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Abstract. Aligned rank tests are introduced in the linear regression model with possible
measurement errors. Unknown nuisance parameters are estimated first and then classical
rank tests are applied on the residuals. Two situations are discussed: testing about an
intercept in the linear regression model considering the slope parameter as nuisance and
testing of parallelism of several regression lines, i.e. whether the slope parameters of all
lines are equal. Theoretical results are derived and the simulation study is also made to
illustrate good performance of introduced tests.
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1. Introduction

Consider the classical linear regression model

(1.1) Yi = β0 + x⊤
i β + ei, i = 1, . . . , n,

where β0 ∈ R and β ∈ R
p are unknown parameters, xi are vectors of known regres-

sors, model errors ei are assumed to be independent identically distributed with an

unknown distribution function F with finite Fisher information with respect to the

location, i.e.

I(f) =

∫ ∞

−∞

(f ′(x)

f(x)

)2
f(x) dx <∞, f(x) = F ′(x).
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sity in Prague, the research originated and was supported by NSERC Grant A3088,
Canada, during Radim Navrátil’s visit at Carleton University, Ottawa. His research was
also supported by Student Project Grant at MU (specific research, rector’s programme)
MUNI/A/1441/2014.
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Measurement error model assumes that the regressors xi are not observed accu-

rately, but only with an additive, unobservable, error vi (i.i.d. random variables

independent with ei), i.e. we observe wi = xi + vi instead of xi. Hence, we may

write our model as

Yi = β0 + x⊤
i β + ei,

wi = xi + vi.(1.2)

There exists a rich literature about measurement error models and there have been

developed a lot of different methods for dealing with measurement errors during last

century. Most of them are interested in estimation problem, there is a lack of the

literature about testing, although this problem might be as important as estima-

tion. The bulk of the little literature about tests uses parametric approach with

its restrictive normality assumptions or a knowledge of some additional information

about error distribution (see e.g. [1]). We will avoid this and introduce a class of

rank tests that will be valid even if measurement errors are present.

First attempts in this area were made by [7], who showed that some rank tests

stay valid even if measurement errors are present, they only cause a decrease of tests’

power. The papers [10], [11] and [14] generalized these results for other models and

tests.

Let us start with an example that should warn you about thoughtless use of (rank)

tests in measurement error models. The paper [7] showed a solution to the problem

of testing the hypothesis H0,0 : β = 0, where the classical rank test for regression

was extended to the measurement error model (1.2).

However, the problem may arise when we want to test the hypothesis H0,1 : β =

β∗ 6= 0, with β∗ ∈ R
p known. In the model (1.1) without measurement errors we

may transform it into a previous case of testing H0,0 : β = 0 by subtracting x⊤
i β

∗

from both sides of (1.1):

Y ∗
i = Yi − x⊤

i β
∗ = β0 + x⊤

i (β − β∗) + ei.

Using the same technique in the measurement error model (1.2), i.e. subtracting the

term w⊤
i β

∗, we get

(1.3) Y ∗
i = Yi −w⊤

i β
∗ = β0 + x⊤

i (β − β∗)− v⊤
i β

∗ + ei.

Unlike previous case we did not get rid of β∗ (under β = β∗) from the right-hand

side of the equation (1.3) and the test will not work. We may illustrate this on the

following simulation example. Consider the model of regression line passing through

the origin

Yi = xiβ + ei, i = 1, . . . , 50 with true β = 2.
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The regressors xi were once generated from a sample of size n = 50 from uniform

(−2, 10) distribution and then considered fixed, the model errors ei were generated

from standard normal distribution. The empirical power of the Wilcoxon test for

regression was computed as a percentage of rejections of H0,1 : β = 2 among 10 000

replications, at significance level α = 0.05. The results are summarized in Table 1.

