can be expanded

to the case of three dimensions and other nonlinear problems.
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