β vi: 0 N (0, 1) N (0, 0.5) U(−1, 1) U(−0.5, 0.5) U(−2, 2)

2.00 5.06 39.73 19.92 13.48 5.98 53.69

1.80 99.41 97.15 96.84 97.01 98.80 97.44

1.85 93.02 91.41 88.51 87.96 90.62 93.72

1.90 63.20 79.06 69.15 65.66 62.93 85.28

1.95 22.06 60.73 42.89 36.52 25.17 72.34

2.05 21.71 21.86 7.84 5.14 10.81 35.80

2.10 63.94 9.38 5.81 9.22 39.16 20.00

2.15 92.98 4.72 14.30 25.75 76.05 9.56

2.20 99.50 2.20 31.96 51.81 94.92 4.66

Table 1. Percentage of rejections of hypothesisH0,1 : β = 2 for various measurement errors
vi for Wilcoxon test for regression.

The previous example illustrates that we have to be very careful when dealing

with measurement errors and not only recklessly without thinking use methods for

the model without measurement errors.

In the followin two sections we will introduce an aligned ranktest about an in-

tercept and an aligned rank test of parallelism forseveral regression lines, both with

possible measurement errors. In both cases we first estimate the nuisance parameter

in the model (1.2) and then apply standard rank test on residuals. Although such

estimates are biased, this inconsistency disappears when considering residuals.

First, the test statistics are introduced, their distribution is derived both under null

hypothesis and local alternatives. Finally, in Section 4 the simulation study is made

to illustrate good behavior of these tests, influence of measurement errors is identified

and the power of the tests is compared with the model without measurement errors.

2. Test about an intercept

Consider the measurement error model (1.2), where β0 is an unknown intercept

parameter of our interest and β is p-dimensional vector of unknown nuisance param-

eters, and both the model errors ei and the measurement errors vi are assumed to

be symmetric. The symmetry assumption of vi is very natural, because it means

that the measurement is not affected by a systematic error. In case of systematic
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error it would be impossible to distinguish which part of the regressor belongs to the

original one a which to the errors. To deal with this situation we would need some

additional information about the measurement errors.

Our aim is to test the null hypothesis H1 : β0 = 0 against the alternative β0 > 0.

Without any further information about the regressors xi it is impossible to make

statistical inference about the parameter β0 (problem of identifiability). To be able

to test H1, we will assume that the regressors xi are centered, i.e.
n∑

i=1

xi,j = 0 for all

j = 1, . . . , p.

R em a r k. The assumption that
n∑

i=1

xi,j = 0 for all j = 1, . . . , p is quite strong,

but essential. In the model without measurement errors (1.1) aligned rank tests work

without this assumption. One may use the following reparametrization:

Yi = β0 + (xi − x̄)⊤β̃ + ei, i = 1, . . . , n.

However, this parametrization cannot be used in the measurement error model (1.2)

due to the fact that we do not observe the original regressors xi. Even if we consid-

ered a different parametrization of the model (1.2), the intercept still could not be

correctly identified.

If β is known, then we may rewrite (1.2) as

Y ∗
i = Yi −w⊤

i β = β0 + e∗i ,

where e∗i = ei − v⊤
i β are i.i.d. model errors with symmetric density f

∗
β .

We will test the hypothesis H1 : β0 = 0 with the aid of signed rank test (see for

instance [2]). Choose a square integrable score function ϕ : (0, 1) 7→ R and define

ϕ+(u) = ϕ((u + 1)/2), the approximate scores a+n (i) = ϕ+(i/(n+ 1)) and the signed

rank statistic

(2.1) S+
n (β) =

1√
n

n∑

i=1

a+n (R
+
i (β))sign(Y

∗
i ),

where R+
i (β) is the rank of |Y ∗

i | among |Y ∗
1 |, . . . , |Y ∗

n |.
The distribution of S+

n (β) under H1 is distribution-free and for small n can be

computed directly; for large n normal distribution approximation holds:

Tn(β) = A−1(ϕ+)S+
n (β), with A2(ϕ) =

∫ 1

0

ϕ2(t) dt−
(∫ 1

0

ϕ(t) dt

)2
,

has asymptotically standard normal distribution as n→ ∞.
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Under the local alternative

K1n : β0 = n−1/2β∗
0 , β∗

0 ∈ R fixed,

the test statistic Tn(β) has asymptotically normal distribution with mean µ a vari-

ance 1, where

(2.2) µ = β∗
0γ(ϕ

+, f∗
β), γ(ϕ, f) = −

∫ 1

0

ϕ(u)
f ′(F−1(u))

f(F−1(u))
du.

For more details see [2].

However, in our situation β is unknown, hence we have to estimate it first and

then consider the signed rank test based on aligned ranks of the residuals.

In general, as an estimator of β we may take any
√
n-consistent estimate of β.

Anyway, we want to preserve the robust properties that rank tests have, hence as an

estimator β̂n we take the R-estimator based on the hypothetical model affected by

the measurement errors

Yi = w⊤
i β + e∗i .

The paper [3] introduced a class of estimators of the location parameter in one- and

two- sample location models, by inverting a class of rank tests for the location. This

methodology was then extended to linear regression models without measurement

error by [5].

For b ∈ R
p denote by R̃i(b) the rank of the residual (Yi − w⊤

i b) among

(Y1 − w⊤
1 b), . . . , (Yn − w⊤

n b). Choose a square integrable, skew-symmetric score

function ψ : (0, 1) 7→ R and define the approximate scores an(i) = ψ(i/(n+ 1)) and

the vector of aligned rank statistics

Ln(b) =
1√
n

n∑

i=1

(wi −wn)an(R̃i(b)).

Then Ln,j(b) is stepwise, nonincreasing, symmetrically distributed around 0 for all

j = 1, . . . , p provided b = β. The R-estimator of β is then defined as

(2.3) β̂n = argmin{‖Ln(b)‖, b ∈ R
p},

where ‖·‖ stands for any norm on R
p.

Originally, the estimate (2.3) was defined in [5] with the aid of l1-norm, then [9]

used l2-norm and finally [8] proved that for any norm the corresponding R-estimates
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are asymptotically equivalent. In [4] the author defined his estimate as a minimizer

of a measure of rank dispersion of residuals

(2.4) Dn(b) =

n∑

i=1

(Yi −w⊤
i b)an(R̃i(b)),

with respect to b ∈ R
p. He also showed that −n1/2Ln(b) is the subgradient of

Dn(b); hence the estimator defined as a minimizer of Dn exists and is equivalent to

the above estimators based on Ln (see [8]).

Note that the estimate β̂n is not a consistent estimate of the parameter β, in fact

it is asymptotically biased—see [6], or [14]. However, for the testing procedure we

will introduce this does not matter and this “inconsistency” disappears because of

multiplying β̂n by wi.

Now, consider the residuals ê1 = Y1 −w⊤
1 β̂n, . . ., ên = Yn −w⊤

n β̂n and insert β̂n

into (2.1) to get aligned signed rank statistic

(2.5) S+
n (β̂n) =

1√
n

n∑

i=1

a+n (R
+
i (β̂n))sign(êi),

or we may also use the standardized version

(2.6) Tn(β̂n) = A−1(ϕ+)S+
n (β̂n).

The distribution of S+
n (β̂n) under H1 is no longer distribution-free because of the

inserted estimate β̂n. Anyway, the asymptotic distribution remains the same. To

prove this, we need to add some assumptions on the regressors. Suppose that there

exist positive definite matrices Q, V such that as n→ ∞:

Qn =
1

n

n∑

i=1

(xi − xn)(xi − xn)
⊤ −→ Q,(2.7)

Vn =
1

n

n∑

i=1

(vi − vn)(vi − vn)
⊤ p−→ V,(2.8)

1

n
max
16i6n

(xi − xn)
⊤Q−1

n (xi − xn) −→ 0,(2.9)

1

n
max
16i6n

(vi − vn)
⊤V−1

n (vi − vn)
p−→ 0.(2.10)
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Theorem 2.1. Let the conditions (2.7)–(2.10) be satisfied. Then the test statis-

tic Tn(β̂n) in the model (1.2) has asymptotically standard normal distribution un-

der H1 and under the local alternative

K1n : β0 = n−1/2β∗
0 , β∗

0 ∈ R fixed,

it has asymptotically N (µ, 1) distribution with µ defined in (2.2).

P r o o f. According to Theorem 7.2.1 in [13] we have under the assumptions of

Theorem 2.1 the following asymptotic representation of the R-estimate:

√
n(β̂n − β) =

1

γ(ψ, f∗
β)

(Q+V)−1Ln(β) + op(1) as n→ ∞.

In addition,
√
n(β̂n − β) is asymptotically normally distributed (see [6]), hence in

particular bounded in probability, i.e. for any ε > 0 there exists K > 0 such that

(2.11) P (‖√n(β̂n − β)‖ > K) < ε ∀n.

The signed rank statistic S+
n is uniformly asymptotically linear on any compact

set, i.e. for any fixed K > 0 and as n→ ∞ (see [8]):

(2.12) sup
‖t‖6K

{∣∣∣S+
n

(
β +

t√
n

)
− S+

n (β)
∣∣∣
}

p−→ 0.

Inserting t =
√
n(β̂n − β) into (2.12), together with (2.11) we get

|S+
n (β̂)− S+

n (β)| p−→ 0 as n→ ∞.

Hence the asymptotic distribution of S+
n (β̂) is the same as that of S+

n (β) discussed

at the beginning of this section, which implies that Tn(β̂n) = A−1(ϕ+)S+
n (β̂n) has

underH1 asymptotically standard normal distribution as n→ ∞ and under the local
alternativeK1n asymptotically normal distribution with mean µ and variance 1. �

R em a r k. As far as practical applications are concerned, there arises a natural

question how to choose the score function ϕ. According to [2], Theorem 3.4.9, the

locally most powerful rank test for H1 against K1 is based on the test statistic

n∑

i=1

sign(Yi)ϕ
+
( R+

i

n+ 1
, f

)
,

where

ϕ+(u, f) = ϕ
(u+ 1

2
, f

)
, ϕ(u, f) = −f

′(F−1(u))

f(F−1(u))
.

53



For normal model errors ϕ(u, f) = Φ−1(u), where Φ−1 is the quantile function of

standard normal distribution; this choice leads to the van der Waerden test. The

Wilcoxon test (ϕ(u, f) = 2u − 1) is the locally most powerful rank test for logistic

and sign test for double exponential (Laplace) distribution of model errors.

The optimal ϕ could be chosen based on the estimate of unknown model errors.

Anyway, the simplest choice of the Wilcoxon test provides very reasonable results

(see the simulations). The choice of the ψ function does not affect the asymptotic

properties of the test statistic.

3. Test of parallelism

In this section we extend the results of [15] to the measurement error model.

Consider the regression model of several lines

(3.1) Y
(j)
i = β

(j)
0 + β(j)x

(j)
i + e

(j)
i , i = 1, . . . , nj, j = 1, . . . , p,

where β
(1)
0 , . . . , β

(p)
0 are unknown (nuisance) intercept parameters, β(1), . . . , β(p) are

unknown slope parameters of our interest, x
(j)
i are known (fixed) or stochastic re-

gressors, mutually uncorrelated for all j = 1, . . . , p. The model errors e
(j)
1 , . . . , e

(j)
nj

are assumed to be independent identically distributed with an unknown joint dis-

tribution function F with finite Fisher information with respect to the location and

mutually independent for all j = 1, . . . , p.

Our problem is to test the null hypothesis

H2 : β
(1) = . . . = β(p)

against the alternative that β(1), . . . , β(p) are not all equal.

Again, the regressors are subject to measurement errors, i.e. we do not observe x
(j)
i ,

instead we observe w
(j)
i = x

(j)
i + v

(j)
i ; v

(j)
i are (unobservable) additive measurement

errors mutually uncorrelated for all j = 1, . . . , p and uncorrelated with x
(j)
i (for

stochastic regressors); for fixed regressors let for all j = 1, . . . , p

1

nj

nj∑

i=1

(x
(j)
i − x̄(j)nj

)(v
(j)
i − v(j)nj

)
p−→ 0 as nj → ∞.

Let us now define

x̄(j)nj
=

1

nj

nj∑

i=1

x
(j)
i , Q(j)

nj
=

1

nj

nj∑

i=1

(x
(j)
i − x̄(j)nj

)2,
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v(j)nj
=

1

nj

nj∑

i=1

v
(j)
i , V (j)

nj
=

1

nj

nj∑

i=1

(v
(j)
i − v(j)nj

)2,

w(j)
nj

=
1

nj

nj∑

i=1

w
(j)
i , W (j)

nj
=

1

nj

nj∑

i=1

(w
(j)
i − w(j)

nj
)2.

We shall assume that there exist positive numbersQ(1), . . . , Q(p) and V (1), . . . , V (p)

such that as nj → ∞

Q(j)
nj

−→ Q(j),
1

nj
max

i=1,...,nj

(x
(j)
i − x̄

(j)
nj )

2

Q
(j)
nj

−→ 0,(3.2)

V (j)
nj

p−→ V (j),
1

nj
max

i=1,...,nj

(v
(j)
i − v

(j)
nj )

2

V
(j)
nj

p−→ 0.(3.3)

For stochastic regressors let the convergence in (3.2) hold in probability.

In the model (3.1) while testing H2 : β
(1) = . . . = β(p) = β the problem is that

the hypothetical common value β is unknown. In this case we have to first estimate

it and then use an aligned test. For simplification of notation, denote n =
p∑

j=1

nj and

further denote the pooled sample of responses by Y
(1)
1 , . . . , Y

(1)
n1

. . . , Y
(p)
1 , . . . , Y

(p)
np

and the corresponding regressors by x1, . . . , xn, w1, . . . , wn, respectively.

The following setup was proposed in [15] for the model without measurement

errors. We will generalize it and show that it also works for the measurement error

model. Again, first we have to estimate the parameter β in the same way as in the

previous section as a minimizer of Ln(b)—see (2.3). In particular the R-estimator of

β may be then defined as

(3.4) β̂n =
1

2
{sup{b : Ln(b) > 0}+ inf{b : Ln(b) < 0}}.

For each sample j = 1, . . . , p we may choose different square integrable score func-

tion ϕ(j) : (0, 1) 7→ R and define the approximate scores a
(j)
nj (i) = ϕ(j)(i/(nj + 1))

and the corresponding aligned statistic

Ŝ(j)
nj

=
1√

W
(j)
nj A(ϕ(j))

nj∑

i=1

(w
(j)
i − w(j)

nj
)a(j)nj

(R̂
(j)
i ),

where R̂
(j)
1 , . . . , R̂

(j)
nj are the ranks of Y

(j)
1 − w

(j)
1 β̂n, . . . , Y

(j)
nj − w

(j)
nj β̂n.

For testing H2 we use the statistic

(3.5) T̂ 2
n =

p∑

j=1

(Ŝ(j)
nj

)2.
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Theorem 3.1. Let the conditions (3.2)–(3.3) be satisfied. Then in the model (3.1)

with measurement errors v
(j)
i , the test statistic T̂

2
n has asymptotically, as n1 → ∞, . . . ,

np → ∞, χ2-distribution with p− 1 degrees of freedom.

Under the local alternative

(3.6) K2n : βj = β + n
−1/2
j θj , j = 1, . . . , p, θj ∈ R fixed such that

p∑
j=1

∆jθj = 0

and ∆j = limnj/n as n1 → ∞, . . . , np → ∞,

T̂ 2
n has asymptotically χ

2-distribution with p−1 degrees of freedom and noncentrality

parameter

δ =

p∑

j=1

I(f∗
βj
)∆jθ

2
jγ

2(ϕ(j), f∗
βj
)(Qj + Vj).

P r o o f. The proof of the asymptotic distributions is analogous to the previous

one for the test about an intercept. According to Theorem 3.2 in [15] for the test

of parallelism in the model without measurement errors we have that under H2

test statistic T̂ 2
n has in the model (3.1) without measurement error asymptotically

χ2-distribution with p − 1 degrees of freedom and under K2n asymptotically χ
2-

distribution with p− 1 degrees of freedom with noncentrality parameter δ.

The formulas (3.2)–(3.3) imply that that there exists a limit (in probability) of

Wn =
1

n

n∑

j=1

(wi − wn)
2 → Q+ V =

p∑

i=1

∆i(Qi + Vi).

Next, for every fixed β ∈ R

(3.7)
√
n(β̂n − β) =

1

γ(ψ, f∗
β)(Q + V )

Ln(β) + op(1) as n→ ∞,

where f∗
β is the density of e

∗
i = ei−viβ (see [8]). This result also holds for stochastic

regressors, see [12]. Then inserting this result into Theorem 3.2 in [15] completes the

proof. �

The previous result may be extended in a straightforward manner to multidimen-

sional parameters β(1), . . . ,β(p) and testing that all the parameters are equal (as

vectors).
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4. Numerical illustration

We made an extensive simulation study to illustrate how the proposed test pro-

cedures work in finite sample situation and indicate influence of the measurement

errors both for the test about an intercept and the test of parallelism. Because of

the lack of space we will present here only the first one. However, the corresponding

simulation results for the test of parallelism are very similar to those for the test

about an intercept.

All the simulations were performed in the statistical software R using standard

tools and libraries, the random numbers generator was set up with the initial value

set.seed(15).

Consider the model of regression line

Yi = β0 + xiβ + ei, i = 1, . . . , 50,

and test H1 : β0 = 0 against β0 > 0. The regressors xi were once generated from

a sample of size n = 50 from uniform (−6, 6) distribution, centered and then consid-

ered as fixed design points, the model errors ei were generated from standard normal

distribution. We considered the Wilcoxon aligned signed rank test that corresponds

to the score function ϕ(u) = 2u−1. For the estimation of the nuisance parameter the

score function ψ(u) = 2u− 1 was used. The empirical powers of the tests were com-

puted as a percentage of rejections of H1 among 10 000 replications, at significance

level α = 0.05.

Empirical powers of the Wilcoxon aligned signed rank test for various measurement

errors vi are summarized in Table 2 (the value of the nuisance parameter β was taken

β = 1).

β0 vi: 0 N (0, 1) N (0, 2) U(−1, 1) U(−2, 2) t(4)

0 5.59 5.53 5.51 5.41 5.70 5.48

0.1 17.40 13.36 11.91 15.58 12.54 11.97

0.2 38.74 25.40 20.74 32.28 23.54 23.09

0.3 65.10 43.71 34.55 55.30 39.20 38.93

0.4 86.22 62.51 50.14 76.65 56.23 54.04

0.5 96.36 79.60 66.81 90.68 73.87 70.86

0.6 99.14 90.72 80.27 96.76 85.69 83.70

Table 2. Percentage of rejections of the hypothesis H1 : β0 = 0 for various measurement
errors vi for the Wilcoxon aligned signed rank test; β = 1.

Empirical power of the Wilcoxon aligned signed rank test for various measurement

errors vi and for various values of nuisance parameter β are summarized in Table 3

(the true value of β0 was taken β0 = 0.3).
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β vi: 0 N (0, 1) N (0, 2) U(−1, 1) U(−2, 2) t(4)

0 66.14 65.17 65.29 65.91 65.79 66.21

−0.5 65.85 58.56 53.02 62.79 56.11 54.70

0.5 65.68 57.92 52.71 62.44 55.57 54.65

−1 65.21 44.66 35.64 55.36 38.95 37.66

1 66.40 43.08 34.69 55.10 38.90 37.16

−2 66.05 24.72 18.43 37.65 20.83 21.42

2 66.08 24.62 18.36 38.09 20.94 21.30

Table 3. Percentage of rejections of the hypothesis H1 : β0 = 0 for various measurement
errors vi for the Wilcoxon aligned signed rank test; β0 = 0.3.

We performed more simulations for other choices of regressors xi, model errors ei,

measurement errors vi, score functions ϕ and ψ, sample size n and model parameters

β and β0. However, corresponding results are similar to those in Tables 2 and 3. Our

simulation shows that the proposed test actually works, the error of the first kind is

under control (it is around the prescribed α = 0.05); only its power decreases with

increasing variance of measurement errors. Unlike the model without measurement

errors, the power of the proposed test does depend on the nuisance parameter β—the

greater value of β the smaller power. This is not surprising, because greater value

of β means greater influence of measurement errors.
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